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A SPHERICAL CR STRUCTURE ON THE
COMPLEMENT OF THE FIGURE EIGHT KNOT WITH

DISCRETE HOLONOMY

Elisha Falbel

Abstract

We describe a general geometrical construction of representa-
tions of fundamental groups of 3-manifolds into PU(2, 1) and even-
tually of spherical CR structures defined on those 3-manifolds. We
construct branched spherical CR structures on the complement of
the figure eight knot and the Whitehead link. They have discrete
holonomies contained in PU(2, 1, Z[ω]) and PU(2, 1, Z[i]) respec-
tively.

1. Introduction

One of the most important examples of hyperbolic manifolds is the
complement of the figure eight knot. It was shown by Riley in [R] that
the fundamental group of that manifold had a discrete representation
in PSL(2, C) with parabolic peripheral holonomy. In fact, he showed
that there exists a representation contained in PSL(2, Z[ω]) where Z[ω]
is the ring of Eisenstein integers. On the other hand, the construction
by Thurston of a real hyperbolic structure on the complement of the
figure eight knot is based on gluing of ideal tetrahedra, and that led to
general constructions on a large family of 3-manifolds.

The fact that 3-manifolds are all equipped with contact structures and
that CR structures are naturally associated to them makes us suspect
that spherical CR structures should be fundamental to the study of
three manifolds.

A basic question is that of the existence of a representation Γ →
PU(2, 1) where Γ is the fundamental group of a 3-manifold and PU(2, 1)
is the group of the homogeneous model for spherical CR geometry, that
is S3 ⊂ C

2 with the natural CR structure induced from the complex
structure of C

2. After that question is solved, one can ask whether the
representation obtained comes from a spherical CR structure, as the
holonomy map defined by the geometric structure. If there exists such
a structure, the holonomy group might be discrete or not, giving rise
to a dichotomy (not existant in the real hyperbolic case but analogous
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to that of conformal geometry). If the holonomy is discrete, a further
question is whether it is complete, meaning that the manifold is in fact a
quotient of the domain of discontinuity Ω ⊂ S3 by the holonomy group.
Note that it is not excluded that the representation be not injective and
the structure be complete.

Very few representations of fundamental groups of 3-manifolds in
PU(2, 1) are known. The only construction of such a structure on a 3-
manifold (which is not a circle bundle) previous to this work is essentially
for the Whitehead link and other manifolds obtained from it by Dehn
surgery in [S1, S2] (Schwartz showed they are also complete).

In this paper we address mainly the basic question of existence of
representations. We propose a geometrical construction by gluing ap-
propriate tetrahedra adapted to CR geometry. In particular, we prove
that the complement of the figure eight knot has a (branched) spherical
CR structure with discrete holonomy such that the holonomy of the
boundary torus is parabolic and faithful (see Theorem 6.1 and Propo-
sition 6.5). We also prove a rigidity theorem for this representation,
namely that it is the only one with faithful purely parabolic torus holo-
nomy (see Theorem 5.7). An interesting related feature of the represen-
tation is that its limit set is S3 (Theorem 6.8). As another example we
also construct a representation of the fundamental group of the com-
plement of the Whitehead link with discrete holonomy (Theorem 7.1).
It is interesting to observe that we obtain representations of the funda-
mental groups of those link complements with values in PU(2, 1, Z[ω])
and PU(2, 1, Z[i]), that is, the same rings of integers of the complete
structures in the case of real hyperbolic geometry.

We thank R. Benedetti, M. Deraux, W. Goldman, J.-P. Koseleff,
J. Marché, J. Parker, J. Paupert, R. Schwartz, R. Wentworth and P. Will
for many fruitful discussions.

2. Complex hyperbolic space

For a complete introduction to complex hyperbolic geometry we refer
to Goldman ([G]).

2.1. PU(2, 1) and the Heisenberg group. Let C
2,1 denote the com-

plex vector space equipped with the Hermitian form

〈z, w〉 = z1w3 + z2w2 + z3w1.

Consider the following subspaces in C
2,1:

V+ = {z ∈ C
2,1 : 〈z, z〉 > 0 },

V0 = {z ∈ C
2,1 \ {0} : 〈z, z〉 = 0 },

V− = {z ∈ C
2,1 : 〈z, z〉 < 0 }.

Let P : C
2,1 \ {0} → CP 2 be the canonical projection onto complex

projective space. Then H2
C

= P (V−) equipped with the Bergman metric
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is a complex hyperbolic space. The boundary of complex hyperbolic

space is P (V0) = ∂H2
C
. The isometry group P̂U(2, 1) of H2

C
comprises

holomorphic transformations in PU(2, 1), the unitary group of 〈·, ·〉, and
anti-holomorphic transformations arising elements of PU(2, 1) followed
by complex conjugation.

The Heisenberg group N is the set of pairs (z, t) ∈ C × R with the
product

(z, t) · (z′, t′) = (z + z′, t + t′ + 2Im zz′).

Using stereographic projection, we can identify ∂H2
C

with the one-point

compactification N of N. Heisenberg translations by (0, t) for t ∈ R are
called vertical translations.

Any complex conjugation in hyperbolic space corresponds after a con-
jugation to the inversion in the x-axis in C ⊂ N by

ιx : (z, t) 7→ (z,−t).

All these actions extend trivially to the compactification N of N and

represent transformations in P̂U(2, 1) acting on the boundary of com-
plex hyperbolic space.

A point p = (z, t) in the Heisenberg group and the point ∞ are lifted
to the following points in C

2,1:

p̂ =




−|z|2+it
2
z
1


 and ∞̂ =




1
0
0


 .

Given any three points p1, p2, p3 in ∂H2
C

we define Cartan’s angular
invariant A as

A(p1, p2, p3) = arg(−〈p̂1, p̂2〉〈p̂2, p̂3〉〈p̂3, p̂1〉).
In the special case where p1 = ∞, p2 = (0, 0) and p3 = (z, t) we simply

get tan(A) = t/ |z|2.

2.2. R-circles, C-circles and C-surfaces. There are two kinds of to-
tally geodesic submanifolds of real dimension 2 in H2

C
: complex lines in

H2
C

are complex geodesics (represented by H1
C
⊂ H2

C
) and Lagrangian

planes in H2
C

are totally real geodesic 2-planes (represented by H2
R
⊂

H2
C
). Each of these totally geodesic submanifolds is a model of the

hyperbolic plane.
Consider complex hyperbolic space H2

C
and its boundary ∂H2

C
. We

define C-circles in ∂H2
C

to be the boundaries of complex geodesics in
H2

C
. Analogously, we define R-circles in ∂H2

C
to be the boundaries of

Lagrangian planes in H2
C
.

Proposition 2.1 (see [G]). In the Heisenberg model, C-circles are
either vertical lines or ellipses, whose projection on the z-plane are cir-
cles.
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Finite C-circles are determined by a centre M = (z = a + ib, c) and
a radius R. They may also be described using polar vectors in P (V+)
(see Goldman [G, p. 129]).

If we use the Hermitian form 〈·, ·〉, a finite chain with centre (a+ib, c)
and radius R has polar vector (that is the orthogonal vector in C

2,1 to
the plane determined by the chain).




R2−a2−b2+ic
2

a + ib
1


 .

Given two points p1 and p2 in Heisenberg space, we write [p1, p2] for
a choice of one of the two segments of C-circle joining them. The choice
is determined by the orientation of the pair as any C-circle is oriented,
being a boundary of a complex disc.

Definition 2.2. A C-triangle based on three points [p0, p1, p2] is a
triangular surface foliated by segments of C-circles with boundary the
segments [p0, p1],[p0, p2] and [p1, p2].

One could in principle work with R-circles instead, but we will restrict
ourselves in this paper to objects foliated by C-circles. Each of those
triangles could be part of a C-sphere (see [FZ]).

A canonical way (which we will need to modify eventually) to fill
a triangle between three points is the surface which is the union of
segments of C-circles joining p0 to each point of the segments C-circle
[p1, p2].

3. CR triangles

We first describe triples of points in the standard spherical CR sphere.
They are classified up to PU(2, 1) in the following proposition.

Proposition 3.1 ([C], see [G]). The Cartan invariant classifies or-
dered triples of points up to PU(2, 1).

3.0.1. Computations. This section can be neglected in a first reading.
It describes a practical way to compute an element g ∈ U(2, 1) such that
g(α1, α2, α3) = (β1, β2, β3) (when the triples have the same Cartan’s
invariant). It will be used again and again to obtain the matrices in the
following sections without any further comment.

It is convenient to compare each triple to a reference triple which has
a fixed Cartan’s invariant. We suppose that the three points are not
contained in a same C-circle and in that case we might choose the triple
x = (x1, x2, x3) with

x1 = ∞, x2 = (0, 0), x3 = (1, t)

whose Cartan’s invariant is A(x1, x2, x3) = arctg (t). For α = (α1, α2,
α3), we will determine Φα such that Φα(x) = α. In the following we
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will use the same notation for an element in PU(2, 1) and a matrix
representative in U(2, 1). First observe that, from Φα(x1) = α1 =
(z1, t1) and Φα(x2) = α2 = (z2, t2) and recalling the formula for the lift
(if αi 6= ∞)

α̂i =




−|zi|2+iti
2
zi

1


 ,

the matrix Φα should be of the form

Φα =




−|z1|2+it1
2 b λ−|z2|2+it1

2
z1 e λz2

1 h λ


 .

It remains to compute b, e, h, λ.

As a first step, from Φα ∈ U(2, 1), that is, M = Φ
T
αJ0Φα = J0, we

obtain a number of equations. In particular , if z1 6= z2 we can solve
M12 = M32 = 0 for e, b:

e =
h

2

|z1|2 − |z2|2 + i(t1 − t2)

z̄1 − z̄2
,

b = −h

2

z̄2(|z1|2 + it1) − z̄1(|z2|2 + it2)

z̄1 − z̄2
.

On the other hand, if z1 = z2, M12 = M32 = 0 gives h = 0 and b = −z̄1e.
As a second step, we impose Φα(x3) = α3. If z1 6= z2, that gives two

equations in h and λ, the remaining variables. And that can be solved
explicitly. Analogously, if z1 = z2 one can easily solve for the remaining
variables b and λ.

The explicit expression for Φα, in specific cases, is computed in the
following sections according to these two steps and eventually dividing
by a cubic root of its determinant in order to obtain a matrix in SU(2, 1).
Finally, in order to obtain the matrix for g we follow the commutative
diagram

α
g

// β

x
Φα

__???????? Φβ

??��������

so that g(α) = Φβ ◦ Φ−1
α (α) = β.

4. Tetrahedra

Tetrahedra are constructed from configurations of four ordered points
in S3 (the standard CR sphere). The edges of the tedrahedron could be
segments of either R-circles or C-circles and the faces should be adapted
later to that one skeleton. In this paper we will use C-circles and C-
triangles.
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4.1. Real hyperbolic tetrahedra. Tetrahedra were used in ([T]) to
construct three dimensional hyperbolic manifolds after side pairings on
their faces. In order to control the quotient manifold an important step
is to parametrize in an efficient way the family of tetrahedra.

The simplest tetrahedra to parametrize are the ideal ones, i.e., those
having the four vertices at the ideal boundary of hyperbolic space. In
that case, using the half-space model, we can normalize the four points
to be

p1 = ∞ p2 = 0 p3 = 1 p4 = z.

The invariant z = p4−p2

p3−p2
∈ C

∗, of the triangle (p2, p3, p4) at p2, specifies

the ideal tetrahedron, and we say that z is the invariant of the edge
[p1, p2]. For a general configuration of points it is given by the cross ratio
(p4−p2)(p3−p1)
(p3−p2)(p4−p1) . One usually considers those tetrahedra with Imz > 0.

Choosing normalizations based on different edges gives invariants which
can be expressed as a function of z. For instance, choosing

p1 = ∞ q1 = 0 p4 = 1

implies

p2 =
1

1 − z
.

Each invariant is associated to an edge according to the normalization
above, and due to a Z2 ⊕ Z2 symmetry of an ideal tetrahedron, the
invariants of opposed edges are equal as shown in Figure 1.

When sewing several tetrahedra along the same edge a necessary
condition for the gluing to give rise to a hyperbolic manifold along that
edge is that the product of the invariants (associated to the tetrahedra
along that edge) be one. We obtain several equations, as many as the
number of edges in the quotient manifold.

As a last observation, note that the invariants are well defined for
an ordered quadruple of points in C ∪ {∞}. They only depend on the
0-skeleton of the tetrahedron. That is the point of view we adopt in
the spherical CR setting as, in that case, the edges and especially the
2-skeleton are quite arbitrary.

4.2. CR tetrahedra.

Definition 4.1. A tetrahedron is a configuration of four (ordered)
points and a choice of edges, that is, a choice of C-circle segments joining
each pair of points.

In order to find a representation it is enough to work with configura-
tions of four points, that is the 0-skeleton. The 1-skeleton is important
to define eventually a CR structure on a 3-manifold triangulated by
tetrahedra. We could have used R-circles. The advantage of using C-
circles is that in the Heisenberg space model, C-circles passing through
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z1

z1

z2

z2

z3

z3

p3 = 1

p4 = z

p1 = ∞

p2 = 0

Figure 1. Parameters for a real hyperbolic tetrahedron.
Here z1 = z with Im(z) > 0, z2 = 1/(1 − z1) and z3 =
1 − 1/z1.

infinity are vertical lines and this makes the analogy with real hyperbolic
ideal tetrahedra more transparent.

For a general configuration of four points we have four Cartan in-
variants corresponding to each triple of points. But one of them is
determined by the others in view of the cocycle condition (see [G] p.
219):

−A(x2, x3, x4) + A(x1, x3, x4) − A(x1, x2, x4) + A(x1, x2, x3) = 0.

A simple consequence is the following.

Proposition 4.2. If three triples of four points are contained in R-
circles (C-circles), the four points are contained in a common R-circle
(C-circle).

Proof. We will prove the result on R-circles, the other case being
easier. From the cocycle relation, each triple is contained in an R-circle
as A = 0 for all triples. Without loss of generality, we can suppose
that three of the points are ∞, [0, 0], [1, 0] in Heisenberg coordinates.
The fourth point is in an R-circle containing ∞, [0, 0] on one hand, so
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p3 = (1,
√

3)

p2 = (0, 0)

p4 = (1
2 + i

√
3

2 ,
√

3)

p1 = ∞

Figure 2. The standard tetrahedron in the Heisenberg
group with one vertex at infinity.

it is in the plane t = 0. On the other hand, it should be in an R-circle
passing through [1, 0] and ∞, that is in the contact plane at [1, 0]. The
intersection of both planes is precisely the x-axis. q.e.d.

The fundamental example is the following but we will need to change
the choice of the edges in later constructions. There are many possible
choices for edges depending on a choice of orientation for each edge.

Example: standard tetrahedron. Figure 4.2 shows one tetrahe-
dron with

p1 = ∞ p2 = 0 p3 = (1,
√

3) p4 =

(
1

2
+

i
√

3

2
,
√

3

)
,

in the Heisenbeg group. We choose all C-edges with positive vertical
coordinate. The C-edge between p3 and p4 is chosen to be the smallest
arc between the two points.

We deal first with configuration of ordered points (cf. [W] for differ-
ent normalizations):
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Proposition 4.3. Consider a generic configuration of four ordered
points p1, p2, p3, p4 in S3 (any three of them not contained in a C-circle)
up to overall translation by an element of PU(2, 1). Then, there exists
a unique representative normalized such that

p1 = ∞ p2 = 0 p3 = (1, t) p4 = (z, s|z|2)
with

z̄
i + s

i + t
6= 1

and

z 6= 0, 1.

Proof. In fact, we can always suppose p1 = ∞ p2 = 0 p3 =
(1, t) p4 = (z, s|z|2) with z 6= 0 because, besides p2, no other point
can lie on the vertical axis. Moreover, the two conditions follow from
computing Cartan’s invariant. In fact, p2, p3, p4 are in the same C-circle
if and only if

A(p2, p3, p4) = ±π/2,

therefore if and only if Re {A(p2, p3, p4)} = 0, and a computation shows
that

Re {A(p2, p3, p4)} =
|z|2
8

|z̄(1 − is) − (1 − it)|2

so that p2, p3, p4 are not in the same C-circle if and only if z̄ i+s
i+t

6= 1.
Analogously,

Re {A(p1, p3, p4)} = |1 − z|2,
so that p1, p3, p4 are not in the same C-circle if and only if z 6= 1. q.e.d.

In analogy with the real hyperbolic ideal tetrahedron, the invariant
associated to the edge [p1, p2] at the vertex p1 is z12 = z. Acoordingly,
the invariants associated to the edges [p1, p3] and [p1, p4] at the vertex
p1 are z13 = 1/(1 − z) and z14 = 1 − 1/z respectively.

Remark. The invariants can be defined as cross ratios of four or-
dered points in a CP 1. In fact, consider the points p1 ∈ S3 and the
projective space of all complex lines passing through it. There are four
distinguished points determined by the three lines passing through p1

and each of the other three points and a fourth point which is the com-
plex tangent line to S3 through p1. Repeating the same procedure for
each point we obtain the following invariants.

We consider Figure 3 to describe the parameters of a tetrahedron.
Note again that, contrary to the ideal tetrahedron in real hyperbolic
geometry, the euclidean invariants at each vertex, although related, are
not the same. The following definition puts together the considerations
above and makes explicit the invariants once the tetrahedron is given
in normalized coordinates.
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z12

z21

z34 z43

z13

z24

z31

z42

z14

z23

z32

z41

p3 p4

p1

p2

Figure 3. Parameters for a CR tetrahedron.

Definition 4.4. Given an ordered generic quadruple of points

p1 = ∞ p2 = 0 p3 = (1, t) p4 = (z, s|z|2)
we associate the following invariants as in Figure 3

z12 = z, z21 =
z̄(i + s)

i + t
, z34 =

z((t + i) − z̄(s + i))

(z − 1)(t − i)
,

z43 =
z̄(z − 1)(s − i)

(t + i) − z̄(s + i)
.

Also, z13 = 1
1−z12

and z14 = 1 − 1
z12

and similarly for z2i, z3i and z4i.

Remark. Observe that the invariants are associated to a quadruple
of points and therefore do not depend on the choice of edges between
the vertices. In fact, the compatibility conditions which we will state
below are based on the “0-skeleton” of the putative tetrahedra. One
will have to verify later that the “1-skeleton” is also well defined.

Proposition 4.5. Generic configurations (any three points are not
contained in a C-circle) of four pairwise distinct points in S3 are para-

metrized by the algebraic real variety in (C \ {0, 1})12 with coordinates
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zij, 1 ≤ i 6= j ≤ 4 defined by the usual hyperbolic constraints:

zijzikzil = −1, z13 =
1

1 − z12
, z32 =

1

1 − z31
,

z24 =
1

1 − z21
, z43 =

1

1 − z41

and the six real equations

z1jzj1 = zklzlk.

Remark. In fact, eliminating two variables in each vertex, one
can write the six real equations directly in (C \ {0, 1})4 with variables
z12, z21, z34, z43. The equations in these variables are:

z12z21 = z34z43

1

1 − z12

1

1 − z34
=

1

1 − z̄21

1

1 − z̄43(
1 − 1

z12

)(
1 − 1

z43

)
=

(
1 − 1

z̄34

)(
1 − 1

z̄21

)
.

Proof. The use of the twelve variables makes the equations more sym-
metric. In order to prove the result we suppose first that z12 6= z̄21.
Observe that this implies that z34 6= z̄43. We solve for z, t, s for a nor-
malized configuration.

From the three equations above we obtain

z12z21 = z34z43

(1 − z12)(1 − z34) = (1 − z̄21)(1 − z̄43)

(1 − z12)(1 − z43)z̄21z̄34 = (1 − z̄21)(1 − z̄34)z12z43.

Dividing the last equation by the second we get

|1 − z12|2z̄21z̄34 = |1 − z21|2z12z43,

and dividing the result by the first one we get

⋆ |1 − z12|2|z34|2 = |1 − z21|2|z12|2.
Substituting

z̄43 =
z12z21

z̄34

in the second equation, we get

(1 − z12)(1 − z34) = (1 − z̄21)

(
1 − z12z21

z̄34

)

and using relation ⋆, we may solve for z34:

z34 = z̄12
(1 − z21)(z12 − z̄21)

(z12 − 1)(z̄12 − z21)
,
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and analogously for z43:

z43 = z̄21
(1 − z12)(z̄12 − z21)

(z21 − 1)(z12 − z̄21)
.

The argument is similar for the other cases, that is, when z13 6= z̄31

and z14 6= z̄41.
If z12 = z̄21, then t = s for the normalized coordinates. If z14 = z̄41,

then sRe z + Im z = t. Therefore, if both equations are satisfied, we
conclude that t = s and tRe z+Im z = t. That is a regular configuration.
The equation z11 = z̄31 gives a new relation, namely, Im z = 0 which
determines the configuration, namely t = s = 0 and the four points are
aligned on an R-circle. q.e.d.

Computations.
This section may be skipped. It justifies the definition of the invari-

ants by an explicit computation using normal coordinates. In order to
compute the invariants at p2 one has to place that vertex at infinity.
This can be accomplished using the complex inversion interchanging
p1 = ∞ and p2 = 0:

I(z, t) =

(
z

|z|2 − it
,

−t

|z|4 + t2

)
.

Computing:

I(p1) = (0, 0) I(p2) = ∞ I(p3) =

(
1

−1 + it
,− t

1 + t2

)

and

I(p4) =

(
1

z̄(−1 + is)
,− s

|z|2(1 + s2)

)
.

The invariant z21 defined at the vertex p2 associated to the edge [p1, p2] is

the quotient of the z-coordinates of I(p3) by I(p4). That is z21 = z̄(i+s)
i+t

.

In the same way, to obtain the invariants at p3 and p4 one has to
move each of them to ∞. In order to do that we first translate p3 to
the origin by a Heisenberg translation

T1(z
′, t′) = (z′ − 1, t′ − t − 2Im z̄′),

where t is the vertical coordinate of p3, and then use the complex in-
version

I(z, t) =

(
z

|z|2 − it
,

−t

|z|4 + t2

)
.

Computing:

IT1(p1) = (0, 0) IT1(p2) =

(
i

t − i
,

t

1 + t2

)
IT1(p3) = ∞
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and

IT1(p4) =

(
z − 1

|z − 1|2 − (s|z|2 − t + 2Im z)i
,

− s|z|2 − t + 2Im z

|z − 1|4 + (s|z|2 − t + 2Im z)2

)
.

The invariant z34 associated to the edge [p3, p4] at the vertex p3 should
be the quotient of the z-coordinates of IT1(p2) − IT1(p4) by the z-
coordinates of IT (p1) − IT (p4). That is

z̃1 =
−|z|2(i + s) + z(t + i)

(z − 1)(t − i)
.

Finally, in order to obtain the invariant at p4 we first translate it to the
origin by a Heisenberg translation

T2(z
′, t′) =

(
z′ − z, t′ − s|z|2 − 2Im zz̄′

)
,

where p4 = (z, s|z|2), and then use the holomorphic qy inversion I as
above to obtain

IT2(z
′, t′) =

(
z′ − z

|z′ − z|2 − i(t′ − s|z|2 − 2Im zz̄′)
,

− t′ − s|z|2 − 2Im zz̄′

|z′ − z|4 + (t′ − s|z|2 − 2Im zz̄′)2

)
.

Computing:

IT2(p1) = (0, 0) IT2(p2) =

(
− 1

z̄(1 + si)
,

s

|z|2(1 + s2)

)
IT2(p4) = ∞

and

IT2(p3) =

(
1 − z

1 − it − 2z̄ + |z|2(1 + si)
, ⋆

)
.

The invariant z43 associated to the edge [p3, p4] at the vertex p4 should
be the quotient of the z-coordinates of IT1(p1) − IT1(p3) by the z-
coordinates of IT (p2) − IT (p3). That is

z̃′1 =
z̄(z − 1)(s − i)

(t + i) − z̄(s + i)
.

A simple computation gives the Cartan invariants:

Proposition 4.6. Given a quadruple of points with coordinates

p1 = ∞ p2 = 0 p3 = (1, t) p4 = (z, s|z|2),
then

tgA(p1, p2, p3) = t

tgA(p1, p3, p4) =
|z|2s − t + 2Im z

|z − 1|2
tgA(p1, p2, p4) = s,
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and

tgA(p2, p3, p4)

=
2(s − t)Re z + 2(1 + ts)Im z + t(1 + s2)|z|2 − s(1 + t2)

|(s − i)z + i − t|2 .

4.3. Symmetric Tetrahedra. Important classes of configurations are
the ones with a prescribed symmetry. We will consider namely the
following class. See [Wi] for a complete study of the symmetry group.

Definition 4.7. A symmetric configuration is a configuration of four
points with an anti-holomorphic involution which is a product of two
transpositions.

Consider a configuration of four points p1,p2, p3 and p4 and an anti-
holomorphic involution ϕ such that ϕ(p1) = p2 and ϕ(p3) = p4. We call
[p1, p2] or [p3, p4] the axis of the involution.

Recall that generic configurations of four points can be normalized
as follows in Heisenberg coordinates:

p1 = ∞ p2 = 0 p3 = (1, t) p4 = (z, s|z|2).

Lemma 4.8. The configuration of four points p1,p2, p3 and p4 has
an anti-holomorphic involution ϕ such that ϕ(p1) = p2 and ϕ(p3) = p4

if and only if t = s.

Proof. A simple proof follows writing the general form of an anti-
holomorphic transformation permuting ∞ and 0. It is given by conju-
gating one inversion interchanging both points

(z, t) →
(
− z̄

|z|2 + it
,

t

|z|4 + t2

)

by all complex dilations (z, t) → (λz, |λ|2t) where λ ∈ C
∗. The result is

the following general form:

f : (z, t) →
(
− λ2z̄

|z|2 + it
,

|λ|4t
|z|4 + t2

)
.

Imposing that the points p3 and p4 be permuted, that is f(1, t) =
(z, s|z|2), gives the result. q.e.d.

For a generic configuration of four points p1,p2, p3 and p4 with an anti-
holomorphic involution ϕ such that ϕ(p1) = p2 and ϕ(p3) = p4, we ob-
tain, from Proposition 4.6, A(p1, p2, p3) = A(p1, p2, p4) and A(p1, p3, p4)
= A(p2, p3, p4). Conversely, A(p1, p2, p3) = A(p1, p2, p4) implies that the
configuration is symmetric. A simple computation shows the following:
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Lemma 4.9. A generic configuration of four points of four pairwise
distinct points in S3 parametrized by zij, 1 ≤ i 6= j ≤ 4 is symmetric
with axis [a, b] if and only if

zabzba = zklzlk,

where {a, b, j, k} = {1, 2, 3, 4}.

Definition 4.10. A regular configuration of four points p1,p2, p3 and
p4 is a configuration satisfying

|A(p1, p2, p3)| = |A(p1, p2, p4)| = |A(p1, p3, p4)| = |A(p2, p3, p4)|.

For generic regular configurations, Proposition 4.6 implies that in

Heisenberg coordinates t = ±s and t = ± Im z

1−Re z
(if we have equality of

Cartan’s invariants above the sign is posivitive). Regular configurations
are parametrized by a complex variable.

For symmetric configurations, the computation of invariants is sim-
pler:

Corollary 4.11. For a symmetric tetrahedron given by

p1 = ∞ p2 = 0 p3 = (1, t) p4 = (z, t|z|2)

with an anti-holomorphic involution satisfying ϕ(p1) = p2 and ϕ(p3) =

p4, z12 = z,z21 = z̄, z34 = z(1−z̄)(t+i)
(z−1)(t−i) and z43 = z34.

The proposition above shows that the set of symmetric tetrahedra is
parametrized by a strictly pseudoconvex CR hypersurface in C\{0, 1}×
C \ {0, 1}; namely, solving for t, we obtain the equation

|z12| = |z34|.
We say a symmetric tetrahedron with an anti-holomorphic involution
satisfying ϕ(p1) = p2 and ϕ(p3) = p4 is special if the complex lines de-
fined by p1, p2 and p3, p4 are orthogonal. In the coordinates above, that
means that t = s (symmetry) and |z12| = 1. In that case observe that

z34 = t+i
t−i

and tgA(p1, p3, p4) = Im z12

1−Re z12

. Special symmetric tetrahedra

have a convenient realization as a finite configuration of points given in
the following proposition.

Proposition 4.12. If the special symmetric tetrahedron with an anti-
holomorphic involution satisfying ϕ(p1) = p2 and ϕ(p3) = p4 is given
by

p1 = (0, t) p2 = (0,−t) p3 = (1, 0) p4 = (eiθ, 0),

then z12 = eiθ and z34 = (t+i)2

(t−i)2
, where, as usual, z13 = 1

1−z12
and

z14 = 1 − 1
z12

.



84 E. FALBEL

4.3.1. The standard special tetrahedron. We let t = 2+
√

3 in the
coordinates above for a special tetrahedra. Using the formulas above we
obtain that the tetrahedron defined by p1 = (0, 2 +

√
3), p2 = (0,−(2 +√

3)), p3 = (1, 0) and p4 = (1, 0) has invariant z12 = z34 = 1+i
√

3
2 .

Moreover, A(p3, p4, p2) = π
3 and A(p1, p4, p2) = −π

3 .

4.3.2. Another special tetrahedron. We make p1 = (0, 1 +
√

2),
p2 = (0,−(1 +

√
2)), p3 = (1, 0) and p4 = (i, 0). The tetrahedron

defined by p1, p2, p3, p4 is special symmetric and z12 = i.

As a last observation, the moduli for a tetrahedron can be expressed
using other invariants as the Koranny-Reimann cross-ratios and Car-
tan’s invariants.
4.4. Edges. Given a configuration of four points p1, p2, p3, p4 we wish
to define the tetrahedron, that is, a choice of an edge between each pair
of points. For each pair there are two possible segments corresponding
to the two halves of the C-circle defined by the pair. That makes 64
possibilities. When gluing tetrahedra one has to chose carefully, for each
tetrahedron, edges so that the gluing will be compatible. One practical
way to do that is to give an order between each pair. This determines
without ambiguity the edge because C-circles, as boundaries of complex
discs, are ordered.
4.5. Faces. After the definition of a 1-skeleton the next step to define
the tetrahedron is to define the 2-skeleton. Again, one has to be careful
to chose the 2-skeleton in a compatible manner when gluing several
tetrahedra.

As an example we will consider the case of a special symmetric tetra-
hedron with edges chosen as in Figure 4.2.

We define the procedure of filling the faces from the one skeleton of
the tetrahedra in such a way that the 2-skeleton will be Z2-invariant:

Definition 4.13. The diverging C-rays procedure is the definition of
the 2-skeleton by taking C-segments from p1 to the edges [p3, p4], [p4, p2]
and C-segments from p2 to the edges [p3, p4], [p3, p1].

Observe that the rays start from p1 or p2 and not from p3 or p4.

Lemma 4.14. The special symmetric tetrahedron defined by the pro-
cedure of diverging C-rays is homeomorphic to a tetrahedron.

Proof. Figure 4 shows the projection of the 2-faces as will be ex-
plained in the proof. Recall that we can use the following coordinates
p1 = ∞, p2 = 0, p3 = (1, t) and p4 = (eiθ, t). The edges are the fol-
lowing: [p3, p4] = (eiϕ, t) 0 ≤ ϕ ≤ θ, [p2, p3] is an arc of ellipse which
projects on the z-coordinate of the Heisenberg space as an arc of a circle
joining p2 and p3. It is given by(

1 +
√

t2 + 1 cos ϕ

2
,
t +

√
t2 + 1 sin ϕ

2
,

√
t2 + 1

2
(cos ϕ − sinϕ)t

)
.
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p3

p4

Figure 4. Projection of the 2-faces of a tetrahedron us-
ing the diverging rays procedure (here p3 = (1, t) with
t > 0).

The projected circle is the circle centered at (1/2, t/2) with radius
√

t2+1
2 .

Observe that the projection of a C-segment from p2 towards (1, t′) with
t′ > t is contained in the region determined by the projected C-segment
from p2 towards (1, t) and the segment [0, 1]. Also, [p2, p4] is a rotation
by eiθ of the arc of ellipse [p2, p3] and analogously for the arcs [p2, (e

iθ, t′)]
for t′ > t. The projected circles are obtained by the same rotation.
The other edges are vertical lines going from the finite vertices towards
infinity (p1). By analyzing the projections, the following intersections
are obvious:

∆[p1, p2, p3] ∩ ∆[p1, p3, p4] = [p2, p3]

∆[p1, p3, p4] ∩ ∆[p1, p3, p4] = [p1, p2]

∆[p2, p3, p4] ∩ ∆[p1, p3, p4] = [p3, p4].

It remains to examine ∆[p1, p2, p3] ∩ ∆[p1, p2, p4] and the result will
follow by symmetry as the face ∆[p1, p2, p4] is transformed by the Z2

symmetry into the face ∆[p1, p2, p3]. To see this, observe that the pro-
jections of the rays starting from p2 and ending in the vertical line over
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p4 gather in a family of arcs which are all contained in the full arc of a
circle determined by the projection of [p2, p4] and the segment [0, eiθ];
therefore there is no intersection with the projections of the rays in
∆[p1, p2, p3] which are points on the projection of [p2, p3]. q.e.d.

In Section 5 we glue tetrahedra to obtain a spherical structure in the
complement of the figure eight knot, but the tetrahedra will be defined
using a modification of the procedure defined above.

5. Gluing tetrahedra: figure eight knot

5.1. Compatibility equations I: Face equations. A first compati-
bility condition for a given family of tetrahedra with side pairings is that
the pairing of two triples of points are only possible if the corresponding
Cartan’s invariants are equal.

A computation shows that

tan(A(p2, p3, p4)) = −i
z21z31z41 + 1

z21z31z41 − 1
.

This implies that the face gluing conditions between tetrahedra with
invariants zij and wi′j′ are given by equations of the form

zilzjlzklwi′l′wj′l′wk′l′ = 1,

where l and l′ correspond to points oposed to the common face. We will
impose these relations in the next section. Here we will make computa-
tions in normal coordinates.

We refer to the parametrization of a generic configuration using zi,
z′i, z̃i and wi, w′

i, w̃i as in Figure 5. In this section we obtain the
Cartan compatibility equations for gluing two configurations according
to the scheme in the figure. The side-pairings g1, g2, g3 and Id will
be determined explicitly in a later section for a discrete representation
which has purely parabolic peripheral holonomy.

We will use directly Cartan’s invariants, leaving the general equations
above for a later section. There are four equations corresponding to the
four side-pairings. We use again the normalizations

p1 = ∞ p2 = 0 p3 = (1, t1) p4 = (z, s1|z|2)
and

ṗ1 = ∞ ṗ2 = 0 ṗ3 = (1, t2) ṗ4 = (w, s2|w|2).

Define

F (z, t, s) =
2(s − t)Re z + 2(1 + ts)Im z + t(1 + s2)|z|2 − s(1 + t2)

|(s − i)z + i − t|2 .

Then we can write

A(p1, p2, p4) = A(ṗ1, ṗ2, ṗ3) =⇒ s1 = t2
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Id

z′1

z̃′1

z′2z′3

w′
1

w̃′
1p3

p4

p1

p2

ṗ3

ṗ4

ṗ1

ṗ2

g1

g2

g3

z̃1

z̃3

z̃2

w1

w2 w3

z1

z3
z2

w̃1

Figure 5. Two tetrahedra with the gluing scheme to
obtain the figure eight knot showing the CR-invariants.

A(p1, p2, p3) = A(ṗ4, ṗ2, ṗ3) =⇒ t1 = F (w, t2, s2)

A(p2, p3, p4) = A(ṗ1, ṗ3, ṗ4) =⇒ F (z, t1, s1) =
s2|w|2 − t2 + 2Im w

|w − 1|2

A(p1, p3, p4) = A(ṗ1, ṗ2, ṗ4) =⇒ s1|z|2 − t1 + 2Im z

|z − 1|2 = s2.

There are only three independent equations, the fourth one being a
consequence of the cocycle condition for Cartan’s invariant. That is,
from

A(p1, p2, p4) + A(p1, p4, p3) + A(p1, p3, p2) = A(p2, p4, p3)

A(p2, p3, p4) = arctg (F (z, t1, s1)) is determined.
Choosing the first tetrahedron arbitrarily one can fix all Cartan’s

invariants of the second one. In particular, t2, s2 being determined and
the equation

F (z, t1, s1) =
s2|w|2 − t2 + 2Im w

|w − 1|2
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is the equation of a quadric in w. That gives a 5 real parameter family
of a couple of tetrahedra with compatible Cartan’s invariants under the
gluing scheme.

5.1.1. Special case (symmetric tetrahedra). If we deal with sym-
metric tetrahedra, the equations are simplified and we obtain the fol-
lowing special case:

Proposition 5.1. If two symmetric tetrahedra (with symmetry axis
[p1, p2]) are glued following the scheme above to obtain the complement
of the figure eight knot, then they are both regular. In that case, a couple
of regular tetrahedra is parametrized by a hypersurface in the variables
z and w.

Proof. For a symmetric tetrahedron s = t. From the equations above
we obtain that the four triples have the same Cartan’s invariant and
therefore they are regular. In this case we have

t =
Im z

1 − Re z
=

Im w

1 − Re w
.

q.e.d.

That is a three dimensional family of couples of tetrahedra para-
metrized by

z = α + t(1 − α)i w = β + t(1 − β)i,

where t, α, β are reals.

5.1.2. Families of triangulations with compatible faces. It is im-
portant to ask whether one can associate to a triangulation of a three-
manifold compatible Cartan invariants. A simple answer is given in the
following:

Proposition 5.2. Fix a triangulation (with T tetrahedra) of a three
manifold M and let {Fi} be the oriented two-faces of the triangulation.
Then, to each element A ∈ C2(M, R) (the 2-cocycles of M) such that
−π/2 ≤ A(Fi) ≤ π/2 one can associate a T -dimensional family of T
spherical CR tetrahedra.

Proof. To each face of a tetrahedron of the triangulation, the cocycle
element τ associates one invariant (Cartan). Now, for each tetrahedron
in the triangulation, the Cartan invariants being fixed, there exists a one
parameter family of configurations of four points with precisely those
Cartan invariants. q.e.d.

Of course, we are interested in non-trivial elements of C2(M, R); oth-
erwise all the tetrahedra would be collapsed in a R-circle.

A special case is obtained if A is a coboundary A = δτ . Here τ is a
1-cocycle defined in the 1-skeleton. In the case of the figure eight knot
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there are only two edges, say, τ(→) = a and τ(→→) = b. We obtain the
following

A(p1, p3, p4) = δτ(p1, p3, p4) = τ(p1p3 + p3p4 + p4p1) = −b + b− a = −a

and analogously,

A(p1, p4, p2) = b A(p1, p2, p3) = a A(p3, p4, p2) = b.

That shows that the tetrahedron is symmetric with one of the axes of
symmetry the edge [p3, p1]. In that case, the equations defining the
tetrahedra are

s1 = t2 =
s2|w|2 − t2 + 2Im w

|w − 1|2 s2 = t1 =
s1|z|2 − t1 + 2Im z

|z − 1|2 ,

so that when we fix t1 and s1 (t1 6= s1) satisfying t1(t1 − 2s1) ≤ 1 and
s1(s1 − 2t1) ≤ 1, we obtain one circle of solutions for z and another for
w. Observe that

C2(quotient of tetrahedra by side pairings, R)

is a 3-dimensional vector space generated by the coboundaries (that is
a two-dimensional space corresponding to symmetric tetrahedra with
axis [p3, p1]) and the two-dimensional space of cocycles corresponding
to symmetric tetrahedra with axis [p1, p2] with

A(p1, p3, p4) = u A(p1, p4, p2) = −t A(p1, p2, p3) = t A(p3, p4, p2) = u.

For a general triangulation it is more convenient to start with a
coboundary which is easily computed by assigning to each edge a real
number and computing the coderivative of that cochain. In the follow-
ing sections we consider the family of constant cocycles in the case of
the figure eight knot complement: those are the coboundaries such that

A(p1, p3, p4) = t A(p1, p4, p2) = −t A(p1, p2, p3) = t A(p3, p4, p2) = t.

They are precisely those described in Proposition 5.1.

5.2. Compatibility conditions II: Edge equations. In order to
have a coherent gluing of the tetrahedra along the edges, we have to
impose some compatibility equations as in the real hyperbolic gluing of
ideal tetrahedra. We have four equations (two for each cycle of edges
corresponding to the two end points of each cycle):

z1w1z2w̃
′
1z̃

′
1w̃

′
2 = 1

z′1w
′
1z̃2w̃1z̃1w

′
2 = 1

z̃′2w̃3z̃3w̃2z̃
′
3w̃

′
3 = 1

z′2w
′
3z

′
3w2z3w3 = 1.

Observe that the product of the four equations is 1; that is, one of
the equations is obviously dependent on the other three.
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5.3. Holonomy. Using the invariants of the tetrahedra introduced
above one can compute the rotation part of the peripheral subgroups
following essentially the same method as in Thurston’s notes. By rota-
tion part of an element of the group of automorphisms of the Heisenberg
space we mean the rotation part of its natural projection on the auto-
morphism group of C.

First of all, one has to identify the peripheral subgroups correspond-
ing to the ends of the manifold whose fundamental group is to be em-
bedded in PSU(2, 1). In the case of the figure eight complement, Figure
14 shows the link around the unique boundary component. It is a torus
triangulated by eight triangles a, b, c, d, e, f, g, h where the side-pairings
used to glue each triangle to the next are explicited. The representa-
tion of the fundamental group of this torus is obtained following the
side-pairings along the triangles which border a loop representing each
of the two generators. The rotational part of each generator is precisely
the product of each of the invariants at each of the vertices contained
in the loop associated to that generator. Calling H1 and H2 the two
generators of the peripherical group Z⊕Z we obtain for their rotational
part R(H1) and R(H2) the following formulae:

R(H1) = R(G−1
1 G3G

−1
1 G2G

−1
3 G1G

−1
3 ) = z̃′1z̃

′
2w̃3z̃3z̃1w

′
2z

′
1z

′
2w3z3z1w̃

′
2

and

R(H2) = R(G−1
2 G1) = −w̃′

2w̃
′
1z̃

′
1.

Contrary to the real hyperbolic case where, in order to be parabolic, the
rotation part of an element should be 1, for an element of the Heisenberg
group a necessary condition is that |R(Hi)| = 1 (in fact, an element
could be ellipto-parabolic).

5.4. A representation with purely parabolic peripheral holo-
nomy. In order to describe all parabolic representations we first observe
that they can be described by sewing two tetrahedra.

We consider the following presentation with parabolic generators

〈 g1, g3 | [g3, g
−1
1 ]g3 = g1[g3, g

−1
1 ] 〉.

Let p1 and p2 be the parabolic fixed points of g1 and g3 respectively.
Let p3 = g−1

1 (p2) and q3 = g−1
3 (p1).

Lemma 5.3. g3g
−1
1 (p2) = g−1

1 g3(p1).

Proof.

[g3, g
−1
1 ]g3(p3) = g1[g3, g

−1
1 ](p3) = g1g3g

−1
1 g−1

3 g1g
−1
1 (p2)

= g1g3g
−1
1 (p2) = g1(g3g

−1
1 (p2)).

Therefore,

g−1
1 g3g

−1
1 g−1

3 g1(g3g
−1
1 (p2)) = g3g

−1
1 (p2).



A SPHERICAL CR STRUCTURE ... 91

That means that p4 = g3g
−1
1 (p2) is the fixed point of the parabolic

element g−1
1 g3g

−1
1 g−1

3 g1, and that implies that p4 = g−1
1 g3(p1). We

conclude that
g3g

−1
1 (p2) = g−1

1 g3(p1).

q.e.d.

We obtain therefore two tetrahedra as in the hyperbolic representa-
tion by considering the points p1, p2, p3, p4, q3 and the same side pairings
between the corresponding triples of points as we’ve been considering
until now.

5.4.1. Special case (symmetric tetrahedra). A direct substitution
of the symmetric solutions to the face conditions obtained in 5.1.1 into
each of the edge equations gives:

Proposition 5.4. For a couple of symmetric tetrahedra glued accord-
ing to the scheme above, the edge compatibility equations are equivalent
to the equation

(t2(1 − α)2 + α2)(t2(1 − β)2 + β2)

(1 − α)(1 − β)(1 + t2)
= 1.

That is

(α−1)2(β−1)2t4 +(2α2β2 −2α2β +β2 −αβ +α2 +α−2αβ2 −1+β)t2

−1 + α2β2 + α − αβ + β = 0.

That family of couples of tetrahedra defines a two dimensional family
of representations of the fundamental group of the complement of the
figure eight knot.

A remarkable one dimensional family is obtained imposing α = β in
the equation of Proposition 5.4, which transforms to:

(α − 1)4t4 + (2α2 − 1)(α − 1)2t2 + (α2 + α − 1)(α2 − α + 1),

which has a solution for α ≤ 5/8 (positive discriminant) and 1 − 2α2 +√
5 − 8α ≥ 0 (a solution of the biquadratic equation should be positive).

We obtain a solution for −(1 +
√

5)/2 ≤ α ≤ 5/8. The solutions are

t =

√
1 − 2α2 +

√
5 − 8α√

2(α − 1)

if −(1 +
√

5)/2 ≤ α ≤ 5/8, and another solution

t =

√
1 − 2α2 −

√
5 − 8α√

2(α − 1)
,

which is valid for (
√

5 − 1)/2 ≤ α ≤ 5/8.
In the next section, we pick up an element of this family, namely, we

make

α = β =
1

2
,
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and in that case t =
√

3. Using Proposition 5.4 and after a straightfor-
ward calculation one obtains

Lemma 5.5. When gluing two symmetric tetrahedra as in the scheme
above, we obtain the following expressions for the generators of the pe-
ripheral group

R(H1) =
(i + t)4(t(1 − α) − αi)

(−i + t)4(t(1 − β) + βi)

R(H2) = −(t(1 − α) − αi)(t(1 − β) − βi)

(1 − it)(β − 1)
.

The necessary condition for parabolicity is |R(Hi)| = 1, that is

t2(1 − α)2 + α2 = t2(1 − β)2 + β2

and

(t2(1 − α)2 + α2)(t2(1 − β)2 + β2)

(1 − β)2(1 + t2)
= 1.

Using again 5.4 and the last equation, we conclude that α = β.

Proposition 5.6. There exists a unique representation (among rep-
resentations obtained gluing two symmetric tetrahedra as above) of the
fundamental group of the complement of the figure eight knot with purely
parabolic peripheral holonomy. In that case R(H1) = 1, α = β = 1/2
and t =

√
3.

Proof. It follows by solving the equations above. In particular, it
suffices to impose that R(H2) = 1. In fact, that equation becomes

−(t(1 − α) − αi)2

(1 − it)(α − 1)
= 1,

which implies α = 1/2, and the proposition follows. q.e.d.

5.4.2. General case of unipotent representations.

Theorem 5.7. There exists a unique representation of the funda-
mental group of the complement of the figure eight knot with faithful
purely parabolic peripheral holonomy.

Of course, the representation is the same as the one obtained in the
previous proposition with the additional symmetry hypothesis.

Proof. We can assume that the representation is constructed by sew-
ing tetrahedra as the previous lemma shows. The compatibility equa-
tions are
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Edge equations:

z1w1z2w̃
′
1z̃

′
1w̃

′
2 = 1

z′1w
′
1z̃2w̃1z̃1w

′
2 = 1

z̃′2w̃3z̃3w̃2z̃
′
3w̃

′
3 = 1

z′2w
′
3z

′
3w2z3w3 = 1.

Face equations:

z2z̃
′
1z

′
3w3w̃1w

′
2 = 1

z3z̃1z
′
2w

′
1w̃

′
3w̃2 = 1

z1z̃
′
2z̃3w2w̃

′
1w

′
3 = 1

z′1z̃2z̃
′
3w1w̃3w̃

′
2 = 1.

Unipotent condition:

R(H1) = z̃′1z̃
′
2w̃3z̃3z̃1w

′
2z

′
1z

′
2w3z3z1w̃

′
2 = 1

R(H2) = −w̃′
2w̃

′
1z̃

′
1 = 1.

From equation R(H2) = 1 we obtain −w̃′
2w̃

′
1z̃

′
1 = 1, that is z̃′1 = w̃′

3.
Using the first edge equation we then obtain z3 = w1. Using the third
equation we obtain z̃3 = w̃1 and finally using the second equation we
obtain z′1 = w′

3. The face equations therefore are now written:

w3w̃
′
3w

′
2w3w̃1w

′
2 = 1

w1w̃2w
′
1w

′
1w̃

′
3w̃2 = 1

w2w̃
′
1w̃1w2w̃

′
1w

′
3 = 1

w′
3w̃3w̃

′
2w1w̃3w̃

′
2 = 1

that is

w2
3w

′2
2w̃

′
3w̃1 = 1

w′2
1w̃

2
2w1w̃

′
3 = 1

w2
2w̃

′2
1 w̃1w

′
3 = 1

w̃2
3w̃

′2
2 w1w

′
3 = 1.

We use the equations
z1z

′
1 = z̃1z̃′1

z2z̃2 = z′2z̃
′
2

z3z̃
′
3 = z̃3z′3

and
w1w

′
1 = w̃1w̃′

1

w2w̃2 = w′
2w̃

′
2

w3w̃
′
3 = w̃3w′

3.

Writing in terms of normalized coordinates ∞, (0, 0), (1, t2), (w1, s2)
the configuration parametrized by the coordinates w1, w

′
1, w̃1, w̃

′
1, we

obtain the solutions:

w1 = β1 + iβ2 =
1

2
± i

√
3

2
t2 = s2 = ±

√
3

w1 = β1 + iβ2 =
3

2
± i

√
7

2
t2 = ∓

√
7 s2 = 0

w1 = β1 + iβ2 =
3

8
± i

√
7

8
s2 = ∓

√
7 t2 = 0.
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We remark that the solutions are given by symmetric configurations.
The groups obtained from the solutions come in pairs conjugated by an
anti-holomorphic reflection. We don’t distinguish them up to conjuga-
tion in the isometry group.

We will see in section 6.5.1 that the solution

w1 =
3

8
+ i

√
7

8
s2 = −

√
7 t2 = 0,

so that

w′
1 =

5

4
+ i

√
7

4
w̃1 =

3

8
− i

√
7

8
w̃′

1 =
5

4
−

√
7

4

gives rise to a cyclic boundary holonomy. Analogously, the solution

w1 = β1 + iβ2 =
3

2
± i

√
7

2
t2 = ∓

√
7 s2 = 0,

so that

w′
1 = −3

4
− i

√
7

4
w̃1 =

3

2
− i

√
7

2
w̃′

1 = −1

4
+

√
7

4

is associated to a cyclic boundary holonomy. The remainder solution
will be shown to have a faithful holonomy in the next section. This
concludes the proof. q.e.d.

6. Discrete holonomy

Theorem 6.1. There exists a branched spherical CR-structure on
the complement of the figure eight knot with discrete holonomy.

Proof. We use the same identifications that Thurston used in his con-
struction for a hyperbolic real structure on the figure eight knot. That
is, two tetrahedra with the identifications given in Figure 7. We real-
ize the two tetrahedra in the Heisenberg space gluing a pair of sides.
The side pairings transformations are shown in Figure 7 where the two
tetrahedra are represented with a common side. (Here we introduce the

point q3 = (ω, 0) where ω = −1+i
√

3
2 .) They are determined by their

action on three points and are defined by:

g1 : (p4, p3, p1) → (q3, p2, p1)

g2 : (p2, p3, p4) → (p1, p4, q3)

g3 : (p3, p2, p1) → (p4, p2, q3).

We will also use the infinite configuration with

p1 = ∞, p2 = (0, 0), p3 = (1,
√

3), p4 =

(
1 + i

√
3

2
,
√

3

)
, q3 = (ω,

√
3).
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p3 = (1, 0)

p2 = (0,−2 −
√

3)

p4 = (−ω̄, 0)

p1 = (0, 2 +
√

3)

Figure 6. A schematic view of the standard ideal tetra-

hedron in the Heisenberg group. Here ω = −1+i
√

3
2 .

Using the computations as explained in 3.0.1, we obtain the following
generators:

G1 =




1 1 ω̄
0 1 −1
0 0 1




G2 =



√

3i 0 1
0 −1 0
1 0 0




G3 =




1 0 0
1 1 0
ω̄ −1 1


 .

Note that G1, G3 are parabolic and G2 is elliptic of order six. Moreover,
the three generators are in PU(2, 1, Z[ω]), proving that the representa-
tion (if it exists) is discrete.

6.1. 0-skeleton. The 0-skeleton satisfies the compatibility conditions
given by the equations imposing that the invariants multiply to unity.
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p3

p2

q3

p1

g1

g3

g2

Figure 7. Identifications on the tetrahedra.

That is sufficient to obtain a representation of the fundamental group
of the complement of the figure eight knot.

To be explicit, starting with the points

p1 = ∞, p2 = (0, 0), p3 = (1,
√

3), p4 = (−ω̄,
√

3), q3 = (ω,
√

3),

we can follow the identifications of the triples of points in the following
order:

1) G1(p4, p3, p1) = (q3, p2, p1) and G1(p2) = (−1,−
√

3) = q4.
2) G1G

−1
3 (p4, p2, q3) = (p2, q4, p1) and G1G

−1
3 (p1) = (ω2,−

√
3) = q5.

3) G1G
−1
3 G2(p2, p3, p4) = G1G

−1
3 (p1, p4, q3) = (q5, p2, p1) and

G1G
−1
3 G2(p1) = (ω,−

√
3) = q6.

4) G1G
−1
3 G2G

−1
1 (q3, p2, p1) = G1G

−1
3 G2(p4, p3, p1) = (p1, p2, q6) and

G1G
−1
3 G2G

−1
1 (p4) = p3.

5) Finally G1G
−1
3 G2G

−1
1 G3(p3, p2, p1) = G1G

−1
3 G2G

−1
1 (p4, p2, q3) =

(p3, p2, p1).

The last equality shows that G1G
−1
3 G2G

−1
1 G3 = Id and therefore proves

that we have indeed a representation of the fundamental group of the
complement of the figure eight.

6.2. 1-skeleton. The one skeleton we choose has to be compatible with
the identifications above. Recall that a segment of C-circle is determined
by giving the first point and its end point. That follows because the
C-circle has an intrinsic orientation. Referring to Figure 13, where the
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p3

p2

p4

p1

Figure 8. A realistic picture of the 1-skeleton of one of
the tetrahedra.

Figure 9. The 1-skeleton of the two tetrahedra with
p1 = ∞ in Heisenberg space.

orientations of the edges are explicit, we might choose accordingly the
segments of C-circles.
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p3

p4q3

T1

T2

Figure 10. The projection of the two tetrahedra T1 and
T2 on the z-plane of Heisenberg space.

6.3. 2-skeleton. We use the model with p1 = ∞ in Heisenberg space.
The faces are defined in the following way:

6.3.1. T1.

1) F (p2, p3, p4) is defined as the union of ray-segments starting at p2

and ending at the edge [p3, p4]. Using standard formulae for the
C-circle between two points we obtain that the formula for each
of them is

(eiϕ(eiθ − ω̄),
√

3 cos θ − sin θ)

for 0 ≤ ϕ ≤ π/3 and −2π/3 ≤ θ ≤ −π/3. They are all obtained
from the edge [p2, p3] by a rotation of angle ϕ. Their projection
on the z-coordinate of Heisenberg space fills the region defined by
the projection of the triangle [p2, p3, p4].

2) All other faces of T1 are obtained by joining each of the edges to
p1. That gives a cylindrical surface with the base formed by the
triangle [p2, p3, p4].

Observe that somewhat strangely there is one edge, namely [p1, p4],
which is not contained in a 2-face. This edge should be thought of as
part of the second tetrahedron. We therefore define T1 to be the region
defined by the 2-faces, neglecting the edge [p1, p4] and puting in instead
the edge [p4, p1].
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6.3.2. T2.

1) From F (p1, p4, q3) = G2(F (p2, p3, p4)) we obtain the definition of
that face as the union of ray-segments starting at p1 and ending
on the edge [p4, q3].

2) From F (q3, p2, p4) = G3(F (p1, p2, p3)) we obtain the definition
of that face as the union of ray-segments starting at the edge
[p2, p4] and ending at q3. The projection of that surface on the
z-coordinate is contained in the region defined by the projection
of the edges of the triangle [p2, p4,3 ].

3) The face F (p1, p2, p4) is obtained as the union of the ray-segments
from the edge [p2, p4] to p1 and all the C-circles passing through
p1 and the half line starting at p4 parallel to the y-axis. The
analogous definition holds for F (p1, p2, q3) as shown in Figure.

The definitions of T1 and T2 make clear the following lemma:

Lemma 6.2. G1, G2, G3 are side pairings of the union T1 ∪ T2.

Proposition 6.3. The quotient space of the union of the tetrahedra
T1 and T2 (excluding the vertices) by the side pairings G1, G2, G3 is the
complement of the figure eight knot.

Proof. The proof follows as in Thurston’s, except that we have two
extra sides. They don’t change the topology of the quotient as the
reader can be easily convinced. q.e.d.

6.4. The structure around the edges. The quotient of T1 ∪ T2 by
the side pairings inherits a spherical CR-structure except possibly at
the edges. There are two of them, represented by [p2, p1] and [p2, p4].
We have to verify that around each there exists a spherical structure. In
fact, we show that the neighborhood around those edges is a branched
cover of a neighborhood of half of the t-axis in the Heisenberg space.
That is what we call a branched spherical CR structure below.

We will make explicit the computations for the edge [p2, p1], the other
edge being similar. We follow the side pairings as for the 0-skeleton.
That is, the neighborhood around [p2, p1] should be a union of the neigh-
borhoods contained in (following that order) T1, T2, G1(T1), G1G

−1
3 (T2),

G1G
−1
3 G2(T1) and G1G

−1
3 G2G

−1
1 (T2). We will show that the union of

those tetrahedra forms a neighborhood covering three times a standard
tubular neighborhood of the edge [p2, p1] in Heisenberg space. To show
this we need to prove that each tetrahedra, in this series of six, matches
the previous one filling around the edge. There might be intersections
between two consecutive tetrahedra (besides the matching faces) but
those intersections should be monotone: that is, following from a point
in the face intersection of two consecutive tetrahedra, along a small pos-
itively oriented circle around the edge, there exists a positive interval
contained in the new tetrahedron and not in the previous one.
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1) T1 and T2 are well positioned by construction.
2) G1(T1) is shown in Figure 11. In fact, G1 is a Heisenberg transla-

tion and therefore the action of G1 descends to an action on the
projection as a complex translation z → z − 1. Its intersection
with T2 is the side pairing face.

3) The match G1(T1) with G1G
−1
3 (T2) is analyzed by composing with

G−1
1 , that is, it corresponds to the match between T1 and G−1

3 (T2).
That is the only time a computation is needed, but it is a simple
verification and can be seen in Figure 12. In fact, the image of the
projection of the face ∆(p1, p4, q3) by G−1

3 is given by
(

1

4

√
3t +

3

4
+

1

2

√
t2 + 1 cos θ,

1

4
t +

1

4

√
3 +

1

2

√
t2 + 1 sin θ

)
;

those are circles containing the projections of p3 and p4 as shown
in Figure 12. The projection of G−1

3 (T2) contains the disc centred
at p3 in the figure where a slice of angle π/6 is deleted.

4) The match G1G
−1
3 (T2) and G1G

−1
3 G2(T1) corresponds to T2 and

G2(T1) which is clear.
5) As we already know that we have a representation of the funda-

mental group, the last two tetrahedra around the edge are

G1G
−1
3 G2(T1) = G−1

3 G1(T1)

and G1G
−1
3 G2G

−1
1 (T2) = G−1

3 (T2). We also know that G1(T1)∪T2

match monotonically, so we conclude that G−1
3 G1(T1) and G−1

3 (T2)
match monotonically.

6) The match between G1G
−1
3 G2G

−1
1 (T2) and T1 can be analyzed

again in Figure 12 as it corresponds precisely to the match between
G−1

3 (T2) and T1.

The branched cover z → zn shows that a degree n covering of the
punctured complex disc is again a punctured disc. In particular, its
complex strucure can be extended to the full disc. On the other hand,
consider the branched covering σ : D → B where D = { (z1, z2) ∈
C

2 | |z1|2n + |z2|2 < 1 }, B = { (w1, w2) ∈ C
2 | |w1|2 + |w2|2 < 1 } is the

complex ball and σ(z1, z2) = (zn
1 , z2). The boundary of D is a spherical

CR-structure except at the singular circle z1 = 0. In fact, the tangent
plane TD ∩ JTD along that circle is not of contact type.

Definition 6.4. A branched spherical CR-structure on a 3-manifold
is a spherical structure defined over that manifold except at a finite
number of curves. Each of the curves have a neighborhood which is
CR equivalent to a neighborhood of part of the curve z1 = 0 in ∂D as
defined above.

6.5. Holonomy of the torus link. Refering to Figure 13 and sec-
tion 5.3, the holonomy of the torus link at the vertex can be computed
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p3

p4q3

q4
T1

T2

G1(T1)

Figure 11. Projected view of T1 and G1(T1).

following the identifications of the triangles forming the link. Start-
ing with the triangle on the right of the first tetrahedron we obtain
the generators. Here we conjugated the generators Gi by the element
satisfying

γ : (∞, 0, [1,−
√

3]) → (p1, p4, p3)

to simplify the expressions of the generators of the holonomy, so that

H1 = G−1
1 G3G

−1
1 G2G

−1
3 G1G

−1
3 =




−9+i
√

3
2

3+i5
√

3
2

5+i
√

3
2

3+i5
√

3
2 5 − i

√
3 1 − i2

√
3

5+i
√

3
2 1 − i2

√
3 −2 − i

√
3




H2 = G−1
2 G1 =

−1 + i
√

3

2




0 0 1
0 −1 1

1 1 −1+i3
√

3
2


 .
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p3

p4

Figure 12. Projected view of T1, T2 and G−1
3 (T2).

Writing

A =




1 0 0
−ω ω̄ 0
ω̄ ω 1


 ∈ U(2, 1),

we obtain

ωH1 = A




1 −2ω̄ −1 − 2ω
0 1 2ω
0 0 1


A−1

and

ωH2 = A




1 ω̄ ω
0 1 −ω
0 0 1


A−1.

Figures 13 and 14 show how to compute those elements. It turns out
that they are parabolic and independent:

Proposition 6.5. The holonomy of the torus link is faithful and
parabolic.

6.5.1. Holonomy of the other representations. We consider first
the solution

w1 =
3

8
+ i

√
7

8
s2 = −

√
7 t2 = 0.

In that case we have

z1 =
5

4
+ i

√
7

4
t1 =

√
7 s1 = 0.
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Id

ab

c

d e

f

g h

G1

G2

G3

Figure 13. The triangulation of the torus link.

We consider the configuration of points:

p1 = ∞ p2 = (0, 0)

q1 = (1,
√

7) q2 = (z1, 0) q3 = (z1w1, s2|z1w1|2) =

(
1

4
+ i

√
7

4
,−

√
7

2

)
,

which corresponds to the pairing of the tetrahedra [p1, p2, q1, q2] and
[p1, p2, q2, q3] along the common face [p1, p2, q2]. A simple computation
shows that

tan A(p1, p2, q1) =
√

7 tan A(q1, q2, p1) = −
√

7

and the triples of points [p1, p2, q2], [q1, q2, p2] are contained in R-circles.
We compute the matrices in SU(2, 1) corresponding to the face identi-
fications:

G1 =




1 1 −1
2 − i

√
7

2
0 1 −1
0 0 1



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Id

a

a
b c d

efgh h

G1

G1 G2 G3

G−1
2

G−1
1

G−1
1

G−1
3G−1

3

z̃1z̃3

z̃2

z̃′1

z̃′1

z̃′3

z̃′2

w1w2

w3

w′
1

w′
2

w′
3

z1z3

z2

z′1

z′3

z′2

w̃1

w̃3

w̃2w̃′
1 w̃′

1 w̃′
3

w̃′
2 w̃′

2

Figure 14. Computation of the holonomy at the vertex.

G2 =




2 3
2 − i

√
7

2 −1

−3
2 − i

√
7

2 −1 0
−1 0 0




G3 =




1 0 0
−1 1 0

−1
2 + i

√
7

2 1 1


 .

The holonomy is

H1 =




36 75
2 − 15i

√
7

2 −25

−75
2 − 15i

√
7

2 −49 25 + 5i
√

7

−25 −25 + 5i
√

7 16




and

H2 =




0 0 −1

0 −1 5
2 + i

√
7

2

−1 −5
2 + i

√
7

2 4


 .

We observe that (H2)
−5 = H1, and therefore the holonomy is cyclic.
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Analogously, the solution

w1 = β1 + iβ2 =
3

2
± i

√
7

2
t2 = ∓

√
7

2
s2 = 0

gives rise to a cyclic holonomy.

6.6. Relation to Eisenstein-Picard group. In [FP] we proved that
the Eisenstein-Picard Group PU(2, 1, Z[ω]) is generated by

P =




1 1 ω
0 ω −ω
0 0 1


 , Q =




1 1 ω
0 −1 1
0 0 1




and

I =




0 0 1
0 −1 0
1 0 0


 .

In this section we identify the generators of the holonomy in terms of
these generators. The information is contained in the following proposi-
tion. We first state a lemma whose proof is a simple computation after
a guess obtained by identifying the translational part of each parabolic
element.

Lemma 6.6. The holonomy of the torus link is given by

ωH1 = A[Q, P−1]2P 6A−1

and
ωH2 = A[P−1, Q]A−1,

where A = IQP−1QP−1Q−1PQ−1I.

From the lemma and a computation we obtain the generators of the
group.

Proposition 6.7.
G1 = (QP−1)3Q−1,

ω̄G2 = ω̄G1H
−1
2 = (QP−1)3Q−1A[Q, P−1]A−1

G3 = IG1I = I(QP−1)3Q−1I.

6.7. The limit set. Consider Γ8 = 〈G1, G2, G3〉 ⊂ G = PU(2, 1, Z[ω]).
We prove

Theorem 6.8. The limit set of Γ8 is S3.

Proof. First observe that the limit set of a group is the same as of
any of its non-elementary normal subgroups. From G2 = [G3, G

−1
1 ] we

have
= 〈G1, G3〉Γ8 = 〈G1, G2, G3〉 = 〈G1, G3〉 ⊂= 〈G1, I〉.

The last inclusion is of index two as IG1I = G3. Observe that G1 is
unipotent and the element P 3 = Q2 = G3G

−1
1 G−1

3 G1I is a unipotent
element in the center of the Heisenberg group containing G1.
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We use now the presentation of G obtained in [FP]:

G = 〈P, Q, I | I2 = (QP−1)6 = PQ−1IQP−1I = P 3Q−2 = (IP )3 〉.
Call T1 = [Q, P−1], then we claim that

〈G1, I〉 ⊂ 〈G1, I, T1〉
is a normal inclusion. We compute:

T1IT−1
1 = IG−1

1 IG1I T−1
1 IT1 = G−1

1 IG1P
3I

and

T1G1T
−1
1 = P−3G1 T−1

1 G1T1 = PG1.

This shows the claim.
Observe now that 〈G1, I, T1〉 has only one cusp. Indeed, the para-

bolic subgroup generated by 〈G1, P
3, T1〉 is cocompact in the Heisenberg

group and a fundamental domain (in the Heisenberg group) is contained
in the isometric sphere for I (cf [FP]). The subgroup 〈G1, I, T1〉 is there-
fore a subgroup of PU(2, 1, Z[ω]) of finite index. Its limit set is therefore
S3. q.e.d.

Using the following lemma we conclude that 〈G1, I, T1〉 coincides with
the normalizer of Γ8 in PU(2, 1, Z[ω]).

Lemma 6.9. The normal subgroup of PU(2, 1, Z[ω]) generated by Γ8

(the normalizer of Γ8) is of index 6.

Proof. We use again the presentation

G = 〈P, Q, I | I2 = (QP−1)6 = PQ−1IQP−1I = P 3Q−2 = (IP )3 〉.
The quotient H = G/N(Γ8) has the following presentation:

H = 〈 P, Q, I | I2 = (QP−1)6 = PQ−1IQP−1I = P 3Q−2 = (IP )3 =

G1 = G2 = G3 〉.
H = 〈 P, Q, I | I2 = (QP−1)6 = PQ−1IQP−1I = P 3Q−2 = (IP )3 =

(QP−1)3Q−1 = (QP−1)3Q−1A[Q, P−1]A−1 =

I(QP−1)3Q−1I 〉
with A = IQP−1QP−1Q−1PQ−1I. We may clearly substitute the last
three relations by

(QP−1)3Q−1 = [Q, P−1] = Id.

On the other hand the relation [Q, P−1] = Id plus the relation P 3Q−2 =
Id implies (QP−1)3Q−1 = Id. The presentation above is therefore the
same as

H = 〈 P, Q, I | I2 = (QP−1)6 = PQ−1IQP−1I = P 3Q−2 =

(IP )3 = [Q, P−1] 〉.
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1) From P 3Q−2 = Id we obtain P 2 = Q2P−1 and P 2Q−1 = P−1Q,
therefore

Id = [P, Q] = PQP−1Q−1 = PQ−1Q2P−1Q−1 =

PQ−1P 2Q−1 = PQ−1P−1Q = [P, Q−1].

2) It follows, from (QP−1)6 = Q6P−6 = Id and P 3Q−2 = Id, that
Q2 = Id.

3) The representation becomes:

H = 〈 P, Q, R | I2 = Q2 = P 3 = PQ−1IQP−1I = (IP )3 = [P, Q] 〉
or

H = 〈 P, Q, R | I2 = Q2 = P 3 = [PQ, I] = (IP )3 = [P, Q] 〉.
4) From (IP )3 = Id we have PIP = IP−1I = IP 2I. Therefore

Id = [PQ, I] = PQIQP 2I = QPIPQPI = QIP 2IQPI = QIP 2I2QP

where we used in the last equality [PQ, I] = Id, and therefore

Id = QIP 2QP.

This implies that I = QP 2QP = Id. We identify then the group

H = 〈 P, Q | Q2 = P 3 = [P, Q] 〉
as the cyclic group of order six.

q.e.d.

7. Gluing tetrahedra: The Whitehead Link

Using the other special tetrahedra defined in 4.3.2, we obtain a rep-
resentation of the fundamental group of the complement of the White-
head link. It suffices to observe that we can glue four tetrahedra as in
Thurston, forming an octahedra with dihedral angles equal to π/2. We
make p1 = (0, 1 +

√
2), p2 = (0,−(1 +

√
2)), p3 = (1, 0) and p4 = (i, 0).

We have z1 = z̃1 = i with A(p1, p3, p4) = π/4. We want to show com-
pleteness. Define q3 = (−1, 0) and q4 = (−i, 0).

The generators of the group are given by

gA : [p1, p3, p4] → [p4, q3, p2]

gB : [p1, p4, q3] → [q4, p2, q3]

gC : [p1, q3, q4] → [q4, p3, p2]

gD : [p1, q4, p3] → [p4, p2, p3].

Conjugating the generators above with the mapping

[p1, p3, p4] → [∞, 0, (1, 1)],
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Figure 15. The Whitehead link complement.

we obtain the following matrices in SU(2, 1) representing the generators:

G1 =




1 0 −i
−1 − i 1 −1 + i
−1 − i 1 − i i




G2 =




1 1 − i −1 + i
−1 − i −1 1 − i
−1 + i 1 + i −1 − 2i




G3 =




i 1 + i −i
1 − i −1 − 2i 2i
−1 − i −3 + i 3 + 2i




G4 =




−i 0 0
−1 + i −1 0
−1 + i −1 + i −i


 .

G1 and G3 have trace 2 + i and therefore are loxodromic, G2 and G4

have trace −1 − 2i and are elliptic of order four.
We obtained the following:
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Theorem 7.1. The representation of the fundamental group of the
Whitehead link complement generated by G1, G2, G3, G4 is in PU(2, 1,
Z[i]) and is therefore discrete.

7.1. Holonomy. There are two tori. We use the notation as in [Ra].
We compute their holonomy as in the case of the figure eight knot. The
first torus has holonomy generated by

H1 = G−1
3 G−1

1 =



−1 − 6i −6 − 4i 2 + 4i
−4 + 6i 1 + 8i 2 − 4i
2 + 4i 4 + 2i −1 − 2i


 and H2 = G2.

Observe that H1 is parabolic but H2 is elliptic. The other torus has
holonomy generated by

H ′
1 = G3G

−2
1 G3 =




5 2 − 6i −4
−8 − 4i −7 + 8i 6 + 2i
−8 + 8i 8 + 12i 5 − 8i


 and H ′

2 = Id.

Here H ′
1 is parabolic. Note that the holonomy of that torus is not

faithful.
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