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Abstract

We introduce the spike and slab Restricted
Boltzmann Machine, characterized by hav-
ing both a real-valued vector, the slab, and
a binary variable, the spike, associated with
each unit in the hidden layer. The model
possesses some practical properties such as
being amenable to Block Gibbs sampling as
well as being capable of generating similar
latent representations of the data to the re-
cently introduced mean and covariance Re-
stricted Boltzmann Machine. We illustrate
how the spike and slab Restricted Boltzmann
Machine achieves competitive performance
on the CIFAR-10 object recognition task.

1 Introduction

The prototypical Restricted Boltzmann Machine
(RBM) is a Markov random field with a bipartite
graph structure that divides the model variables into
two layers: a visible layer consisting of binary vari-
ables representing the data, and a hidden (or latent)
layer consisting of the latent binary variables. The
bipartite structure excludes connections between the
variates (or units) within each layer so that the units
within the hidden layer are conditionally independent
given the units of the visible layer, and the visible layer
units are conditionally independent given the hidden
layer units. This pair of conditionally factorial distri-
butions permits a simple block Gibbs sampler, alter-
nating between the dual conditionals P (visible layer |
hidden layer) and P (hidden layer | visible layer). The
ability to sample simply and efficiently from the RBM
forms the basis for effective learning algorithms such as
contrastive divergence [8, 2] and stochastic maximum
likelihood [28, 23].
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While the RBM has proved effective in a range of tasks
and data domains [11, 13, 20, 22, 21, 3, 6], it has not
been as successful in modeling continuous multivari-
ate data, and natural images in particular [17]. The
most popular approach to modeling continuous obser-
vations within the RBM framework has been the so-
called Gaussian RBM (GRBM), defined such that the
conditional distribution of the visible layer given the
hidden layer is a fixed covariance Gaussian with the
conditional mean parametrized by the product of a
weight matrix and a binary hidden vector. Thus the
GRBM can be viewed as a Gaussian mixture model
with the number of components being exponential in
the number of hidden units.

The GRBM has proved unsatisfactory as a model of
natural images, as the trained features typically do
not represent sharp edges that occur at object bound-
aries and lead to latent representations that are not
particularly useful features for classification tasks [17].
Ranzato and Hinton (2010) have argued that the fail-
ure of the GRBM to adequately capture the statistical
structure apparent in natural images stems from the
exclusive use of the model capacity to capture the con-
ditional mean at the expense of the conditional covari-
ance. While we agree that the GRBM provides a poor
covariance model, we suggest that this deficiency has
more to do with the binary nature of the hidden layer
units than with the model’s devotion to capturing the
conditional mean.

Our perspective on the GRBM motivates us to recon-
sider the strategy of modelling continuous-valued in-
puts with strictly binary latent variables, and leads us
to the spike and slab Restricted Boltzmann Machine
(ssRBM). Like many RBM variants, the spike and slab
RBM is restricted to a bipartite graph structure be-
tween two types of nodes. The visible layer units are
modeled as real-valued variables as in the GRBM ap-
proach. Where our model departs from other similar
methods is in the definition of the hidden layer la-
tent variables. We model these as the element-wise
product of a real-valued vector with a binary vector,
i.e., each hidden unit is associated with a binary spike



     234

A Spike and Slab Restricted Boltzmann Machine

variable and the real vector valued slab variable. The
name spike and slab is inspired from terminology in
the statistics literature [12], where the term refers to a
prior consisting of a mixture between two components:
the spike, a discrete probability mass at zero; and the
slab, a density (typically uniformly distributed) over a
continuous domain.

In this paper, we show how the introduction of the
slab variables to the GRBM leads to an interesting
new RBM. By marginalizing out the slab variables,
the conditional distribution of the spike variables given
the input is very similar to the corresponding con-
ditional of the recently introduced covariance RBM
(cRBM) [18]. On the other hand, conditional on the
spike variables, the ssRBM slab variables and input
are jointly Gaussian and form conditionals with diag-
onal covariance matrices. Thus, unlike the cRBM or
its extension the mean-covariance RBM (mcRBM), the
ssRBM is amenable to simple and efficient Gibbs sam-
pling. This property of the ssRBM makes the model
an excellent candidate as a building block for the de-
velopment of more sophisticated models such as the
Deep Boltzmann Machine [19].

As we develop the model, we show that with multi-
dimensional slab variables, feature “sum” pooling be-
comes a natural part of the model. In the experiments,
we illustrate how maximum likelihood training of the
ssRBM yields filters that capture natural image prop-
erties such as sharp edges. We also show how the
model exhibits “disentangling” of color and edge fea-
tures when trained on natural image patches and how
the ssRBM can learn good features for the CIFAR-10
object classification dataset. [10].

2 The Inductive Bias of the GRBM

Before delving into the development of the ssRBM,
we first elaborate on our perspective that the failure
of the GRBM to model natural images is due to the
use of binary hidden units. We argue this case by
comparing the GRBM to a standard Gaussian fac-
tor model with a Gaussian distributed latent vector,
x ∈ R

N , and a Gaussian conditional distribution over
the observations, v ∈ R

D, given the latent variable.
That is to say, x ∼ N (0,Σx) and v|x ∼ N (Wx, σvI),
where W is a matrix (D × N) of weights. Under
this model, variations in a single element xi reflect
covariance within the observation vector along the di-
rection (in the input or v space) of W:,i. Indeed
marginalizing out the latent variables, we are left with
the marginal distribution over the observation vector:
px(v) ∼ N (0, σvI +WΣxW

T ). Note that the weights
W that parametrize the conditional mean serve also
to parametrize the marginal covariance. The GRBM
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Figure 1: GRBM exhibits significant sensitivity to varia-
tion in contrast.

is different from the Gaussian factor model in a num-
ber of important ways, but most relevant for our pur-
poses, the GRBM replaces the real-valued latent vari-
ables of the factor model with binary variables. If
we replace the real-valued x in the factor model with
simple binary variables h, the equivalence between
parametrizing the conditional mean and parametriz-
ing the marginal covariance breaks down. Instead
of a single Gaussian with covariance σvI + WΣxW

T ,
the marginal distribution p(v) becomes the mixture of
Gaussians: ph(v) =

∑
h P (v)N (Wh, σvI).

This change from a real variable x to a binary variable
h has an impact on the inductive bias of the model
and consequently an impact on the suitability of the
model to a particular data domain. Both the zero-
mean Gaussian px(v) and the mixture model ph(v)
exhibit a preference (in the sense of higher probabil-
ity density) for data distributed along the directions of
the columns of their respective weight matrices. How-
ever, if the statistical structure of the data is such that
density should be relatively invariant to overall scaling
of v, then the inductive bias resulting from the binary
h may be inappropriate. Figure 1 illustrates how the
discrete mixture components in ph(v) are ill-suited to
model natural images, where some of the most signif-
icant determiners of the norm of the data vector ‖v‖2
are the illumination conditions of the scene and the
image contrast. Variation in contrast often bears lit-
tle relevance to typical tasks of interest such as object
recognition or scene understanding. This perspective
on the GRBM, and especially its comparison to the
standard Gaussian factor model, motivates us to con-
sider alternatives to strictly binary latent variables and
leads us to the spike and slab RBM.

3 The Spike and Slab RBM

Let the number of hidden units be N , and the dimen-
sionality of the visible vector to beD: v ∈ R

D. The ith
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hidden unit (1 ≤ i ≤ N) is associated with a binary
spike variable: hi ∈ {0, 1} and a real valued vector
si ∈ R

K , pooling over the K features.1 The energy
function for one example is:

E(v, s, h) =
1

2
v
TΛv −

N
∑

i=1

(

v
T
Wisihi +

1

2
s
T

i αisi + bihi

)

,

(1)

where Wi refers to the ith weight matrix of size D×K,
the bi are the biases associated with each of the spike
variables hi, and αi and Λ are diagonal matrices that
penalize large values of ‖si‖

2

2
and ‖v‖2

2
respectively.

We will consider a joint probability distribution over
v, s = [s1, . . . , sN ] and h = [hi, . . . , hN ] of the form:

p(v, s, h) =
1

Z
exp {−E(v, s, h)} × U(v;R) (2)

where, Z is the partition function that assures that
p(v, s, h) is normalized and U(v;R) represents a distri-
bution that is uniform over a ball radius R, centered
at the origin, that contains all the training data, i.e.,
R > maxt ‖vt‖2 (t indexes over training examples).
The region of the visible layer space outside the ball
has zero probability under the model. This restriction
to a finite domain guarantees that the partition func-
tion Z remains finite. We can think of the distribution
presented in equations 2 and 1, as being associated
with the bipartite graph structure of the RBM with
the distinction that the hidden layer is composed of
an element-wise product of the vectors s and h.

With the joint distribution thus defined, we now turn
to deriving the set of conditional distributions p(v |
s, h), p(s | v, h), P (h | v) and p(v | h) from which
we can gain some insight into the properties of the
ssRBM. The strategy we will adopt is to derive the
conditionals neglecting the U(v;R) factor, then during
sampling we can correct for the omission via rejection
sampling. This turns out to be very efficient as the
number of rejections is expected to be very low as we
will discuss later in section 4.

Let us first consider the conditional distribution p(v |
s, h). Taking into account the bounded domain of v,
we have p(v | s, h, ‖v‖2 > R) = 0 and:

p(v | s, h, ‖v‖2 ≤ R) =
1

p(s, h)

1

Z
exp {−E(v, s, h)}

=
1

B
N

(

Λ−1

N
∑

i=1

Wisihi , Λ−1

)

,

where B is determined by integrating the Gaussian

N
(

Λ−1
∑

N

i=1
Wisihi , Λ−1

)

over the ball ‖v‖2 ≤ R.

1It is perhaps more natural to consider a scalar si, i.e.,
K = 1; however generalizing to vector valued si allows us
to naturally implement a form of “sum” pooling.

By isolating all terms involving v, the remaining terms
are constant with respect to v and therefore the condi-
tional distribution p(v | s, h) has the form of a simple
(truncated) Gaussian distribution and since the off-
diagonal terms of the covariance are all zero, sampling
from this Gaussian is straightforward, when using re-
jection sampling to exclude v outside the bounded do-
main. For convenience, we will adopt the notation
p∗(v | s, h) to refer to the un-truncated Gaussian dis-
tribution associated with p(v | s, h); i.e., p∗(v | s, h) =

N
(

Λ−1
∑

N

i=1
Wisihi , Λ−1

)

It is instructive to consider what happens if we do not
assume we know s, i.e., considering the form of the
distribution p(v | h) where we marginalize out s:

p(v | h, ‖v‖2 ≤ R) =
1

P (h)

1

Z

∫

exp {−E(v, s, h)} ds

=
1

B
N



0 ,

(

Λ−
N
∑

i=1

hiWiα
−1

i W
T

i

)

−1


 (3)

The last equality holds only if the covariance ma-

trix
(

Λ−
∑

N

i=1
hiWiα

−1

i
WT

i

)

−1

is positive definite. By

marginalizing over the “slab” variates, s, the visi-
ble vector v remains (truncated) Gaussian distributed,
however the parametrization has changed significantly
as a function of h. The distribution p∗(v | s, h) uses h
with s to parametrize the conditional mean, whereas
in the case of p∗(v | h), h parametrizes the conditional
covariance. Another critical difference between these
two distributions over v is that the covariance matrix
of the Gaussian p∗(v | h) is not diagonal. As such,
sampling from p∗(v | h) is potentially computation-
ally intensive for large v as it would require a matrix
inverse for every weight update. Fortunately, we will
have no need to sample from p∗(v | h).

We now turn to the conditional p(si | v, h). The
derivation is analogous to that leading to Eq. 3. The
conditional p(s | v, h) is Gaussian-distributed:

p(s | v, h) =
N
∏

i=1

N
(

hiα
−1

i W
T

i v , α
−1

i

)

Here again, we see that the conditional distribution
over s given v and h possess a diagonal covariance
enabling simple and efficient sampling of s from this
conditional distribution. The form of p(s | v, h) indi-
cates that, given hi = 1, the expected value of si is
linearly dependent of v.

Similar to p(v | h), the distribution p(h | v) is obtained
by marginalizing out the slab variable s:

P (hi = 1 | v) =
1

p(v)

1

Zi

∫

exp {−E(v, s, h)} ds

= sigm

(

1

2
v
T
Wiα

−1

i W
T

i v + bi

)

, (4)
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where sigm represents a logistic sigmoid. As with the
conditionals p(v | s, h) and p(s | v, h), the distribu-
tion of h given v factorizes over the elements of h. As
a direct consequence of the marginalization of s, the
influence of v on P (hi | v) is controlled by a term
quadratic in vTWi, meaning that hi is active when v

exhibits significant “variance” in the direction of Wi.

A choice of data representations: The spike and
slab RBM is somewhat unusual in that the use of dual
latent variables, one continuous, and one binary, offers
us a choice of data representations, to be used in the
particular task at hand. One option is to marginalize
over s, and use the binary h or its expectation P (h | v)
as the data representation. Another option is to use
[s1h1, . . . , sNhN ] or [‖s1‖h1, . . . , ‖sN‖hN ] or the cor-
responding expectations. These options possess the
property that, for active units, the model representa-
tion is equivariant to the intensity of the input vari-
able (within the bounded domain). This is a property
shared with the rectified linear units of Nair and Hin-
ton [14], and is thought to be potentially beneficial in
a range of vision tasks as it offers superior robustness
to variations in image intensity.

4 ssRBM Learning and Inference

As is typical of RBM-style models, learning and infer-
ence in the ssRBM is dependent on the ability to effi-
ciently draw samples from the model via Markov chain
Monte Carlo (MCMC). Inspection of the conditionals
P (h | v), p(v | h), p(s | v, h) and p(v | s, h) reveals
some important property of the ssRBM model. First,
let us consider the standard RBM sampling scheme
of iterating between P (h | v) and p(v | h) with s

marginalized out. Sampling from P (h | v) is straight-
forward, as equation 4 indicates that the hi are all in-
dependent given v. Under the assumption of a positive
definite covariance matrix, the conditional distribution
p(v | h) is multivariate Gaussian with non-diagonal

covariance:
(

Λ−
∑N

i=1
hiWiα

−1

i WT
i

)

−1

. Thus sam-

pling from p(v | h) requires the inversion of the covari-
ance matrix with every weight update. For large input
dimensionality D, this presents a challenging setting
for learning. Fortunately, we need not sample from
p(v | h) directly, instead we can instantiate the slab
variable s by sampling from p(s | h, v) and then, given
these s samples and the h sampled from P (h | v), we
can sample v from the conditional p(v | s, h). Both
these conditionals are Gaussian with diagonal covari-
ance leading to simple and efficient sampling.

Taken all together the triplet P (h | v), p(s | v, h) and
p(v | s, h) form the basis of a block-Gibbs sampling
scheme that allows us to sample efficiently from the

ssRBM. Whenever a sample of v falls outside the ball
‖v‖2 ≤ R, we reject and resample from the conditional
p(v | s, h). The data likelihood gradient is

∂

∂θi

(

T
∑

t=1

log p(vt)

)

= −

T
∑

t=1

〈

∂

∂θi
E(vt, s, h)

〉

p(s,h|vt)

+ T

〈

∂

∂θi
E(v, s, h)

〉

p(v,s,h)

,

i.e., of the same form as for a standard RBM, only
with the expectations over p(s, h | vt) in the “clamped”
condition, and over p(v, s, h) in the “unclamped” con-
dition. In training, we follow the stochastic max-
imum likelihood algorithm (also know as persistent
contrastive divergence) [28, 23], i.e., performing only
one or few updates of an MCMC chain between each
parameter update.

The expectation of the gradient with respect to Wi

in the “clamped” condition (also called the positive
phase) is:

〈

∂

∂Wi

E(vt, s, h)

〉

p(s,h|vt)

= −vt
(

µ
+
i,t

)T
ĥ
+
i,t.

Here ĥ+

i,t = p(hi | vt) and µ+

i,t is the mean of the Gaus-
sian density p(si|hi = 1, vt). In the “unclamped” con-
dition (negative phase) the expectation of the gradient
with respect to Wi is given by:

〈

∂

∂Wi

E(v, s, h)

〉

p(v,s,h)

≈

1

M

M
∑

m=1

−ṽm(µ−
i,m)T ĥ−

i,m.

Where ĥ−

i,m = p(hi | ṽm) and µ−

i,m, is the mean of the
Gaussian density p(si | hi = 1, ṽm). The ṽm are sam-
ples drawn from the model via Gibbs sampling. The
expectation of the gradient with respect to bi is iden-
tical to that of the GRBM. Finally, the expectation of
the gradient with respect to Λ is given by:

〈

∂

∂Λ
E(vt, s, h)

〉

p(s,h|vt)

=
1

2
v
T
t vt

〈

∂

∂Λ
E(v, s, h)

〉

p(v,s,h)

≈

1

M

M
∑

m=1

1

2
ṽ
T
mṽm

One could also imagine updating α to maximize like-
lihood; however in our experiments we simply treated
α as a hyper-parameter.

As previously discussed, without the U(v;R) term in
the joint density, the spike and slab model is not
parametrized to guarantee that the model constitutes
a well defined probability model with a finite parti-
tion function. To draw samples from the model, we
rely on a rejection sampling scheme based on U(v;R).
However, during training, we instead rely on a very
important property of the likelihood gradient to sup-
press samples from the model that are drawn in regions
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of the data space unsupported by nearby data exam-
ples. As the parameters are updated, the model may
approach instability. If this occurs, negative phase or
“unclamped” samples are naturally drawn to the di-
rection of the instability (i.e., outside the range of the
training data) and through their influence act to re-
turn the model to a locally stable region of operation.
Due to this stabilizing property of learning, we actu-
ally do not include the U(v;R) term to the joint likeli-
hood during learning. Practically, training the model
is straightforward provided the model is initialized in a
stable regime of the parameter space. For example, the
values of α and Λ must be sufficiently large to at least
offset the initial values of W . We also use a decreas-
ing learning rate that also helps maintain the model in
a stable region of the parameter space. Training this
way also ensures that the natural parametrization of
the ssRBM (excluding the U(v;R)) is almost always
sufficient to ensure stability during sampling and ren-
ders our rejection sampling strategy highly efficient.

5 Comparison to Previous Work

There exist a number of papers that aim to address
the issue of modeling natural images in the RBM con-
text. The most relevant of these are the Product
of Student’s T-distribution (PoT) model [25] and the
mean and covariance Restricted Boltzmann Machine
(mcRBM) [17]. However before reviewing these mod-
els and their connections to the ssRBM, we note that
the idea of building Boltzmann Machines with prod-
ucts of binary and continuous-valued variables was dis-
cussed in [26], [29], and [6]. We also note that the co-
variance structure of the ssRBM conditional p(v | h)
(equation 3) is essentially identical to the product of
probabilistic principal components analysis (PoPPCA)
model [27] with components corresponding to the ss-
RBM weight vectors associated with the active hidden
units (hi = 1).

5.1 Product of Student’s T-distributions

The product of Student’s T-distributions model [25]
is an energy-based model where the conditional distri-
bution over the visible units conditioned on the hid-
den variables is a multivariate Gaussian (non-diagonal
covariance) and the complementary conditional dis-
tribution over the hidden variables given the visibles
are a set of independent Gamma distributions. The
PoT model is similar to our model in that it charac-
terizes the covariance of real-valued inputs with real-
valued hidden units, but in the case of the PoT model,
the real-valued hidden units are Gamma-distributed
rather than Gaussian-distributed as is the case for the
ssRBM.

The most significant difference between the ssRBM
and the PoT model is how they parametrize the co-
variance of the multivariate Gaussian over the vis-
ible units (p(v | h) in the case of the ssRBM,
equation 3). While the ssRBM characterizes the

covariance as
(

Λ−
∑N

i=1
hiWiα

−1

i WT
i

)

−1

, the PoT

model parametrized the conditional covariance as
(

∑N

i=1
uiWiW

T
i

)

−1

, where the ui are the Gamma-

distributed latent variables. The PoT latent variables
use their activation to maintain constraints, decreas-
ing in value to allow variance in the direction of the
corresponding weight vector. The spike and slab hi

variables use their activation to pinch the precision
matrix along the direction specified by the correspond-
ing weight vector. The two models diverge when the
dimensionality of the hidden layer exceeds that of the
input. In the over-complete setting, sparse activation
with the ssRBM parametrization permits significant
variance (above the nominal variance given by Λ−1)
only in the select directions of the sparsely activated
hi. This is a property the ssRBM shares with sparse
coding models [16, 7] where the sparse latent repre-
sentation also encodes directions of variance above a
nominal value. An over-complete PoT model has a
different interpretation: with an over-complete set of
constraints, variation of the input along a particular
direction would require decreasing potentially all con-
straints with positive projection in that direction.

5.2 The Mean and Covariance RBM

One recently introduced and particularly successful
approach to modeling real-valued data is the mean and
covariance RBM. The mcRBM is a restricted Boltz-
mann machine designed to explicitly model both the
mean and covariance of elements of the input. The
mcRBM combines a variant of the earlier covariance
RBM (cRBM) model [18] with a GRBM to capture the
conditional “mean”. Because of some surprising sim-
ilarities between the cRBM and the ssRBM, we will
review the cRBM in some detail.

We take the number of cRBM hidden units to be Nc:
hc ∈ {0, 1}Nc , and the dimensionality of the visible
vector to be D: v ∈ R

D. The cRBM model is defined
via the energy function:

E
c(v, hc) = −

1

2

N
∑

i=1

K
∑

k=1

Pkih
c
i

(

v
T
C:,k

)

2

−

N
∑

i=1

b
c
ih

c
i , (5)

where P is a pooling matrix with non-positive
elements(p ∈ R

K×N ), N is the number of hidden units,
C:,k is the weight vector k (C ∈ R

D×K) and bc is a vec-
tor of biases. Defining the energy function in this way
allows one to derive the pair of conditionals for h and
v respectively as:
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P (hc
i = 1 | v) = sigm

(

1

2

K
∑

k=1

Pkih
c
i

(

v
T
C:,k

)

2

− b
c
i

)

,

p(v | hc) = N

(

0,
(

C diag(Ph
c)CT

)

−1
)

, (6)

where diag(v) is the diagonal matrix with vector v in
its diagonal. That is, the conditional Gaussian distri-
bution possess a non-diagonal covariance.

In relation to the ssRBM, the first thing to note about
the cRBM is the similarity of the conditional for the bi-
nary latent variable, P (h | v) in the case of the ssRBM
(equation 4) and P (hc | v) in the case of the cRBM.
Simplifying both models to pool over a single variable
(setting the P matrix to the negative identity in the
case of the cRBM and K = 1 in the ssRBM), both
conditionals contain a 1

2
(vTW )2 term (with C ≡ W )

and a constant bias. Remarkably, this occurs despite
the two models sharing relatively little in common at
the level of the energy function.

Despite the similarity in the conditional distribu-
tion over the binary latent variables, the two mod-
els diverge in their expressions for the complemen-
tary conditions over the visible variable v given
the binary latents (comparing equations 3 and 6).
While the the ssRBM parametrizes the covariance as
(

Λ−
∑

N

i=1
hiWiα

−1

i
WT

i

)

−1

; the cRBM parametrizes

the covariance as
(

C diag(Phc)CT
)

−1

. Similar to the
PoT model, the cRBM encodes the conditional covari-
ance as a series of constraints to be actively enforced.
As is the case for the PoT model, we suggest that this
form of parametrization is not well suited to heavily
over-complete models.

Despite different parametrizations of the conditional
covariance, the ssRBM and the cRBM share the prop-
erty that the conditional distribution over v given their
respective binary latent variables is multivariate Gaus-
sian with a non-diagonal covariance. In the ssRBM,
we have recourse to a simple diagonal-covariance Gaus-
sian conditional over v by instantiating the slab vari-
ables s, but there is no equivalent recourse for the
cRBM. As a result, the cRBM and the mcRBM are
not amenable to the kind of block Gibbs sampling
available to the ssRBM and to more standard RBMs
(a large matrix inversion would be required for each
Gibbs step). In training the cRBM, samples are drawn
using hybrid Monte Carlo (HMC) [15]. As an MCMC
sampler, HMC has been shown to be very effective for
some problems, but it suffers from a relatively large
number of hyper-parameters that must be tuned to
yield well-mixing samples from the target distribution.

The mcRBM combines a GRBM with a cRBM such

that there are two kinds of hidden units, mean units
hm and covariance units hc. The combined energy
function of the mcRBM is given by:

E(v, hc
, h

m) = −
1

2

N
∑

i=1

K
∑

k=1

Pkih
c
i

(

vT

‖v‖

C:,k

‖Ck‖

)2

−
N
∑

i=1

b
c
ih

c
i +

1

2
v
T
v −

M
∑

j=1

v
T
W:,jh

m
j −

M
∑

j=1

b
m
j h

m
j

The mcRBM is not entirely equivalent to the combina-
tion of a cRBM and a GRBM, as its energy function
includes a normalization of both the Ck weight vec-
tors and the visible vector (to increase the robustness
of the model to large contrast variations in the input
image).

In deriving the conditionals for the ssRBM, we saw
that by manipulating how we treat the slab variables
s, we could fluidly move between modeling the condi-
tional mean and modeling the conditional covariance.
From this perspective it is revealing to think about
the combination of the GRBM with the cRBM in the
mcRBM. One can think about an equivalent model,
within the spike and slab framework, where we take a
subset of the ssRBM latent units and marginalize over
the corresponding slab variables s – these unit would
encode the conditional covariance. With the remain-
ing units we model the equivalent conditional mean by
imposing the constraint si = 1.

6 Experiments

We have run simulations with Theano [1] to illustrate
three key ideas related to the ssRBM model: (a) it
learns appealing filters to model natural images, (b)
the spike variables are meaningfully used in a trained
model, and (c) the latent image representation induced
by the ssRBM makes the ssRBM a drop-in upgrade
of the similar GRBM and cRBM models on CIFAR-
10 image-labeling, and is competitive with the more
complicated mcRBM.

6.1 Filters

The ssRBM learned qualitatively similar filters in the
pooled and un-pooled models, but the pooling induced
interesting structure to the set of filters.

Figure 2 illustrates the filters learned by an un-pooled
(K = 1) ssRBM from a large number (one million)
of PCA-whitened 8x8 RGB image patches drawn from
the TinyImages dataset [24]. PCA-whitening retained
99% of the variance with 74 dimensions. These fil-
ters were obtained by stochastic maximum likelihood
learning with the learning rate set to 10−4 for 20 000
training iterations using minibatches of size 128. Af-
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Figure 2: Filters learned by the unpooled ssRBM when
applied to PCA-whitened 8x8 color image patches.
Note how some filters care about color while others
surprisingly do not, achieving a form of disentangling
of color information from shape information.

Figure 3: Filters learned by a pooled spike and slab
RBM with topographically overlapping pools applied
to PCA-whitened 8x8 color image patches. Pooling
was done across 3x3 groups (K = 9) units s giving
rise to a degree of continuity across the set of filters.
Again, color and grey-level filters emerge separately.

ter 20 000 iterations the learning rate was reduced in
inverse proportion to the iteration number. No sparsi-
fication or regularization was applied to the activations
or model parameters. α was fixed to 1.5, the bias was
initialized to −1, the weights were initialized from a
zero-mean Gaussian with variance 10−4.

Figure 3 illustrates the effect of pooling K = 9 scale
variables s with each h. The pinwheel-like pattern
was obtained by sharing columns W:,i between pools
using the sort of topographic map used in [17]. Clean
backgrounds in each filter were obtained by applying
a small (10−4) ℓ1 penalty to the filter weights. All
filters were brought into play by applying a small (.2)
ℓ1 penalty pushing each unit hi to have a marginal
mean of .1. The topographic map down-weighted the
effective magnitude of each W column, so the initial
range and learning rate on W were raised accordingly.

8 6 4 2 0 2 4 6 8
product of s and h conditioned on v

103

104

105

106

107

Figure 4: The spike and slab effect. In green is the
marginal (over a large number of images) distribution
over all si variables given hi = 1, and in blue is the
marginal distribution over all sihi products. The ver-
tical axis is a log-scaled frequency of occurrence.

6.2 The Effect of Spike Variables

Figure 4 illustrates the effect of the binary spike vari-
ables (h). The effect of hi is to suppress the influence
of filter W:,i when the filter response is weak. Once
h has been inferred from an observation v it induces
a Gaussian conditional joint distribution p(s, v | h) as
well as a Gaussian conditional marginal p(v | h) in
which the covariance is determined by the filters that
were unusually active.Figure 4 shows that the spike
variables are indeed often 0, and eliminating potential
directions of covariance in the conditional marginal.

6.3 Learning Features for Classification

To evaluate the latent variables of the ssRBM as fea-
tures for object classification we adopted the test-
ing protocol of [17] which looked at performance on
CIFAR-10. CIFAR-10 comprises 40 000 training im-
ages, 10 000 validation images, and 10 000 test images.
The images are 32-by-32 pixel RGB images. Each im-
age is labeled with one of ten object categories (air-
plane, automobile, bird, cat, deer, dog, frog, horse,
ship, truck) according to the most prominent object
in the image. We produced image features from an
ssRBM model trained on patches using the same pro-
cedure as [17] - a 7-by-7 grid of (overlapping) 8-by-
8 pixel patches was used to extract a 7-by-7 grid of
mean-values for h. The ssRBM had N h variables, so
the concatenation of the h vectors from each grid lo-
cation yielded 49N features. We classified this feature
vector using logistic regression, and we also experi-
mented with backpropagating the error gradient into
the ssRBM parameters and fine-tuning this “feature
extractor” as if it and the classifier together were a
single neural network.
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Model Classification Rate (%)
mssRBM (finetuned) 69.9 ± 0.9
mssRBM 68.7 ± 0.9
mcRBM 68.2 ± 0.9
ssRBM (finetuned) 69.2 ± 0.9
ssRBM 67.6 ± 0.9
cRBM (900 factors) 64.7 ± 0.9
cRBM (225 factors) 63.6 ± 0.9
GRBM 59.7 ± 1.0

Table 1: The performance of the pooled and unpooled
ssRBM models relative to others on CIFAR-10. Confi-
dence intervals are at 95% level. The mssRBM model
is an ssRBM with 81 s units fixed at 1. The GRBM,
cRBM and mcRBM results are copied from [17]

We optimized hyper-parameters for this task by draw-
ing 200 hyper-parameter assignments randomly from
a grid, performing 50 000 and 200 000 unsupervised
training iterations, measuring classification error, and
sorting all these unsupervised models by the valida-
tion set performance of the P (h|v) feature vector. The
random grid included variations in the number of un-
supervised learning iterations (50K, 200K), learning
rate (.0003, .0001), initial Λ (10, 15, 20), number of
latent h variables N (100, 200,400), number of pooled
s variables K per h (1,2,3), initial range for W (.05, .1,
.2), initial bias on each hi (-5, -4, -3), target sparsity
for each h (.05, .1, .2), weight of sparsity regulariza-
tion (0, .1, .2, .4). The initial value of α was fixed to
10.5. The best results with and without fine-tuning of
the ssRBM weight matrix are given in Table 6.3 along
with selected other results from the literature.

We also experimented with “mean” units as in [17]
by adding sihi pairs in which the si were fixed to
1. Reusing the best-performing hyper-parameters, we
simply added 81 mean units and repeated the training
procedure. As in [17] we found that these additional
mean units improved the performance of the model for
classification beyond what was found by adding addi-
tional normal (unclamped) hidden units. This result,
that a hidden layer consisting of a mix of mean and
pooled units is better than either one alone, suggests
that models with heterogenous latent states represent
an interesting direction for future work. Indeed supe-
rior classification performance has been demonstrated
by stacked binary RBMs on top of the mcRBM [17]
(71.0%). In very recent work, other kinds of mod-
els with high accuracy have been advanced: a 4000-
component patch-wise k-means [5] (79.6%), and an 8-
layer neural network training on artificial translations
of the data [4] (80.49%). However, convolutional train-
ing of Deep Belief Networks [9] (78.9%) has proved
effective and we expect the ssRBM to be similarly im-

proved by additional layers and convolutional training.

7 Discussion

In this paper we introduce a new spike and slab RBM
model, which has a binary spike variable and a contin-
uous slab variable associated with each hidden unit.
These slab variables allow the model to capture co-
variance information while maintaining simple and ef-
ficient inference via a Gibbs sampling scheme.

Despite the similarity in the conditional distributions
over the hidden binary variables between the ssRBM
and the cRBM, there are a number of important dis-
tinctions. First, the ssRBM is amenable to Gibbs sam-
pling whereas when sampling from the cRBM one must
resort to hybrid Monte Carlo (HMC). While HMC is
a practical algorithm for sampling in the RBM frame-
work, the simplicity of Gibbs makes the ssRBM a more
attractive option as a building block for more ambi-
tious models such as the deep Boltzmann machine [19]
and time-series models [22]. Another difference be-
tween the ssRBM and the cRBM is that the ssRBM
induces sparse real-valued representations of the data.
In our limited experiments using this data represen-
tation, we have not found it to be superior to using
only P (h | v), however recent work [14] has demon-
strated the importance of sparse real-valued outputs
in achieving superior classification performance.

As discussed previously, without any restriction on ei-
ther the visible layer domain or the binary hidden unit
combinations, the energy of the spike and slab model
is not guaranteed to define a valid probability distri-
bution. In practice this is fairly easily dealt with by
imposing either a bounded domain on v, as we have
done, or by applying a global penalty that is flat in
the region of the training data and outside that re-
gion grows sufficiently fast to overcome any negative
growth arising from the energy function (i.e., the term

−
∑

N

i=1
vTWisihi). As an alternative, one could re-

strict the covariance of p(v | h) to remain positive
definite and reject patterns of hidden unit activations
that violate this constraint. Under the mixture model
interpretation of the RBM, this approach may be in-
terpreted as zeroing out the mixture components that
violate the requirement that the mixture components
be individually normalizable.
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