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Poisson processes usually provide adequate descriptions of the irregular-
ity in neuron spike times after pooling the data across large numbers of
trials, as is done in constructing the peristimulus time histogram. When
probabilities are needed to describe the behavior of neurons within in-
dividual trials, however, Poisson process models are often inadequate.
In principle, an explicit formula gives the probability density of a single
spike train in great generality, but without additional assumptions, the
�ring-rate intensity function appearing in that formula cannot be esti-
mated. We propose a simple solution to this problem, which is to assume
that the time at which a neuron �res is determined probabilistically by,
and only by, two quantities: the experimental clock time and the elapsed
time since the previous spike. We show that this model can be �tted with
standard methods and software and that it may used successfully to �t
neuronal data.

1 Introduction

Probability distributions of spike trains are used for a variety of theoretical
and data-analytical purposes, including determination of information con-
tent, Bayesian population coding, testing for spike patterns, and detecting
synchrony (Barbieri, Quirk, Frank, Wilson, & Brown, in press;Brown, Frank,
Tang, Quirk, Wilson, 1998; Zhang, Ginzburg, McNaughton, & Sejnowski,
1998; Sanger, 1996; Oram, Wiener, Lestienne, & Richmond, 1999; Optican &
Richmond, 1987; Riehle, Grün, Diesmann, & Aertsen, 1997). The peristimu-
lus time histogram (PSTH) provides an estimate of the time-varying �ring
rate (or intensity, in the jargon of probability theory), and for Poisson pro-
cesses the �ring rate, in turn, determines the spike-train distribution. When
large numbers of trials are combined, the resulting set of pooled spike times
essentially follows a Poisson process, due to general limit theory (Daley
& Vere-Jones, 1988, theorem 9.2V). Thus, when reasoning only from data
pooled across trials or when the spike trains on individual trials themselves
follow a Poisson process, the PSTH (or smoothed versions of it) provides a
complete summary of the data from which other probability-based calcula-
tions may be made. However, when neuron �ring on individual trials is of
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interest and the process is non-Poisson, the joint distribution of the spikes
cannot be obtained from the PSTH nor can it be obtained from the PSTH in
combination with the distribution of interspike intervals (ISIs). The purpose
of this note is to suggest a class of probability models for spike trains that
allow recovery of the joint spike-train distributions within individual trials
and to report results from �tting these models to neuronal data.

2 Inhomogeneous Markov Interval Processes

Letting N( t) represent the number of spikes that have already occurred at
time t on a particular trial, a spike occurs at time t if N( t C Dt) ¡N(t) D 1 for
all suf�ciently small increments D t. In the language of probability theory,
the spike times follow a point process and N(t) is the corresponding count-
ing process (Daley & Vere-Jones, 1988, chap. 13). If s( t) D (s1, s2, . . . , sN (t) )
denotes the spike times up to time t, then the probability density of the spike
train during an interval [0, T] is

p(s1, . . . , sn) D e¡
R T

0
l(u|s(u) )du

nY

kD1

l(sk | s1, . . . , sk¡1 ) (2.1)

where

l(t | s( t) ) D lim
Dt!0

P(N( t C Dt) ¡ N( t) D 1 | s(t) )
D t

is the conditional intensity of the process and N(T) D n. In principle, this
solves the problem of representing the spike trains in terms of a probability
distribution. However, when n spikes are observed, the conditional intensity
is a function of n C 1 variables ( t, s1, . . . , sn) , which poses an extremely
dif�cult nonparametric estimation problem.

A tractable simpli�cation is to take the conditional intensities to have the
form

l( t | s( t) ) D l( t, t ¡ s¤( t) ) , (2.2)

where s¤( t) is the last spike time preceding t. We call the resulting pro-
cesses inhomogeneous Markov interval (IMI) processes. When l( t, t ¡s¤ (t) )
is a function only of its �rst argument—the �ring rate does not depend on
occurrence times of previous spikes—we obtain an inhomogeneous (time-
varying) Poisson process. The beauty of a Poisson process is that the spike
probabilities are determined solely by the time-varying �ring rate, or inten-
sity, which may be written as l( t) and is estimated by the smoothed PSTH.
The special case of a homogeneous Poisson process occurs when there is
no dependence on experimental clock time, meaning that the �ring rate is
constant across time. In this case, the ISIs are independent, and all follow the
same exponential distribution. A generalization, not requiring the Poisson
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assumption, is the class of renewal processes, in which the ISIs all follow
the same probability distribution, but it is no longer required to be an expo-
nential distribution. These processes �t into equation 2.2 when l( t, t ¡ s¤( t) )
is a function only of its second argument; that is, the �ring rate does not
depend on the experimental clock time.

An interesting subclass of IMI processes are the time-rescaled inhomo-
geneous versions of renewal processes recently used by Barbieri et al. (in
press). These models begin with the fact that an inhomogeneous Poisson
spike train is obtained from a sequence of exponential ISIs together with a
rescaling of time.1 A different ISI distribution, such as a gamma distribution,
may be used in place of the exponential, and time may again be transformed
in the same way.

An alternative subclass that may be treated nonparametrically (i.e., does
not require the assumption of a speci�c ISI distribution) are the multiplica-
tive IMI processes

l( t, t ¡ s¤( t) ) D l1( t) ¢ l2 (t ¡ s¤( t) ) (2.3)

which have been applied previously by Berry and Meister (1998) and Miller
and Mark (1992). Here, the factor l1 ( t) modulates the �ring rate only as
a function of experimental clock time while l2 (t ¡ s¤( t) ) represents non-
Poisson spiking behavior. Note, however, that the observed ISI distribution
is based on both factors. The units of l( t, t ¡ s¤( t) ) are those of �ring rate:
spikes per unit time. By convention, in our analysis of neuronal data re-
ported below, we will take l1 (t) also to have units of �ring rate, leaving
l2( t ¡ s¤( t) ) dimensionless.

3 Fitting IMI Processes to Data

In general, a spike train in the form of a sequence of “exact” spike times
(s1, s2, . . . , sn) may be approximated by discretizing time into small inter-
vals of length D t (e.g., Dt D 1 msec) and converting to a binary sequence of 0s
and 1s, with each 1 indicating that a spike occurred within the correspond-
ing time interval. As Brillinger (1988) observed, this is useful statistically
because the binary sequence may be �tted using generalized linear models
(McCullagh & Nelder, 1989), with maximum likelihood in this generalized
form of regression playing a role analogous to least squares in ordinary lin-
ear regression. (Formally, it is not hard to show that the likelihood function
from equation 2.1 may be approximated by the corresponding binary re-
gression likelihood function.) This implies that IMI processes may be �tted

1 Speci�cally, the probability density for the inhomogeneous Poisson is given by equa-
tion 2.1 when l(t |s(t)) D l(t). The inhomogeneous Poisson reduces to a homogeneous

Poisson after the change of variables in time from t to t according to t (t) D
R t

0
l(u)du.
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with standard methods and software. In particular, to �t the multiplicative
IMI processes in equation 2.3, we use the additive form

log l( t, t ¡ s¤ (t) ) D log l1( t) C log l2 (t ¡ s¤( t) ) (3.1)

and de�ne suitable functional representations for each of the components
log l1( t) and log l2( t¡s¤( t) ) , which will play a role analogous to explanatory
variables in ordinary linear regression. An especially �exible and tractable
way to represent the components is with cubic splines. That is, we repre-
sent each component log l1 ( t) and log l2 (t ¡ s¤(t) ) as a piecewise cubic in
its argument (respectively, t and t ¡ s¤( t) ), with the cubic pieces joined at
“knots” in such a way that the resulting functions are twice continuously
differentiable. One may choose the knots by preliminary examination of
the data. Then the coef�cients of the spline basis elements are determined
via maximum likelihood; we have used the function gam in the software
S-PLUS (MathSoft Inc., Seattle), as described in Venables and Ripley (2000).
The inputs to gam are the discretized binary sequence of spike times, the
time arguments t and t ¡ s¤( t) , the symbolic speci�cation of the additive
model in equation 3.1, and the knots. Further details on the use of spline-
based regression methods (or regression splines in statistical parlance) for
analyzing neuronal data may be found in Olson, Gettner, Ventura, Carta,
and Kass, (2000) and Ventura, Carta, Kass, Gettner, and Olson (in press),
where they are applied in the case of inhomogeneous Poisson processes.

To �t the more general IMI processes de�ned in equation 2.2., terms
formed by taking products (“interactions”) of the spline representations for
log l1( t) and log l2 ( t ¡ s¤ (t) ) may be included in the regression function. In
addition, terms may be added to the statistical model that re�ect dependence
on timing of spikes prior to the most recent one.

We have not yet been explicit about the way the intensity 2.2 might
vary from trial to trial. The simplest way to allow for excess trial-to-trial
variability is to include multiplicative constants for each trial in equation
2.2, which become additive constants on the log scale.

4 Results

We examined data recorded from a neuron in the supplementary eye �eld
of a macaque monkey while he was carrying out 15 trials of a delayed
eye movement task (neuron PK66a.1 from Olson et al., 2000; we used the
pattern condition). We �tted the IMI process intensity function, equation 2.2,
as described above. We included:

1. Spline basis elements for log l1( t)

2. Spline basis elements for log l2( t ¡ s¤( t) )

3. Cross-products between the spline basis elements for log l1 (t) and
those for log l2 (t ¡ s¤( t) ) (interaction terms)
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4. Additional basis elements to represent functions of timesince the spike
s¤¤( t) prior to s¤( t) and time since the spike s¤¤¤( t) prior to s¤¤( t)

5. Constants for each trial

Using component 1 alone would result in �tting an inhomogeneous Poisson
process, component 2 represents departures from a Poisson process, com-
ponent 3 represents departures from equation 2.3 within the general frame-
work of equation 2.2, component 4 represents departures from equation 2.2,
and component 5 represents excess trial-to-trial variability. In addition to
the overall constant, there were 4 degrees of freedom for component 1 re-
sulting from the use of 3 knots,2 3 for component 2 resulting from the use of 2
knots, 12 for component 3 (the coef�cients for all products between terms in
components 1 and 2), 3 each for the two components in component 4 (each
based on 2 knots), and 14 for component 5 (because there were 15 trials).

For this neuron we found that the additive IMI process (see equation 2.3)
without excess trial-to-trial variability clearly provided the best �t of the
models considered: none of the components 3 through 5 was statistically
signi�cant, but components 1 and 2 were highly signi�cant (p < .0005). Fig-
ure 1 displays the �ring behavior of this neuron. As is typically the case, the
�t of a Poisson model (effectively applying equation 2.2 with only the �rst
component l1( t) ) to the data pooled across trials is good. In Figure 1A, the
�tted spline simply smooths the PSTH. Furthermore, when the 15 within-
trial IMI �ts are averaged across trials, the result agrees very closely with
the Poisson model. However, the effect of the highly signi�cant non-Poisson
component 2, shown in Figure 1B, may be understood when we consider
the way the neuron behaves following a spike at t D 50 milliseconds, as
shown in Figure 1C. There it may be seen that the neuron has a refractory
period of roughly 10 milliseconds during which it is less likely to �re again
than predicted by the Poisson model. After the �ring rate reaches its peak at
roughly 100 milliseconds, the effect of the non-Poisson component dimin-
ishes over time. The effect over the course of a single trial is illustrated in
Figure 1D. Immediately after each occurrence of a spike, the neuron par-
tially “resets,” lowering its �ring intensity below the average �ring across
trials predicted by the smoothed PSTH; then it increases to a rate higher
than the PSTH-based prediction until the neuron �res again.3

2 Essentially, we have linear, quadratic, and k C 1 cubic coef�cients for k knots, and
then lose degrees of freedom because of the differentiability constraints; technically, in
S-PLUS, we use the natural spline basis.

3 An absolute refractory period, during which the neuron would not �re, would force
l2 to zero as its argument t ¡ s¤(t) goes to zero. However, the data from Olson et al. (2000)
were acquired only to 1 millisecond accuracy, and there is no evidence here of an absolute
refractory period longer than 1 millisecond. Thus, our �tted function l2 in Figure 1B does
not vanish at the origin.
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Figure 1: Firing behavior of the supplementary eye �eld neuron. (A) The PSTH
is shown together with the �tted intensity assuming a Poisson process and the
average across the 15 trials of the �tted intensities from the multiplicative IMI
model (see equation 2.3). (B) The �tted factor l2 ( t ¡ s¤ (t) ) , which modulates the
time-varying �ring rate to account for non-Poisson spiking behavior. If the spike
trains followed a Poisson process, this intensity would be constant and equal to
1. Instead, the cell begins (during its refractory period) with a diminished �ring
intensity relative to what would be predicted by the Poisson assumption. This is
followed by a fairly rapid increase in �ring intensity until about 50 millisecods,
at which time the intensity slowly declines. (To ease comparison with C, we
have scaled l2 (t ¡ s¤ ( t) ) in B so that the value l2 ( t ¡ s¤ ( t) ) D 1 corresponds to
the �tted Poisson intensity at t D 50 milliseconds; equivalently, l1 ( t) is equal to
the �tted Poisson intensity at t D 50 milliseconds.) (C, D) Effect of l2 ( t ¡ s¤ ( t) )
on this neuron’s �ring rate. According to the �tted model (see equation 2.3), the
IMI �ring intensity is the product of the �tted factor l2 ( t ¡s¤ ( t) ) shown in B and
the �tted factor l1 ( t) (which is not shown); because of the former, it depends
on the time at which the previous spike occurred. C displays the ratio of IMI
to Poisson �tted �ring intensities when the previous spike occurred at t D 50
milliseconds. As implied by B, during the �rst 10 milliseconds following the
spike at t D 50 milliseconds, the cell is less likely to �re again than predicted by
the Poisson model. D shows the �tted IMI intensity for the �rst trial together
with the �tted Poisson intensity based on pooling all 15 trials (as in A). The bars
along the horizontal axis indicate the times at which spikes occurred on this
trial. After each spike, the �ring rate immediately drops, then climbs to a rate
substantially above the predicted Poisson rate.
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5 Discussion

The IMI processes de�ned in equation 2.2 generalize inhomogeneous Pois-
son processes, allowing computation of quantities de�ned by the spike-train
probability distribution once the IMI intensity function l( t, t ¡ s¤( t) ) is es-
timated from the data. For example, it is possible to generalize the test for
synchrony used by Riehle et al. (1997), avoiding the possibly objectionable
Poisson assumption. We hope to report on this in a future communication.
The “Markov interval” terminology comes from Cox and Lewis (1972), who
discussed the time-homogeneous case for coupled processes. We are cur-
rently investigating extensions of IMI processes for multiple neurons.

Estimation of l( t, t ¡ s¤( t) ) could be carried out by various methods. We
have used cubic splines on the log scale estimated by maximum likelihood
within the statistical framework of generalized linear models, a standard
statistical methodology for which software is widely available. Previously,
Miller and Mark (1992) applied model 2.3 using step functions; Berry and
Meister (1998) assumed l1( t) was constant in �tting l2 ( t ¡ s¤(t) ) . Our ap-
proach allowed assessment of the �t of model 2.3 within the broader class
2.2. We found it �t well for a particular neuron in the supplementary eye
�eld, but we would like to emphasize that this multiplicative form may or
may not be an appropriate simpli�cation of equation 2.2 in other settings.
This is an empirical issue that must be examined in each case. Substantively,
as illustrated in Figure 1D, we found that this neuron has much more rapid
�uctuations in its �ring rate within trials than predicted by the Poisson
model, which simply smoothes the PSTH.

The fundamental utility of IMI processes is that they avoid the assump-
tion that spike trains are Poisson processes, which fails to account for impor-
tant effects such as the refractory period. Instead, they make a weaker and
seemingly reasonable assumption that spike timing is determined by, and
only by, experimental clock time and the elapsed time since the previous
spike; there is no further restriction. Statistically, the main point is that the
IMI assumption reduces the �tting problem posed in equation 2.1 to a very
manageable two-variable nonparametric binary regression. We solved this
problem using splines with knots �xed at suitable locations. We are cur-
rently developing a more fully automated procedure based on the method
of DiMatteo, Genovese, and Kass (2000).
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