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A Spiking Neural Network Model 
of Depth from Defocus for Event-
based Neuromorphic Vision
Germain Haessig1, Xavier Berthelon1, Sio-Hoi Ieng  1 & Ryad Benosman1,2,3

Depth from defocus is an important mechanism that enables vision systems to perceive depth. While 

machine vision has developed several algorithms to estimate depth from the amount of defocus 

present at the focal plane, existing techniques are slow, energy demanding and mainly relying on 

numerous acquisitions and massive amounts of filtering operations on the pixels’ absolute luminance 
value. Recent advances in neuromorphic engineering allow an alternative to this problem, with the 

use of event-based silicon retinas and neural processing devices inspired by the organizing principles 

of the brain. In this paper, we present a low power, compact and computationally inexpensive setup to 

estimate depth in a 3D scene in real time at high rates that can be directly implemented with massively 
parallel, compact, low-latency and low-power neuromorphic engineering devices. Exploiting the 

high temporal resolution of the event-based silicon retina, we are able to extract depth at 100 Hz for 
a power budget lower than a 200 mW (10 mW for the camera, 90 mW for the liquid lens and ~100 mW 
for the computation). We validate the model with experimental results, highlighting features that are 

consistent with both computational neuroscience and recent findings in the retina physiology. We 
demonstrate its efficiency with a prototype of a neuromorphic hardware system and provide testable 
predictions on the role of spike-based representations and temporal dynamics in biological depth from 

defocus experiments reported in the literature.

�e complexity of eyes’ inner structure implies that any visual stimuli from natural scenes contains a wide range 
of visual information, including defocus. Several studies have shown that defocus is essential in completing some 
tasks and more speci�cally for depth estimation1,2. Although a large body of research on Depth From Defocus 
(DFD) exists since the early 60’s, there is currently a gap between the information output from biological retinas 
and the existing literature both in the vision science and computer vision that uses images as the sole source of 
their studies. Although images are perfect to display static information, their use in acquiring dynamic contents 
of scenes is far from being optimal. �e use of images implies a stroboscopic acquisition of visual information 
(unknown to biological systems) at a low sampling frequency. �ey are thus unable to describe the full dynam-
ics of observed scenes. On the other hand, retinal outputs are massively parallel and data-driven: ganglion cells 
of biological retinas �re asynchronously according to the information measured in the scene3,4 at millisecond 
precision. Recent neuroscience �ndings show that this temporal precision can also be found in other subcortical 
areas, like the lateral geniculate nucleus (LGN)5,6 and the visual cortex7. �e last decade has seen a paradigm shi� 
in neural coding. It is now widely accepted that precise timing of spikes open new profound implications on the 
nature of neural computation8,9. �e information encoded in the precise timing of spikes allows neurons to per-
form computation with a single spike per neuron10. Initially supported by theoretical studies11, this hypothesis has 
been later con�rmed by experimental investigations12,13.

Here, we present a novel approach to the depth from defocus, inspired by biological retina ouput, which is 
compatible with ultra low latency and low power neuromorphic hardware technologies14. In particular, we exploit 
advances made in both mixed signal Analog/Digital VLSI technology and computational neuroscience which 
enabled us to combine a new class of retina-like arti�cial vision sensors with brain-inspired spiking neural pro-
cessing devices to build sophisticated real-time event-based visual processing systems15–17. We show how precise 
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timing of spiking retinas allows the introduction of a novel, fast and reliable biologically plausible solution to the 
problem of estimating depth from defocus directly from the high temporal properties of spikes.

Silicon retinas located at the core of the hereby presented system are a novel piece of hardware which do not 
sense scenes as a serie of frames. Conventional cameras wastefully record entire images at �xed frame rates(30–
60 Hz) that are too slow to match the temporal sub-millisecond resolution of human senses. Silicon retinas are 
asynchronous and clock-less, every pixel is independent from its neighbors and only reacts to changes caused 
by movements in a scene. Data are transmitted immediately and are scene driven, resulting in a stream of events 
with a microsecond time precision equivalent to conventional high-speed vision sensors, with the addition of 
being low power and sparse18. �is type of acquisition increases the sensor dynamic range and reduces power 
computation.

Spiking Neural Networks (SNNs19) are computational models using neural stimulation. It has been shown 
that such networks are able to solve constraint satisfaction problems20,21, depth extraction from stereovision22,23 
or �ow computation24,25. As they are mimicking real neurons behavior, they allow a massively parallel, low power 
calculation, which is highly suitable for embedded computation. �e use of a SNN in this work is a natural choice 
to build a complete neuromorphic event-based system, from the signal acquisition to the �nal output of the depth 
information. �is is advantageous because of the resulting low-power system promised by the spiking/neuromor-
phic technology. �e developed architecture is particularly adapted on a variety of existing neuromorphic spiking 
chips such as the SpiNNaker26, TrueNorth27 or LOIHI28 neural chips. More speci�c neuromorphic hardware, such 
as the 256 neurons ROLLS chip29, can also be used. When combined with an event-based camera, power as low as 
100 mW is proven to be su�cient to achieve a realtime optical �ow computation25. We are showing with this work 
that a low-power (≤100 mW), computationally inexpensive and realtime DFD system can be similarly achieved.

Among the multitude of techniques developed by vision scientists to estimate depth, those called depth from 
focus (DFF) or depth from defocus (DFD) have the great advantage of requiring only a monocular camera30. �e 
DFF method uses many images, and depth clues are obtained from the sharpness at each pixel. �is method is 
computationally expensive and the amount of data to process is substantial. On the other hand, DFD estimates 
the variance of spatially varying blur spots based on a physical model. �is technique requires less images but 
at the cost of a greater error in positioning. Current methods that use DFD or DFF generate depth maps for 
static scenes only31 as they are limited by the frame rate of the camera driven at maximum of 25 fps. �e com-
puter vision and engineering community have described a number of algorithms for defocus computation32–34. 
However, they typically require multiple concurrent images35–37, light�eld systems38, speci�c lens apertures35,39, 
correlations40, speci�c hardware41 or light with known patterns projected onto the environment37. �e use of 
images and luminance implies high computational costs of around 17 ms to process a single frame40.

�ese approaches cannot serve as conceivable models of defocus estimation in natural visual systems, as mam-
malian usually operate on a complete di�erent data format and acquisition principles. Early studies42,43 show that 
the border between blurred and sharp regions can be used to establish the depth-order of objects. For example, an 
out-of-focus target with a blurry textured region and a blurry border was perceived to be located proximal to the 
plane of focus, while an out-of-focus target with a blurry region and a sharp border was perceived to be located 
distant to the plane of focus. Recent �ndings in neuroscience show that blur perception in human is a dynamic 
process that allows depth assessment. In particular, the retinal defocus blur provides information regarding the 
relative and/or absolute distance of objects in the visual �eld44. Recently45, it has been demonstrated that subjects 
were able to detect the relative distance of two vertical edges, justifying that the retinal blur allowed the subjects 
to judge target distance deferentially without any other depth cues. Other studies demonstrated that motor e�er-
ence and/or sensory feedback related to the blur-driven accommodative response contain su�cient information 
to estimate the absolute distance of visual targets46. In addition, information derived from image blur can be 
integrated by the visual system with other visual cues (e.g., retinal disparity, size, interposition, etc.), which would 
assist in enabling one to judge the depth order of objects over a range of distances43,47–50. �e addition of blur 
information can improve the speed and accuracy in such a depth-ordering task51.

Materials and Methods
Event based cameras. Biomimetic neuromorphic silicon event-based cameras are a novel type of vision 
sensor that are data driven. Unlike their frame-based counterparts, they are not controlled by arti�cially created 
timing and control signals (frame clock) with no relation to the source of the visual input. Events are generated 
when signi�cant changes of the relative luminance occur at the pixel level as shown on Fig. 1. �e visual output 
is in the form of an address event (AER) and encodes the visual information in the time dimension at the micro-
second time precision. As soon as a change of luminance is detected, the process of communicating the event 
o�-chip is initiated. �e process executes with low latency, of the order of a microsecond, ensuring that the time at 
which an event is read out from the camera inherently represents the time at which a contrast change is detected. 
Let e(x, y, p, t) be an event occurring at time t at the spatial location (x, y)T. A positive change of contrast will result 
in an “ON” event (p = +1) and a negative change of contrast will result in an “OFF” event (p = −1). �e threshold 
n beyond which a change of contrast is high enough to trigger an event is tuned according to the scene. Smaller 
intensity �uctuations do not generate any event and are not recorded. �e camera used in our setup is issued from 
a new generation of asynchronous sensor based on18 and developed by Prophesee. It has a 640 × 480 pixels reso-
lution with a high temporal resolution of 1 µs. �is array of fully autonomous pixels combines both a luminance 
relative change detector circuit and a conditional exposure measurement block (not used in the paper). When no 
change of luminance is detected, no events are generated and the static information is not recorded. �is reduces 
the data load and allows high speed online processing at the native resolution of the sensor.

Depth estimation from the time of focus. When a sweep of the focal length over its dynamic range 
is carried out, objects will successively appear out of focus, then in focus and out of focus again. �e blurry 
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spot around the object will therefore shrink until the object is sharp and grow again as shown in Fig. 2(a) and 
in Fig. 2(b) for a cross section of the blur spot. �e size of the blur spot increases in connection to the distance 
respectively to the depth of �eld (DoF) location. When the object is in focus, the image spot will have its mini-
mum size and the contrast will be maximum (sharp edges). �e DoF of the lens is increasing with the distance of 
focus (see Supplemental data). Beyond a certain distance, called the hyper-focal, the whole scene appears in focus 
and di�erences in depth can no longer be distinguished. Ideally a DFD sensor should have an in�nitely thin DoF 
for each focusing distance and an in�nite hyper-focal. In practice one needs to minimize the DoF and increase the 
hyper-focal to have the best spatial resolution in depth on the longest distance possible.

Let s(t) be the size of the defocus blur at the focal plane. It will vary according the equation (see Supplemental 
data for details):
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with f the focal value of the optical system, N the numerical aperture, d the position of the object when in focus 
and z(t) the variable position of the object over time, or in other words the depth. Due to the aberrations, di�rac-
tion phenomenon and non-idealities of the lenses, a Gaussian point spread function (PSF) is commonly used to 
describe the defocus blur spot52. �e spread parameter σ(t) is proportional to the diameter s(t) of the ideal blur 
circle, i.e. σ(t) = αs(t). �e resulting intensity onto the sensor, at a pixel (xi, yi) is:
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2 2 2 and A the amplitude. At the pixel level the evolution of the intensity will depend 

on how close to the camera the object is. �e Gaussian PSF is actually related to the classical formulation of the 
blur in the focal plane as a problem of 2D-heat di�usion. As such, the solution is the Green’s function equivalent 
to Eq. (2). As a function of time, the standard deviation in I can be used to determine the time t at which an event 
is triggered by the pixel, assuming σ is invertible i.e.:
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We are dropping subscripts (i, j) for readability purpose as what we are describing is valid for any pixel. Hence, 
given the intensity at an arbitrary time t0, if the variations of its log reach some threshold ±n (described in the 
previous section), then:

Figure 1. (a) �e neuromorphic silicon event based camera with the variable motorized focal lens controlled 
at 100 Hz. (b) (le�) Operating principle of event detection of an event-based camera: relative changes of the 
luminance greater than a prede�ned threshold n generate ON/OFF events when there is a positive/negative 
change of contrast. (right) Events output from the senors are shown as on the focal plane as a frame for purpose 
display, black dots represent OFF events while white dots represent ON events.
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�is gives the time when an event is emitted according to (3):
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�e sign of n is chosen according to the polarity of the spiking event, itself related to the sign of the intensity’s 
derivative:
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when the derivative is positive the polarity will be +1 (ON event) and −1 when negative (OFF event). Eq. (5) 
expresses when an event will be emitted w.r.t. n and to a reference event measured at t0. As we reach focus, the 
value of σ will be constant for small duration of time, therefore the derivative of I, dI

dt
 is equal to 0, followed by a 

polarity change as shown in Fig. 2(c) and expressed in the temporal domain in Fig. 2(d) around 50 ms. �e detec-
tion of focus can then be determined by detecting the time tf of the polarity change that can be estimated from the 
average timing between the consecutive ON and OFF events. We can then estimate the size of the defocus blur 
s(tf) according to (3) and deduce from (1), the depth information z(tf) as:
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�e change of sign in z corresponds to the focal length that is the closest to the focus. Parameters d and f are 
controls of the liquid lens device.

Liquid lens control. �e optical system shown in Fig. 1(a) is composed of three components:

Figure 2. (a) Successive snapshots of a sphere when sweeping the focus range. �e red line represents a line of 
pixels in the y direction. (b) Variations of the intensity pro�le along the red y-axis on the above snapshots.  
(c) Events corresponding to the sweeping of the focus range, in black are OFF events and in white ON events. 
(d) Representation of spikes among a single pixel, according to the driving current of the liquid lens. Here, the 
focus point is estimated to be at 22.6 cm from the sensor.
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•	 an electrically focus-tunable liquid lens with a 10 mm clear aperture and focus range fll ranging from 50 to 
120 mm53.

•	 an o�set lens with a focal fo = −150 mm. It acts as a relay imaging system between the focus-tunable lens and 
the objective and ensures a proper focus.

•	 an objective lens with focal length fol = 35 mm, fol/2 objective lens. �is objective is a good compromise 
between large focal value, large clear aperture and low bulk (23.4 mm length). It is used to form an image 
directly on the camera pixel array.

�e electrically focus-tunable lens used for this work is a shape-changing lens, consisting of an optical �uid 
whose de�ection property changes w.r.t. the pressure applied on it via an electromagnetic actuator (coil). �e 
focal distance is then controlled by the amount of current injected in the coil. More details can be found in 
Supplemental data53.

�e thin lens approximation is given as follows:
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where d is the position of the point in focus, feq is the global optical system’s equivalent focal value (liquid 
lens + o�set lens + objective lens) and Dcam/obj is the distance between the camera and the object. �is technique is 
not speci�c to tunable liquid lens i.e. a mechanical focus controlled lens would also work as well if we can change 
the focus at a high enough frequency. However mechanical device has usually a reduced operational frequency 
and a shorter lifetime.

Spiking neural network. To estimate tf for each pixel, we are looking for the smallest time interval between 
two consecutive events of opposite signs. We implement a Spiking Neural Network (Fig. 3a) based on Leaky 
Integrate and Fire neurons54 to process the spikes from the output of the neuromorphic silicon retina. When 

Figure 3. Spiking neural network. (a) Input data: a circle going in and out of focus, in front of a receptive �eld 
(a single pixel). (b) Neural network for focus detection composed of two input neurons, ON and OFF. �ey 
directly connect to the output neuron, and also to two blocker neurons Bon and Bo� that are inserted to avoid 
parasite �rings of the output neuron due to a sequence of only ON or OFF polarity events. A synchronization 
with the liquid lens via the Sync neuron is added, in order to encode the depth in the length of the spike train. 
(c–e) Simulation of the SNN with NEST. (c) �e input spikes (ON and OFF events) and the output of the 
network (OUT and Sync). �e point of focus is given by the OUT neuron, while the distance is encoded in the 
timing between the OUT and SYNC spikes. (d) Membrane potential for the two blockers neurons. A�er the �rst 
spike of its respective polarity, the blockers send a inhibition to the output neuron. (e) Membrane potential of 
the output neuron. Spikes from the same polarity do not allow the output neuron to reach its �ring threshold, 
while a succession of ON and OFF events make the output neuron �re. As the output neuron is self-excitatory, 
the output spike train will be maintained until the strong inhibition from the synchronization comes.
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the membrane potential of the neuron reaches a threshold (spiking threshold, as in Fig. 3(d) and (e)), a spike is 
generated and the membrane potential is reset to a rest value. For every pixel, �ve neurons are required. Figure 3a 
shows events generated by a circle going in and out of focus. At time t1, the stimulus in front of the receptive 
�eld generates a ON event (orange - Fig. 3c). �e synaptic weight between the ON and Bon neurons is not strong 
enough to trigger yet the Bon neuron (Fig. 3d). As a second spike is generated by the same neuron at time t2, the 
Bon neuron reaches its threshold value and spikes (Fig. 3d). An inhibition link to the OUT neuron ensures that the 
OUT neuron won’t �re now. A�er the focus, at time t3, we have a polarity inversion: the OFF neuron �res, thus 
exciting the output neuron that �res (Fig. 3e). �e next OFF spike, at time t4, activates the Bo� neuron, thus pre-
venting the OUT neuron to �re again in response to the future OFF spikes. Finally, the Sync neuron is triggered by 
the liquid lens, warning that the sweep is over and resetting the OUT neuron to its initial state. �e depth can then 
be extracted as the timing between the OUT and Sync spikes. �e neural architecture shown in Fig. 3b is sharing 
some similarities with the one presented in55 to measure contrast. However, they are both fundamentally di�erent 
as one is focusing on measuring spatial contrast with no consideration to the temporal domain, while the other 
detects the maximum contrast in time and in space, by detecting the shortest duration between polarity changes.

Results
Results are obtained for a �eld of view of 15° and a depth that ranges from 0.12 to 5.5 m. �e distance upper 
bound corresponds to the hyper-focal distance of the global optical setup. �e sparse nature of the data allows the 
algorithm to operate in real time at the native resolution of the sensor (640 × 480 pixels).

�e Spiking Neural Network previously described in section 3 was implemented using the PyNN framework56 
and simulated using the NEST neural simulator57. All neurons are modeled as Leaky Integrate-and-Fire (LIF) 
neurons. Results are presented on Fig. 3. We set the dimension of the network to �t a region of 447 × 447 pixels, 
the network then using 999045 neurons. �is amount is compatible with existing neuromorphic hardware imple-
mentation on the TrueNorth platform (1 million neuron27) or SpiNNaker capability26.

To better understand the possibilities and limits of the system, we performed a simulation on synthetic data 
generated with a controlled optical setup where all parameters can be tuned. �e aim of this simulation is to study 
the algorithm without constraints from the physical setup. Figure 4 shows three snapshots of the events generated 
during a sweep of a car. Figure 4d shows the reconstructed depth computed by the system.

All the parameters being known we can estimate the relative error to the ground truth. We notice that most 
of the error is located at the front of the car on the grating where close to one another straight lines patterns are 
located. �is is a known limitation of several vision algorithms such as stereo matching, which will be further 
discussed in section 3.1. Figure 4(e) displays the error repartition with a mean relative error of 10.4%. An example 
video on a car is available online58.

�e second experiment, the depth estimated from the DFD is assessed with our setup on a monitored scene 
where the ground truth is provided by a Microso� Kinect sensor. �e Kinect is taken as the reference similarly 
to previous studies59,60, reporting reconstruction precision of few mm at 50 cm to 3 cm at 3 m. Figure 5 shows 
the setup and the depth map computed for the presented neuromorphic technique with a comparison with the 

Figure 4. (a–c) Snapshots during a sweep of an object (d) Reconstructed depth scene for the car. �e depth 
is also color-coded for clarity. (e) Distribution of the error. �e mean relative error is at around 0.1% and a 
standard deviation of 0.12%.
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groundtruth depth map: the error is increasing relative to depth. Up to 1.5 m, the relative error is upper-bounded 
at 4% and increased up to 23% at 2 m. �is is however an expected result as the optical system’s focal length is 
reaching the hyper-focal.

�e third experiment shows reconstruction for several objects with di�erent textures and sizes. Figure 6 shows 
for each object its corresponding depth map while the lens is sweeping through the object.

Remarks and limitations. �e algorithm is inexpensive in computational power, in the presented exper-
iments it is able to deal with around 15 million events per second. A shaky scene viewed by the event-based 
camera will generate at most 2 million events per second. In the worst case, thus the current approach is 7 times 
faster than real time. However for most objects used it is more around 20 times faster than real time using an 
o�-the-shelf laptop. �e computational load of the proposed method is lower than any other existing method 
because it relies on detecting changes of polarities from a sparse output while existing techniques such as41 require 
to compute the local gradient on entire frames. �is algorithm can be easily embedded on portable devices such 
as smartphones or autonomous vehicles as an ideal method for low power solutions to obstacle side-stepping or 
3D scanners. �e low-cost liquid lens used in this paper consumes ~300 mA. New consumer ready products using 
electrowetting61 and more advanced research prototypes62,63 allow a low power budget of less than 1 mW at the 
cost of losing temporal accuracy.

As pointed out during experiments, repetitive patterns can lead to incorrect depth estimation. Figure 7 shows 
this situation for simulated data. If we consider two objects that are well separated (Fig. 7f), the sweep of the liq-
uid lens will produce an event stream (Fig. 7l) with non overlapping spikes. Figure 7j is a snapshot of the sweeps’ 
beginning. �e four OFF edges are distinct. As the focus evolves, we reach the focus point for object 1 (Fig. 7i). 
�e two edges O1L and O1R of object 1 now generate ON events. A�er the focus point for object 2 (Fig. 7h), the 
two other edges O2L and O2R now generate ON events. As the objects are in a su�cient relative distance, the edges 
O1R and O2L are not overlapping.

If we consider two objects that are close each other (Fig. 7a), the sweep of the liquid lens will now produce the 
event stream shown in Fig. 7k. As the sweep starts (Fig. 7e), only the external edges of objects 1 and 2 (O1L and 

Figure 5. (a) Depth map from the developed setup (raw data, no post-processing). (b) Conventional Image of 
scene for display purposes. (c) Depth map from the Kinect used as reference. �e yellow square corresponds to 
the �eld of view. (d) Relative error for this scene, with the output of a Microso� Kinect as ground truth. A sparse 
set of handpicked points were selected in the ground truth and then compared to depth estimations from our 
network.
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O2R) generate OFF spikes. As the focus reaches object 1, object 1 generates ON spikes and object 2 OFF spikes. 
�e two middle edges (O1R and O2L) are now superimposed, with two di�erent polarities, causing the failure of the 
algorithm (Fig. 7d). Decreasing the size of the pixels is equivalent to increase the spatial resolution of the sensor. 
�is will allow to estimate depth as long as we manage to separate the two edges, however the same ambiguity 
problem will occur once we reached the limit of the sensor. In principle as we are stimulating the same pixel a 
possible solution to solve this issue is to change the point of view of the camera to disambiguate depth estimation 
at critical locations.

Figure 6. Snapshots of the event stream, and associated depth maps during a sweep (5 ms) for multiple objects. 
Black and white dots are the OFF and ON events from the event-based silicon retina, as described in Section 
2.1. Distance is color-coded.

Figure 7. Highlighting of the wrong depth measurements for two closeby edges. �e two central plots show 
events in the x-time plane, smashing the y-dimension. Events are color coded with their polarity (red for OFF 
events, blue for ON events). �e right one is a valid case, with no overlap. �e le� one contains an overlap in the 
event stream, leading to wrong depth deductions in this case. 4 snapshots of events are presented for every case.
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Conclusions and Discussions
In this paper we proposed a spiking neural network model that solves the depth from focus e�ciently by exploit-
ing an event-based representation amenable to neuromorphic hardware implementations. �e network operates 
on visual data in the form of asynchronous events produced by a neuromorphic silicon retina. It processes these 
address-events in a data-driven manner using arti�cial spiking neurons computation units. �is work introduces 
a valid explanation and a robust solution to depth estimation from defocus that has not been reported in the 
literature. �e overall system matches recent existing literature of neuroscience, biological retinas and psycho-
physics studies on the role of defocus in the visual system. �is network is nonetheless an abstract simpli�cation 
of the depth estimation problem that must surely combine more complex information in biological systems. 
More importantly, this study should be coined depth from focus rather than from defocus as the neural structure 
developed aims at detecting the exact time of focus during a sweep.

During the last �ve decades of research, DFD has remained an unsolved issue. �e fundamental di�erence 
and novelty of this work is that the proposed network operates using exclusively precisely-timed contrast events. 
�ese events are measured directly from the neuromorphic silicon retina, which models only the transient 
responses of retinal cells (i.e., of the Y-ganglion cells), without including the sustained ones, yet present in the 
system. While the sustained information is present in the silicon retina used, we show that this information is 
not necessary to provide depth estimation from defocus. Silicon retina transient responses produce single events. 
�eir precise timing plays a crucial role in the estimation of blur and more importantly in determining when the 
observed object is in focus.

In contrast, the vast majority of computational models of depth from defocus are based on images that are 
known to be absent from the visual system and only rely on luminance information. Additionally, none of them 
use the precise timing of spikes. In these models, convolutions techniques are used to determine the level of blur. 
�ese methods are computationally expensive and meaningfully slower as several acquisitions are o�en needed 
to provide an accurate result. By contrast, the model we presented does not incorporate any notion of �ltering or 
convolutions. �ese choices are based on the perception of spatial contrast, whereas the presented model solely 
responds to temporal contrast.

Whether the brain is using such a technique to estimate depth from defocus is an open question. However 
due to the nature of precisely timed information output by biological retinas64 convolutions algorithms cannot 
provide a viable explanation as the stroboscopic nature of image acquisition and luminance use is incompatible 
with neural systems. Instead, we show that the change of polarity at the pixel level contains su�cient informa-
tion to estimate depth from defocus. Recent �ndings in physiology show that several mechanisms used by our 
methodology exist in Nature. Biological retinas contain several types of ganglion cells, each informing the brain 
about a particular content of the visual scene, such as motion, edges or chromatic composition. In a recent paper, 
a newly discovered ganglion cell type ‘On-delayed’ is described65. �is cell has been shown to respond vigorously 
to increasing blur. Its degree of �ring directly encodes the amount of high spatial frequencies contained in its 
receptive �eld. More importantly, this cell gets input from both ON and OFF polarities. While it is currently 
unknown how this defocus information is used by the brain, it is most likely that this information projects to the 
visual thalamus and cortex and also to midbrain structures where accommodation is controlled66.

We expect the most signi�cant impact of our model to be in the �eld of arti�cial vision. Today’s machine 
vision processing systems face severe limitations imposed both by the conventional sensors front-ends (which 
produce very large amounts of data with �xed sampled frame-rates), and the classical Von Neumann computing 
architectures (which are a�ected by the memory bottleneck and require high power and high bandwidths to 
process continuous streams of images). �e emerging �eld of neuromorphic engineering has produced e�cient 
event-based sensors, that produce low-bandwidth data in continuous time, and powerful parallel computing 
architectures, that have co-localized memory and computation and can carry out low-latency event-based pro-
cessing. �is technology promises to solve many of the problems associated with conventional computer vision 
systems. However, the progress so far has been chie�y technological, whereas related development of event-based 
models and signal processing algorithms has been comparatively lacking (with a few notable exceptions). �is 
work elaborates on an innovative model that can fully exploit the features of event-based visual sensors. In addi-
tion, the model can be directly mapped onto existing neuromorphic processing architectures. Results show that 
the full potential is leveraged when single neurons from the neural network are individually emulated in parallel. 
In order to emulate the full-scale network, however, e�cient neuromorphic hardware device capable of emulating 
large-scale neural networks are required. �e developed architecture requires few neurons per pixel and is imple-
mentable on a variety of existing neuromorphic spiking chips such as the SpiNNaker26, TrueNorth27 or LOIHI28 
neural chips.
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