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A spiking neural network 
(SNN) for detecting high 
frequency oscillations (HFOs) 
in the intraoperative ECoG
Karla Burelo1,2, Mohammadali Sharifshazileh1,2, Niklaus Krayenbühl3,4, 
Georgia Ramantani3,4,5, Giacomo Indiveri1,5 & Johannes Sarnthein2,4,5* 

To achieve seizure freedom, epilepsy surgery requires the complete resection of the epileptogenic 
brain tissue. In intraoperative electrocorticography (ECoG) recordings, high frequency oscillations 
(HFOs) generated by epileptogenic tissue can be used to tailor the resection margin. However, 
automatic detection of HFOs in real-time remains an open challenge. Here we present a spiking neural 
network (SNN) for automatic HFO detection that is optimally suited for neuromorphic hardware 
implementation. We trained the SNN to detect HFO signals measured from intraoperative ECoG 
on-line, using an independently labeled dataset (58 min, 16 recordings). We targeted the detection 
of HFOs in the fast ripple frequency range (250-500 Hz) and compared the network results with the 
labeled HFO data. We endowed the SNN with a novel artifact rejection mechanism to suppress sharp 
transients and demonstrate its effectiveness on the ECoG dataset. The HFO rates (median 6.6 HFO/
min in pre-resection recordings) detected by this SNN are comparable to those published in the 
dataset (Spearman’s ρ = 0.81). The postsurgical seizure outcome was “predicted” with 100% (CI [63 
100%]) accuracy for all 8 patients. These results provide a further step towards the construction of a 
real-time portable battery-operated HFO detection system that can be used during epilepsy surgery to 
guide the resection of the epileptogenic zone.

Among patients with epilepsy, one-third have seizures that cannot be controlled by  medication1. Selected patients 
with drug-resistant focal epilepsy may bene�t from epilepsy surgery to achieve seizure freedom. �e e�cacy of 
epilepsy surgery requires the complete resection of the epileptogenic brain  tissue2. Intraoperative electrocorti-
cography (ECoG) can be performed during surgery to optimize the delineation of the epileptogenic zone (EZ) 
against healthy brain tissue by taking into account interictal spike  patterns3–6. �is so called “tailoring” may guide 
surgical decisions, but the value of interictal spikes as an epilepsy biomarker in this context is under  debate7.

Interictal high frequency oscillations (HFOs > 80 Hz), particularly in the fast ripple band (250–500 Hz),are 
being discussed as biomarkers to guide surgical decisions. In intraoperative ECoG, the primary purpose of HFO 
detection is the delineation of the EZ, i.e. the prediction of recurrent seizures if the EZ has not been entirely 
 resected7–16. As a fundamental problem, HFOs have been de�ned non-uniformly across research  studies7. For 
example, in one de�nition of  HFO17, HFO locations varied across hours or days in intracranial electroencepha-
lography (iEEG) during sleep in most patients. In contrast, in another de�nition of  HFO18, the test–retest reli-
ability of HFO locations in iEEG was high over hours or days in those patients where HFOs were highly predictive 
of seizure  outcome10,19; this latter de�nition of HFO is therefore of high clinical relevance.

HFO detection faces the challenge of low signal-to-noise ratio, which can be improved by high density 
 electrodes8,20 and by low-noise  ampli�cation11. As a further challenge, a clinically relevant HFO must be dis-
tinguished from the electrical artifacts induced by the standard intraoperative devices or any other spurious 
oscillation in the fast ripple band. To achieve clinical relevance, an HFO should (1) be de�ned prospectively 
and (2) be validated against postsurgical seizure  freedom21. While there are many automated detection schemes 
that de�ne HFOs prospectively, only few validated the detected HFOs against postsurgical seizure  freedom7–13. 
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�ese detectors however, require further o�ine processing of the pre-recorded signal to apply an automatic or 
semiautomatic artifact rejection stage to eliminate events wrongly classi�ed as HFO. �is o�ine processing 
requirement limits the possibility to perform real-time detection of HFOs during the time-span available within 
the constraints of the surgery.

�ese constraints have hampered the application of HFO in clinical practice. Also, clinical trials are yet 
missing. Currently, a �rst small study is expected to report results on the non-inferiority of HFOs compared to 
 spikes14. Ultimately, the value of HFO for delineating the EZ must be con�rmed in a large prospective clinical 
trial with a large numbers of patients recruited from multiple centers. Standardized HFO analysis in multiple 
centers will need fast, reliable, and unsupervised automatic HFO detection. Further, a prospective de�nition of 
a clinically relevant HFO will have to be agreed on. In earlier work, we have used intraoperative ECoG  data15 to 
establish an automated de�nition of clinically relevant HFOs that predicts postoperative seizure freedom (“Spec-
trum detector”)9,22. �e HFOs of the Spectrum detector have since been validated to predict seizure freedom in 
independently recorded  datasets8,11.

Here, we simulated a spiking neural network (SNN) for HFO detection in the intraoperative ECoG. �is 
work builds on a previously validated SNN for HFO detection in the intracranial EEG (iEEG)23,24, and extends 
it by introducing a novel artifact rejection mechanism to reject fast transient artifacts, and by validating it on 
intraoperative electrocorticography recordings (ECoG). As a computational principle, the SNN emulates the 
spiking of neurons in small  networks25 so that they can be implemented in low-power and compact neuromor-
phic hardware that perform real-time  computation26.

We applied our SNN to a published dataset of pre-recorded ECoG, where HFOs were detected o�ine using 
the Spectrum  detector9,22 and validated against postoperative seizure  freedom8. In this benchmark testing, we 
were able to correctly predict the postoperative seizure outcome in all 8 patients. �is is a further step towards 
an SNN that may be implemented in a neuromorphic  device23 for standardized and real-time HFO detection 
during epilepsy surgery.

Methods
Patients. We retrospectively included pediatric and adult patients (median age 18.5 years, range [12, 33 ] 
years) who (1) underwent epilepsy surgery in our institutions, (2) where the resection was guided by intraopera-
tive high-density ECoG (hd-ECoG), (3) post-resection hd-ECoG was available, and (4) the follow-up-duration 
a�er surgery was ≥ 12 months.

�e patients were followed-up at the outpatient clinics of Neurosurgery, University Hospital Zurich, and Epi-
leptology, University Childrens Hospital Zurich, 3, 6, 12, 24 months a�er surgery according to our institutional 
protocol. Postsurgical seizure outcome was determined according to the International League Against Epilepsy 
(ILAE) scale and consecutively classi�ed in two categories: seizure freedom (ILAE 1) and seizure recurrence 
(ILAE 2-5).

Ethical considerations. �e collection of personal patient data and their analysis were approved and per-
formed conform to the guidelines and regulations of the local research ethics committee (Kantonale Ethikkom-
mission Zürich KEK-ZH-Nr. 2019-01977), who waived the collection of patients’ written informed consent.

Anesthesia management. According to our standard protocol for neurosurgical interventions, anesthe-
sia was induced with intravenous application of Propofol (1.5–2 mg/kg) and Fentanyl (2–3 µg/kg). Intratracheal 
intubation was facilitated by Atracurium (0.5 mg/kg). Anesthesia was maintained with Propofol (5–10 mg/kg/h) 
and Remifentanil (0.1–2 µg/kg/min). Twenty minutes before ECoG recording, Propofol was ceased and anesthe-
sia was sustained with Sevo�urane (MAC<0.5).

ECoG recordings. Intraoperative ECoG was recorded with high-density subdural grid electrodes (hd-
ECoG, AdTech Medical, contact exposure diameter 2.3 mm, inter-electrode distance 5 mm). We used a needle 
electrode placed in the dura as electrical reference. We collected ECoG data with a Nicolet recording device 
(Nicolet CSeries ampli�er: Natus Medical Incorporated, 16-bit ADC, Pleasanton, PA, USA; sampling rate 2 kHz, 
1–800 Hz passband). All ECoG data was re-referenced to a bipolar montage along the length of the grid. Dur-
ing preprocessing, we selected intervals of stable recordings. Channels a�ected by continuous interference or 
not recording from brain tissue were excluded from further analysis. �e placement of subdural electrodes for 
intraoperative ECoG was guided solely by the clinical question. Only interictal epileptiform discharges (and 
not HFO) were considered for the intraoperative delineation of the EZ and thus for tailoring the resection. In 
this study, we �rst analysed the ECoG recorded from a location over the volume to be resected and its margins 
(pre-resection ECoG), and then the post-resection ECoG that was recorded at the resection margins. �e neuro-
surgeon and the neurologist in charge of the patient carefully documented the ECoG electrode localization with 
respect to the resected volume. �is data is publicly available as described  earlier8 and can be found at https:// 
gin.g- node. org/ USZ_ NCH/ Intra opera tive_ ECoG_ HFO.

HFO detection with the Spectrum detector. �e Spectrum detector has been described in detail in 
previous  publications8,9,11,22. In brief, the detector has three stages. Stage I determined a baseline amplitude 
threshold in time intervals with high Stockwell entropy (low oscillatory activity). Events exceeding the threshold 
were marked as events of interest (EoI). In Stage II, the detector selected all EoI that exhibited a high frequency 
peak isolated from low frequency activity in the time–frequency  space22. �e number of EoI was further reduced 
in Stage III, where artifacts with multichannel spread were rejected, since HFO are spatially con�ned in a small 
patch of cortical  tissue20,27. Following these steps of automated HFO detection, an observer inspected the events 

https://gin.g-node.org/USZ_NCH/Intraoperative_ECoG_HFO
https://gin.g-node.org/USZ_NCH/Intraoperative_ECoG_HFO
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Figure 1.  HFO detection scheme. (a) �e wideband ECoG is �ltered in the HFO frequency band (250–500 
Hz). (b) In the baseline detection stage, the background noise of the signal is used to set the signal-to-spike 
threshold. (c) �e signal-to-spike conversion algorithm converts the analog signal into two streams of digital 
outputs: UP and DN spikes. (d) �e SNN architecture for HFO detection and artifact rejection consists of 
input neurons (grey) receiving the input UP-DN spikes. �ese inputs project to a second layer of neurons 
(green) and to a dis-inhibitory neuron (purple). �is neuron projects inhibitory synapses to a global-inhibitory 
neuron (orange), which is continuously inhibiting the second layer neurons. �e synapses of the projections are 
excitatory (positive, red) or inhibitory (negative, blue).

Table 1.  Synapse parameters of the SNN detector. A connection between two neurons (Fig. 1d) is 
characterized by the positive (excitatory, exc) or negative (inhibitory, inh) current in fA and the time constant.

Connection Name Connection strength (fA) Polarity Time constant τ (ms)

Input UP spikes to second layer Sup−sl [7 14] exc [3 6]

Input DN spikes to second layer Sdn−sl [7 14] inh τSup−sl
-[0.1 1]

Input UP spikes to dis-inhibitory neuron Sup−di 21 exc 5

Input DN spikes to dis-inhibitory neuron Sdn−di 21 exc 5

Dis-inhibitory neuron to global-inhibitory neuron Sdi−gi 17.5 inh 20

Poisson to global-inhibitory neuron Spoiss−gi - exc 5

Global-inhibitory neuron to second layer Sgi−sl 24.5 inh 5

Table 2.  Patient characteristics, HFO rates and postsurgical seizure outcome. We present the maximum HFO 
rates (HFO/min) in the pre- and post-resection ECoG as detected by the Spectrum  detector8 and the SNN 
detector. We “predict” seizure outcome for each patient based on whether remaining HFOs were observed 
in the post-resection recordings or not. We compare the “prediction” with the seizure outcome (ILAE). FCD 
focal cortical dysplacia, DNET dysembryoplastic neuroepithelial tumors, R right, L le�, post. posterior, TP true 
positive, TN true negative.

Patient Etiology Resection area
Follow-up 
(months)

Seizure Spectrum SNN Spectrum SNN

Outcome HFO rate HFO rate Outcome Outcome

(ILEA) Pre Post Pre Post Prediction Prediction

1 DNET L medial parietal 33 1 6 < 1 3 < 1 TN TN

2 FCD 2b L dorsal medial prefrontal 24 1 4 < 1 10 < 1 TN TN

3 Sturge Weber L lateral occipital 30 1 2 < 1 1 < 1 TN TN

4 Ganglioglioma R post. fusiform gyrus (occipital) 18 1 8 < 1 12 < 1 TN TN

5 FCD 2a R post. temporal 13 1 13 < 1 30 < 1 TN TN

6 Sturge Weber R lateral post. temporal & lateral occipital 20 3 32 5 45 14 TP TP

7 Astrocytoma R post. middle frontal gyrus 29 1 1 < 1 1 < 1 TN TN

8 FCD 2a R post. cingulate gyrus, post. hippocampus 12 1 22 < 1 2 < 1 TN TN
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in wideband and �ltered in the HFO band to reject further artifacts. �is prospective de�nition of a clinically 
relevant HFO has been shown to predict postsurgical seizure outcome with high  accuracy8,9,11.

HFO detection with the SNN. As a �rst step in the HFO detection pipeline, the wideband ECoG record-
ing was �ltered in the 250–500 Hz fast ripple band (Fig. 1a). Since Butterworth �lters showed to be a good 
approximation of the Tow–�omas architectures for the hardware SNN  �lters23,24,28, we used a 2nd order �l-
ter of this model and the SciPy Python package to simulate the �ltering  stage29–31. In the �ltered signal, we 
de�ned a baseline amplitude that has to be exceeded by a putative HFO event (Fig. 1b). Following the algorithm 
implemented in the hardware  SNN23, we selected a 1 s time window, stored the maximum signal amplitudes of 
consecutive non-overlapping time windows of 50 ms, and took the mean of the lowest quartile as the baseline 
amplitude.

�e �ltered signal was then converted to spikes using a delta conversion scheme (Fig. 1c) that is inspired 
by the analog delta modulator (ADM)32,33. �e ADM integrates an error signal which follows the input until it 
increases above (decreases below) the upper (lower) threshold. Upon the crossover, an UP (DN) spike is gener-
ated and the error will reset to zero. �e error will remain zero for a refractory period a�er which, it will continue 
tracking the input again until the next threshold crossover, hence encoding the input into UP-DN spike trains. 
�is threshold was set at 50% of the pre-recorded ECoG baseline amplitude. To approximate the asynchronous 
conversion of the signal in the ADM, we over-sampled the input signal at 35 kHz and we set a refractory period 
(300 µ s) to simulate the delay of the ADM a�er each spike. Note that the over-sampling period should be much 
smaller than the refractory period for accurate data conversion.

�e HFO detection stage of the network (the core SNN) consists of input neurons receiving the input UP-DN 
spikes and a second layer of neurons (Fig. 1d). �e projections to the second layer neurons are excitatory for UP 
spikes and inhibitory for DN spikes. We used the Python SNN simulator  Brian234, the custom toolbox  Teili35, 
and the parameters in Table 1 to simulate an SNN that matches the behavior of the neuromorphic circuits of 
the hardware  SNN23. �e so�ware simulations take into account the neuromorphic circuit properties. As the 
circuits are based on a “current-mode” design, we represented all the relevant state variables (such as the neuron 
membrane potential) as currents (e.g., Imem).

Spikes in the second layer neurons were used to mark an HFO. Any spike within a 15 ms window indicated 
an HFO, where consecutive windows containing spikes were concatenated to indicate the same HFO. �ere were 
no further steps required for artifact rejection. HFO detection was performed independently for each channel 
of the pre- and post-resection ECoG recordings.

Prediction of seizure outcome using residual HFO. �e output of the HFO detection was compared 
to the postsurgical seizure outcome in each patient. For each patient, we calculated the HFO rate in each elec-
trode channel of the pre- and post-resection recordings by dividing the number of HFOs detected in the channel 
by the duration of the recording. We compared the HFO rate between pre- and post- resection recordings by 
only selecting the recording channel that had the highest HFO rate (Table 2), since the presence of a single chan-
nel with residual HFO has shown to predict seizure  recurrence8,9,11,12,14–16. Channels with HFO rates of ≥ 1 HFO/
min in the last post-resection ECoG were de�ned as having residual  HFOs8,9.

To quantify the predictive value of HFO with respect to seizure outcome in each patient, we retrospectively 
“predicted” seizure freedom (ILAE 1) in patients with post-resection HFO rates of < 1 HFO/min and recurrent 
seizures (ILAE 2–6) in patients with post-resection HFO rates of ≥ 1 HFO/min (Table 2). We divided the patients 
into four groups. True Positive (TP): residual HFO, seizure recurrence (ILAE >1) correctly predicted; True Nega-
tive (TN): no residual HFO, seizure freedom (ILAE 1) correctly predicted; False Positive (FP): residual HFO, 
seizure freedom falsely predicted; False Negative (FN): no residual HFO, seizure recurrence falsely predicted. 
�e positive predictive value was calculated as PPV = TP/(TP + FP), negative predictive value as NPV = TN/
(TN + FN), sensitivity as Sens = TP/(TP + FN), speci�city as Spec = TN/(TN + FP), and accuracy as ACC = 
(TP+TN)/(TP+TN+FP+FN).

Statistics. For statistical testing, we used non-parametric methods. To compare two distributions, we used 
the Wilcoxon Rank Sum test. To assess the relationship between two variables, we used the Spearman Rank 
Correlation coe�cient ρ . We calculated the 95% con�dence interval (CI) of a ratio on the basis of the binomial 
distribution. Statistical signi�cance was established at p < .05.

Results
Architecture of the core SNN augmented by the artifact rejection stage. As a �rst result, we 
describe here the architecture of the SNN that is augmented by the artifact rejection stage (Fig. 1d). For the 
core SNN, we used a two-layered feed-forward network of integrate and �re neurons with dynamic  synapses23. 
For the �rst layer of the network, we used two input neurons that projected UP-DN spike trains to the sec-
ond layer neurons using excitatory and inhibitory synapses, respectively. As for the artifact rejection stage, we 
implemented a dis-inhibitory mechanism using a dis-inhibitory neuron and an global-inhibitory neuron that 
constantly suppressed the activity of the second layer neurons. For this purpose, the global-inhibitory neuron 
was stimulated with a Poisson spike train to generate continuous spikes at 135 Hz. �e dis-inhibitory neuron 
projected inhibitory synapses to the global-inhibitory neuron and received the input UP-DN spikes through 
excitatory synapses.
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Figure 2.  �e SNN distinguishes between an HFO and an artifact (fast transient) in the ECoG. (a,c) ECoG signal and input spike train 
to the SNN. Consecutive UP-DN spike bursts in the train de�ne an UP-DN cycle. More cycles occurred during the HFO. (b,d) Activity 
of the neurons in the SNN. (b) During an HFO, the input spike train excited the dis-inhibitory neuron (membrane potential Imem in 
purple), which suppressed the global-inhibitory neuron that became silent (input current Iin and Imem in orange). A neuron of the core 
SNN (input current Iin and membrane potential Imem in green) integrated the input spike trains and produced an output spike. Several 
second layer neurons of the core SNN responded to the HFO (green dots). (d) During a short fast transient in the ECoG, the excitation 
of the dis-inhibitory neuron was so short (purple trace) that it did not silence the global-inhibitory neuron (orange traces), which in 
turn continued to inhibit the second layer neuron (green traces) and prevented the generation of an output spike. Neither this nor any 
other neuron of the second layer Imem (green) reached the spiking threshold hence, the raster plot remained empty. (e,f,g) Population 
characteristics of the UP-DN input spike trains entering the second layer neurons and the dis-inhibitory neuron. (e) �e train during an 
HFO lasted 24 ms (median), with a single cycle lasting 2.6 ms (median). (f) �e HFOs comprise more UP-DN cycles (median 6 cycles) 
than the artifacts (median 2 cycles). (g) �e train during an artifact lasted 9 ms (median), with a single cycle lasting 3.2 ms (median). 
�e cycle characteristics were used to select the parameters of the dis-inhibitory neuron and the global-inhibitory neuron (Table 1).
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Parameters for the artifact rejection stage. To calibrate the artifact rejection stage, the optimal 
parameters were found heuristically by analysing HFOs and sharp transients in the ECoG as follows.

We composed a training signal of 22 snippets (50 ms wide)and fed it into the core SNN, i.e. the SNN without 
the artifact rejection stage. We selected 11 snippets where an HFO had been marked by both the core SNN and 
the Spectrum  detector8, as published together with the  dataset36. Further, we selected a representative set of 11 
snippets where the core SNN had marked an HFO but the Spectrum detector had not marked an HFO, i.e. a 
snippet that the core SNN had wrongly classi�ed as HFO. �ese snippets contained sharp transients that (a�er 
�ltering) can have similar waveforms to HFOs (Fig. 2c).

�e signals were then transformed in UP-DN spike trains (Fig. 2a,c).In a spike train, we de�ned as an “UP-
DN cycle” a burst of UP spikes followed by a burst of DN spikes. From the spike trains we quanti�ed (1) the 
duration of the spike train, (2) the number of cycles and (3) the inter-spike-interval (ISI) within the bursts of 
a cycle. We observed that fast transients generated two cycles (median) in the UP-DN spike train while HFOs 
generated more cycles (median 6 cycles, Fig.  2f).

To inhibit the second layer neurons during a fast transient, the global-inhibitory neuron must suppress their 
activity for at least one cycle. Conversely, to dis-inhibit the activity of the second layer neurons during an HFO, 
the dis-inhibition should start as early as possible (i.e. a�er the �rst cycle) and should last the total duration of 
the HFO.

In our data set, the median HFO duration (24 ms) was longer than the duration of an artifact (8 ms) (Fig. 2e,g, 
p< .008 Wilcoxon Rank Sum test). Nevertheless, the median duration of a single cycle during a fast transient 
was larger (3.2 ms) than a single cycle during an HFO (2.6 ms) (Fig. 2e,g, p< .008). Also the median number of 
cycles di�ered between HFOs and artifacts (Fig. 2f, 6 vs. 2, p< .011).

�erefore, the suppression of the activity of the second layer neurons during the �rst cycle resulted in a sup-
pression of HFOs with short duration. However, this design choice did not a�ect the maximum HFO rates in 
the benchmarking between our SNN detector and the Spectrum detector (Table 2).

Since the dis-inhibitory neuron received excitatory inputs from both UP and DN spikes, any activity in the 
signal could have caused the activation of the dis-inhibitory neuron and, in consequence, the dis-inhibition of the 
second-layer neurons and an erroneous HFO detection. We avoided this dis-inhibition by using a short synaptic 
time constant for the connections of the dis-inhibitory neuron. Hence, the dis-inhibitory neuron was activated 
only during periods of elevated UP-DN spiking as it occurred during a fast transient or an HFO.

Example of a detected HFO and a suppressed transient. �e SNN activity di�ered markedly 
between detection of an HFO and rejection of a fast transient (Fig. 2 b,d). �e UP-DN spike train generated 
spikes in the membrane potential of the dis-inhibitory neuron (purple trace Imem ). Note that one UP-DN cycle 
has passed until the dis-inhibitory neuron responded to the UP-DN inputs. Only a�er this delay of one cycle, 
this neuron inhibited the global-inhibitory neuron (orange Iin trace). Note that this trace results from integrating 
the inputs from the Poisson spike train and the inhibitory inputs from the dis-inhibitory neuron.

During the presence of an HFO in the signal, the global-inhibitory neuron remained silent (~30 ms, purple 
bar in Panel a). Meanwhile, the neuron in the second layer integrated the UP-DN spikes in its input signal (green 
Iin trace Panel b) and accumulated enough evidence in its membrane potential (green Imem trace) to generate 
a spike in response to the HFO. �e raster plot on the bottom of Panel b shows the spikes of other neurons in 
the second layer that also responded to this HFO. Detection of an HFO was de�ned as a spike of at least one 
second layer neuron.

During the presence of a fast transient in the signal, all the neurons in the second layer remained silent as 
seen in the raster plot in the bottom of Panel d. Similarly as in the HFO example, once one UP-DN cycle has 
passed, the dis-inhibitory neuron responded to the UP-DN inputs. However, its activation was not su�cient to 
suppress the activity of the global-inhibitory neuron. �is neuron was active during the presence of the transient 
(orange traces) and inhibited the second layer neuron. �e second layer neuron integrated the UP-DN spikes, 
which increased the green input current Iin . However, before it could accumulate enough evidence, the neuron 
was inhibited by the global-inhibitory neuron which kept this neuron and the whole second layer silent. �us, 
the dis-inhibitory neuron was activated only when an HFO was present in the signal; fast transients in the ECoG 
were suppressed in the SNN and not misclassi�ed as HFO.

The HFO rates from SNN and spectrum detector are comparable. For each patient, we counted 
the number of HFOs detected per electrode channel and divided by the duration of the recording (median 3.5 
min, total data duration 58 min) to obtain the HFO rate (Table 2). We found maximal HFO rates ≥ 1 HFO/min 
in the pre-resection recordings of all 8 patients (8 recordings, median duration 3.9 min, median 6.6 HFO/min, 
range [1.3–45.0] HFO/min). �e HFO rates of the Spectrum and the SNN detector were correlated ( ρ = .81, p 
< .0001 Spearman Rank Correlation). In total, the SNN and the Spectrum detector found 4293 HFOs and 2336 
HFOs, respectively. While we do not aim for a one-to-one correspondence between detected HFO events, the 
performance of the new SNN detector is comparable to that of the well-established Spectrum detector.

Residual HFO predict poor seizure outcome. We used the presence of a single channel containing 
HFOs in the post-resection ECoG to predict seizure  recurrence15,16 In the post-resection recordings (8 record-
ings, median duration 3.0 min), seven of the 8 patients had < 1 HFO/min , i.e. there were no residual HFOs. 
Given the absence of residual HFOs, we “predicted” good postsurgical seizure outcome in these patients. Indeed, 
these 7 patients achieved seizure freedom a�er surgery (ILAE 1, median follow-up period a�er surgery 22 
months). Only the post-resection recordings of Patient 6 showed an HFO rate ≥ 1 HFO/min, which quali�es 
as residual HFOs. �e presence of post-resection HFOs “predicted” poor surgical outcome in this patient who 
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indeed su�ered from recurrent seizures (ILAE 3). Fig. 3 shows the electrode placement, an example of a detected 
HFO by the SNN, and the HFO rates per recording channel for Patient 6 in both, pre- (Panels a–d) and post-
resection recordings (Panels f–j). As a cautionary note, the high rate of residual HFOs in the occipital cortex in 
Patient 6 (but neither in Patient 3 nor in Patient 4) might be related to the occurrence of physiological HFOs 
that are known to abound in the occipital lobe of the healthy  brain37. Over the group of patients, the prediction 
accuracy was 100% (CI [63 100%]).

Discussion
In this study, we simulated a new SNN that detects HFO in intraoperative ECoG. Compared to our previous 
 SNN23, we have added an artifact rejection stage to suppress fast transients in the signal. Based on the HFO 
rates detected in the post-resection ECoG, we were able to “predict” the patients’ seizure outcome with 100% 
accuracy. �ese results are preliminary evidence that the automatically detected HFOs by the SNN may indeed 
be clinically relevant.

Comparison with the spectrum detector. �e ECoG recordings analysed here have been previously 
analysed for HFOs with the Spectrum  detector8. �e SNN detector in our study performed well while being fully 
unsupervised, which is an advantage for its possible application in multi-center studies. In designing the SNN, 
the aim was not to achieve a one-to-one agreement of the detected HFO events. Rather, the HFO rate threshold 
of ≥ 1 HFO/min in unresected channels was used to “predict” seizure recurrence. Both, our simulated SNN and 
the Spectrum detector reached the same “prediction” for each patient of this study (Table 2). Even though the 
SNN prediction of the poor outcome was limited to data from one patient, when not considering only post-

Figure 3.  Intraoperative ECoG recording and HFO detection in Patient 6. (a) Position of the high-density grid 
electrode before resection. (b) Example of an HFO in the pre-resection ECoG, wideband and �ltered in HFO 
band (250–500 Hz), and the time-frequency spectrum. (c) Firing of SNN neurons indicate the occurrence of 
an HFO. (d) Pre-resection HFO rates for each recording channel. (e) Electrode position a�er resection. (f) 
Example of an HFO in the post-resection ECoG. (g) Firing of SNN neurons indicate the occurrence of an HFO. 
(h) Post-resection HFO rates for each recording channel. In 4 channels (28–29, 29–30, 30–31, 1–2), the HFO 
rate exceeded 1 HFO/min. �e occurrence of these residual HFOs “predict” poor seizure outcome. Indeed, the 
patient su�ered from recurrent seizures (ILAE 3).
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resection but also pre-resection recordings, the SNN reached the same qualitative result (HFOs present / HFOs 
not present) in all 16 recordings.

As a di�erence to the SNN, the Spectrum detector applied multi-channel information to reject artifacts (Stage 
III) and, additionally, visual artifact rejection. �ese measures were required by the more challenging artifacts 
in the data recorded with 10 mm electrode distance. As a limitation, in our study we require the integration of 
densely spaced electrode contacts and low impedance to enable fully automated HFO detection with the SNN.

Clinical considerations. In our study, we analysed ECoG with a SNN detector that had been previously 
trained on an independent  dataset23,38. �e 100% outcome accuracy speaks for the robustness of automatically 
detected HFO to predict postoperative seizure freedom. Our study is limited by the small number of patients, 
where only one out of the eight patients had recurrent seizures. Our �nding that residual HFO predicted seizure 
recurrence is in agreement with previous studies showing that incomplete resection of cortical tissue generating 
HFO correlates with seizure  recurrence8,9,11,12,14–16.

Future implementation in neuromorphic hardware. In a previous study, we have designed a neuro-
morphic  device23 to detect HFO in iEEG during deep  sleep38. �at device demonstrated that common pre-pro-
cessing stages like low-noise ampli�cation, �ltering and signal transformation using ADMs can be implemented 
in the same silicon die alongside a multi-core neuromorphic processor to allow on-line and real-time post-
processing of biomedical signals. �e device is compact, battery-powered and does not interfere with other elec-
tronic equipment, which would facilitate its use during surgery. Seizure outcome prediction on deep sleep iEEG 
was comparable with the outcome prediction achieved with an HFO detector based on template  matching11.

In the current study, we have advanced the SNN presented in our earlier  study23 for HFO detection in intra-
operative recordings. Compared to deep sleep iEEG, the electronic interference from standard machinery in the 
operating theatre make HFO detection in the intraoperative ECoG more challenging. For example, the surgery 
environment induces fast transients in the wideband ECoG that appear as short oscillations in the HFO frequency 
range. Hence, for HFO detection in ECoG recordings, we have extended the SNN by adding an artifact rejection 
stage on top of the core SNN.

Obviously, our new simulated SNN was motivated by a future implementation in neuromorphic  hardware39. 
�e parameters of the pre-processing stages were applicable to both iEEG and ECoG and remained unchanged. 
In the same way, the core SNN performed equally well in the detection of clinically relevant HFO in both iEEG 
and ECoG with identical parameter settings. Also for the artifact rejection stage, all the architecture and param-
eter decisions have been chosen such that the simulated SNN can easily be implemented in the neuromorphic 
hardware with only slight adaptations.

Conclusions
To detect HFO in intraoperative ECoG, we simulated a SNN extended with an artifact rejection stage to suppress 
sharp transients. Con�rming earlier results, the occurrence of post-resection HFO predicted seizure recur-
rence. �is detector uses SNN computing and thereby is radically di�erent from other detectors. �ese results 
provide a further step towards real-time detection of HFO during epilepsy surgery by an SNN implemented in 
neuromorphic hardware.

Data availability
�e ECoG data and HFO markings are freely available at https:// gin.g- node. org/ USZ_ NCH/ Intra opera tive_ 
ECoG_ HFO. �e code for the SNN detector is available at the GitHub repository https:// github. com/ kburel/ 
SNN_ HFO_ ECoG.
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