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Abstract

Current modularity-based community detection methods
show decreased performance as relational networks become
increasingly noisy. These methods also yield a large number
of diverse community structures as solutions, which is prob-
lematic for applications that impose constraints on the accept-
able solutions or in cases where the user is focused on spe-
cific communities of interest. To address both of these prob-
lems, we develop a semi-supervised spin-glass model that
enables current community detection methods to incorporate
background knowledge in the forms of individual labels and
pairwise constraints. Unlike current methods, our approach
shows robust performance in the presence of noise in the re-
lational network, and the ability to guide the discovery pro-
cess toward specific community structures. We evaluate our
algorithm on several benchmark networks and a new political
sentiment network representing cooperative events between
nations that was mined from news articles over six years.

1 Introduction
Many real networks, including social, financial, and biolog-
ical networks, have natural community structures that are
critical to functional and topological analysis. Automatic de-
tection of these communities in relational networks has gar-
nered interest in recent years with its success in a variety of
applications. Current community detection methods (New-
man & Girvan 2004; Newman 2006; Reichardt & Bornholdt
2006) automatically identify communities via analysis of
the relational links between entities. The popular Newman-
Girvan graph modularity (Newman 2006) is arguably the
most widely used method for automatic community detec-
tion and the basis for many of these approaches. However,
current modularity-based methods exhibit two key problems
that complicate their application in many domains:

1. the inability to handle noise in the network, and
2. the tendency to admit a large number of high-scoring so-

lutions without a clear optimum (Good et al. 2010).
The first problem results from the focus of current

modularity-based methods to identify communities solely
from analyzing the relationships between entities. In prac-
tical applications, the relational networks may be inaccurate
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or incomplete, confounding community detection using cur-
rent algorithms. Since these methods rely on the accuracy
of the relational network, their ability to discover the true
community structures degrades rapidly as the network is per-
turbed by noise. In many cases, networks contain multiple
overlapping communities, further complicating analysis.

The second problem is innate to using Newman-Girvan
modularity to measure community partition quality. Exact
community discovery is an NP-hard problem (Brandes et al.
2008), and so current algorithms return high-quality, rather
than optimal solutions. The landscape of the Newman-
Girvan modularity function typically admits a large (in
some cases exponential) number of high-modularity solu-
tions (Good et al. 2010). Consequently, although the modu-
larity scores of these solutions may vary little, the communi-
ties themselves may be radically different. In many knowl-
edge discovery applications, analysts may be interested in
specific community structures or the application may im-
pose constraints on the solution. For example, investigators
tracing financial fraud may be interested in whether particu-
lar individuals are cycling cash between accounts to demon-
strate money flow, or biologists may be interested in par-
ticular regulatory subgroups in a larger network. Current
modularity-based algorithms cannot focus their search for
community partitions that satisfy these requirements.

We address both of these problems by incorporating ad-
ditional knowledge into the community detection process to
both augment its performance in noisy networks and focus
the discovery process on particular communities of interest.
This paper develops a method for semi-supervised commu-
nity detection, employing a spin-glass model from statistical
physics to provide a rigorous foundation for combining ex-
ternal knowledge into the community detection process. The
popular Newman-Girvan graph modularity reduces to a spe-
cific case of our model without the additional knowledge.
We explore instantiations of our approach with two forms
of external knowledge: labels on individual entities in the
network, and pairwise constraints that specify the relevant
community membership for pairs of entities. Effectively, the
external knowledge focuses the community detection search
on specific regions of the modularity landscape, both con-
straining and informing the solution.

Prior research has touched on the need to augment com-
munity detection with background knowledge, and has re-
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sulted in several methods related to our approach. Our work
is most similar to the investigation of semi-supervised com-
munity detection by Allahverdyan et al. (2010), which an-
alyzed a spin-glass model where some of the spin-states
are known and frozen in advance. In contrast to this work,
our approach provides for deviation from the provided guid-
ance if the support from the relational structure is strong
enough, and we propose a formulation of community de-
tection amenable to multiple forms of background knowl-
edge. Our approach is also similar to the semi-supervised
approach by Ma et al. (2010), which incorporates pairwise
constraints into a symmetric nonnegative matrix factoriza-
tion method for community detection, an alternative to mod-
ularity maximization. Also, the issue of focusing commu-
nity detection on specific communities of interest has been
briefly investigated by Hildrum and Yu (2005), who devel-
oped a method that grows the community model from a set
of seed vertices to focus on specific regions of the network.

2 Automated Community Detection
We represent a relational network over a set of entities
as an undirected weighted graph G = (V,A) with ver-
tices V = {v1, v2, . . . , vn} and adjacency matrix A, where
Aij ∈ (0, 1] specifies that there is an edge eij between vi
and vj with weight Aij , and Aij = 0 otherwise. The degree
of vertex vi is given by di =

∑
j Aij , and the total weight

of G is given by m = 1
2

∑
i,j Aij . Most current community

detection methods seek to identify groups of vertices that
are more densely connected within each community than
between communities; see surveys by Fortunato (2010) and
Namata et al. (2010) for comprehensive overviews.

The widely used Newman-Girvan graph modular-
ity (Newman 2006) measures the community structure of the
graph from a global perspective, gauging the differences of
the graph’s structure from an expected null model presumed
to have no community structure. The modularity Q of a set
of communities C in the network is given by

Q(C) =
1

2m

∑
i,j

(Aij − Pij)δ(Ci, Cj) , (1)

where Pij represents the probability of an edge between
vi and vj in the null model, Ck represents the community
to which vk belongs, and δ(Ci, Cj) is the Kronecker delta
function that is 1 if vi and vj belong to the same commu-
nity (i.e., Ci = Cj) and 0 otherwise. Newman and Girvan
employ a null model given by

Pij =
didj
2m

, (2)

randomly rewiring the given graph while maintaining the to-
tal number of edges and the degree distribution of the ver-
tices. High values of modularityQ indicate a strong commu-
nity structure in the network, and Newman and Girvan de-
scribe several methods for identifying the communities us-
ing spectral clustering of the modularity matrix (A − P).
Modularity has since been used as the foundation for a large
number of other methods (Fortunato 2010).

Newman-Girvan modularity is a special case of another,
more general measure of community structure based on the

Potts spin-glass model from statistical mechanics (Reichardt
& Bornholdt 2006). The Potts model is the multi-spin gen-
eralization of the classic two-state Ising spin-glass model,
which is a collection of “up” and “down” spins in a graph
configuration. Each spin state interacts only with the adja-
cent spin states in the graph, with an interaction energy that
depends on whether the adjacent spins are alike or different.
Each configuration of spins in the Ising model has a total en-
ergy associated with it, and minimizing the energy results in
a stable ground state. For community detection, the ground
state of the Ising model corresponds to splitting a graph into
the two natural communities. The Potts spin model general-
izes the Ising model to support q possible spin state values
(q ≤ n). If a graph contains t natural communities and q ≥ t,
then only t of the spin states will be populated in the ground
state, enabling the Potts spin model to automatically identify
the appropriate number of communities in the graph.

The ground state is found by minimizing the Potts model’s
Hamiltonian (Reichardt & Bornholdt 2006):

H(C) =−
∑

i6=j
aijAijδ(Ci, Cj)

+
∑

i6=j
bij(1−Aij)δ(Ci, Cj)

+
∑

i6=j
cijAij(1− δ(Ci, Cj))

−
∑

i6=j
dij(1−Aij)(1− δ(Ci, Cj)) .

(3)

The Hamiltonian rewards connections within communities
and the lack of connections between communities, while pe-
nalizing for edges that disagree with this structure. The pa-
rameters aij , bij , cij , and dij balance the weights of these
terms. We can view the spin-glass model as either examin-
ing in-degrees and out-degrees of nodes to identify commu-
nities (a local perspective), or examining deviations of the
graph from a particular null model (a global perspective)
similar to Newman-Girvan modularity. We can rewrite the
Hamiltonian using a general probability function Pij as

H(C) = −
∑

i6=j
(Aij − γPij)δ(Ci, Cj) (4)

by conveniently choosing aij = cij = 1 − γPij and
bij = dij = γPij (Reichardt & Bornholdt 2006). This form
of the Hamiltonian has an equivalent minimum to Eqn. 3
and closely matches the form of Newman-Girvan modular-
ity given in Eqn. 1. In fact, Newman-Girvan modularity can
be written as a specific case of the Potts spin-glass model by
choosing Pij via Eqn. 2 and normalizing the Hamiltonian.

3 Incorporating Guidance into
Community Detection

While community detection has shown success when the re-
lational network sufficiently captures the natural community
structure, its success is limited in situations with missing en-
tities and noisy relationships. In other cases, users may have
specific communities of interest in mind or partial knowl-
edge of the community memberships, requiring the search to
focus on particular regions in the space of community par-
titions. In both these situations, additional knowledge can
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inform the search, compensating for noise in the network or
focusing discovery on particular community structures.

Although many forms of guidance are possible, we fo-
cus on methods that specify the community membership of
individual entities or pairs of entities. We first develop a gen-
eral method to incorporate these types of guidance into com-
munity detection, and then explore instantiations of this ap-
proach with specific forms of guidance in the next section.

Since the Hamiltonian (Eqn. 3) captures the total en-
ergy of the Potts model, we can incorporate external knowl-
edge into community detection by penalizing for community
structures that violate the guidance. In its general form, let
the disagreement1 of the communities to the given guidance
be specified by a function U : C 7→ R. Although we focus
on the general case for now, Section 4 discusses how to con-
struct U for two specific types of guidance. We restrict U to
be a function of the following form:

U(C) =
∑
i6=j

(
uij
(
1− δ(Ci, Cj)

)
+ uijδ(Ci, Cj)

)
, (5)

where uij is the penalty for violating guidance that vi and vj
belong to the same community (which increases U(C) only
when Ci 6= Cj), and uij is the penalty for violating guid-
ance that vi and vj belong to different communities (which
increases U(C) only when Ci = Cj). Equivalently, Eqn. 5
can be written as

U(C) =
∑

i6=j

(
uij − (uij−uij)δ(Ci, Cj)

)
. (6)

We can then incorporate guidance into the Hamiltonian as:

H′(C) = H(C) + µ
∑
i6=j

(
uij − (uij−uij)δ(Ci, Cj)

)
, (7)

where µ ≥ 0 controls the balance between the inherent com-
munity structure and the external guidance. In this manner,
U regularizes the Hamiltonian to control for deviation of the
discovered communities from the provided guidance. The
parameter µ could be set proportionally to the expected qual-
ity of the guidance, or to maximize performance either on a
validation set or via cross-validation over the labeled data.

Following the assumptions Reichardt and Bornholdt
(2006) used to derive Eqn. 4, the modified Hamiltonian
(Eqn. 7) can be rewritten as

H′(C) = −
∑

i6=j
(Aij − γPij)δ(Ci, Cj) (8)

+ µ
∑

i6=j

(
uij − (uij−uij)δ(Ci, Cj)

)
= −

∑
i6=j

(
(Aij − γPij)δ(Ci, Cj)

+ µ(uij−uij)δ(Ci, Cj)
)

+ µ
∑

i6=j
uij

= −
∑
i6=j

(
Aij − γ

(
Pij −

µ

γ
(uij−uij)

))
δ(Ci, Cj)

+ µ
∑

i6=j
uij , (9)

1The value of U(C) is smaller when the communities C agree
with the guidance, and larger when they disagree.

where Pij is the probability of edge eij in the original null
model. Note that the last term in Eqn. 9 is a constant for any
partition, and so does not affect the optimization of H′(C).
Therefore, we can drop it to reveal that Eqn. 9 is of the same
form as Eqn. 4, measuring the cumulative deviation over all
vertex pairs of Aij to a modified null model P′ given by

P ′
ij = Pij −

µ

γ
(uij−uij) . (10)

Most importantly, we see that the guidance directly modifies
the original null model P proportionally to the difference
between the guidance to place vi and vj in the same com-
munity (i.e., uij) and the guidance to place them in differ-
ent communities (i.e., uij). In effect, the guidance reduces
the null probability of edges between pairs of vertices that
should be in the same community (when uij > uij), and
increases the null probability of edges for vertex pairs that
should be in different communities (when uij < uij).

In addition to being an intuitive way to guide com-
munity detection, this method provides a principled route
to integrate external knowledge into the large number of
modularity-based community detection methods by simply
altering their null model. For example, choosing γ = 1 and
Pij =

didj

2m by Eqn. 2, then normalizing, we can derive the
equivalent form of Newman-Girvan modularity that incor-
porates external guidance:

Q′(C) =
1

2m

∑
i6=j

(
Aij −

(
didj
2m
− µ(uij−uij)

))
δ(Ci, Cj)

− µ

2m

∑
i6=j

uij . (11)

The normalization constant 1/2m is included for conven-
tion following Newman (2006); it has no bearing on the
optimization of the community structure since it is a con-
stant, as is the last term of the expression. When the exter-
nal guidance is either ignored (i.e., µ = 0) or absent (i.e.,
∀i,j uij = uij = 0), we recover Newman-Girvan graph
modularity as a special case of our approach.

Although we analyze the Hamiltonian as Eqn. 9, we can
rewrite it in a form more conducive to optimization. Starting
with Eqn. 8, we can instead decompose it as

H′(C) = −
∑

i6=j
(Aij − γPij)δ(Ci, Cj)

+ µ
∑

i6=j

(
uij − (uij−uij)δ(Ci, Cj)

)
= −

∑
i6=j

Mijδ(Ci, Cj)−µ
∑
i6=j

∆Uijδ(Ci, Cj)+K (12)

whereMij = Aij−γPij , ∆Uij = uij−uij , and all constant
terms (which can be dropped from the optimization) are sub-
sumed into K = µ

∑
i6=j uij . This form of the Hamiltonian

allows us to compute the matrices M and ∆U once, and
then efficiently compute the objective function as the com-
munity assignments change during optimization. Since we
need only compute these matrices once, our approach has
the same computational complexity as standard modularity-
based community detection.
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4 Forms of Guidance
We focus on two forms of background knowledge that have
shown success in the literature: individual labels and pair-
wise constraints. These forms provide meaningful guidance
to the learning process and are intuitive for a user to specify.

4.1 Individual entity labels
The simplest form of guidance for community detection is
labels placed on individual entities in the network. We as-
sume that these labels are drawn from a hidden function
f : V 7→ N across G that respects the desired community
structure. Entities which are given the same label are pre-
sumed to belong to the same community. The labeling over
the graph is given by Y = {y1, . . . , yn}, where yi ∈ N0 (the
set of natural numbers including 0) is the label for vertex vi
with yi = 0 iff the label for vi is unspecified.

We can then incorporate these labels into the Potts model
by penalizing for entities with the same label being placed
into different communities:

U(C)=
∑
i6=j

1[yi 6=0∧yj 6=0]δ(yi, yj)(1−δ(Ci, Cj)) , (13)

where 1[p] = 1 if predicate p is true and 0 otherwise, imply-
ing that

uij =

{
1 when yi =yj 6=0
0 otherwise uij = 0 . (14)

This formulation only penalizes for placing vertices with the
same label in different communities. It does not, however,
enforce that communities should be composed solely of ver-
tices with identical labels. In penalizing only for separating
vertices with the same label, we enable the optimization to
combine multiple labels into one community, which can be
useful for examining how different labeled groups interact
with each other in the discovered community structure.

4.2 Pairwise constraints
From the constrained clustering literature (Wagstaff et al.
2001; Bilenko et al. 2004), pairwise constraints specify the
relative cluster membership for pairs of entities. They can
serve as an intuitive mechanism for users to identify pairs of
entities that belong to either the same community (a must-
link constraint) or different communities (a cannot-link con-
straint). A constraint 〈vi, vj , w, type〉 ∈ C denotes the rel-
ative community membership for vertices vi and vj , with
a non-negative cost w ∈ R+

0 of violating the constraint,
and type ∈ {must-link , cannot-link} indicating the type
of constraint. For convenience, we denote the set of must-
link and cannot-link constraints as Cml and Ccl respectively.
Users specify constraints by selecting two vertices, then se-
lecting the type of constraint.2 The value for w can be con-
stant for all constraints, or optionally specified on a per-
constraint basis proportionally to the user’s confidence in
the guidance. To improve the effectiveness of the given con-
straints, we also take the transitive closure of Cml and Ccl,
and add the resulting constraints to the appropriate set.

2Note that using entity labels to define equivalence sets for de-
riving must-link constraints is equivalent to the formulation given
in Section 4.1, provided that all constraints are weighted equally.

To incorporate constraints into community detection, we
choose U(C) to penalize for disagreements with the pro-
vided constraints Cml and Ccl. Following the metric label-
ing formulation of the generalized Potts model (Kleinberg
& Tardos 2002) the total cost of disagreement is:

U(C) = α1

∑
〈vi,vj ,wij〉∈Cml

wij

(
1− δ(Ci, Cj)

)
+ α2

∑
〈vi,vj ,wij〉∈Ccl

wijδ(Ci, Cj) ,
(15)

where α1 and α2 balance the contribution between must-
link and cannot-link constraint violations. If we assume that
wij = wij = 0 for all pairs of vertices without a con-
straint, and assume that wij > 0 or wij > 0 implies that
the user has defined respectively a must-link or cannot-link
constraint between vi and vj with the equivalent weight, we
can rewrite Eqn. 15 to match the form of Eqn. 5, yielding:

U(C) = α1

∑
i6=j

wij

(
1−δ(Ci, Cj)

)
+ α2

∑
i6=j

wijδ(Ci, Cj)

=
∑
i6=j

(
α1wij

(
1−δ(Ci, Cj)

)
+ α2wijδ(Ci, Cj)

)
and revealing that for pairwise constraints,

uij = α1wij uij = α2wij . (16)

5 Evaluation
We evaluate our community detection approach in semi-
supervised learning scenarios, considering its robustness un-
der conditions of noise in the network and its ability to re-
cover a specific community structure.

It has been widely shown that Newman-Girvan modular-
ity performs very well for community detection when the
relational data accurately reflects the community structures.
However, many real-world networks, such as criminal net-
works and biological networks, contain incorrect or missing
relationships due to the difficulty of obtaining complete data
in these domains. Under such circumstances, the true com-
munity structures can be obscured in the networks, caus-
ing the performance of Newman-Girvan modularity to de-
grade. Our experiments show that incorporating background
knowledge into community detection augments its perfor-
mance in the presence of such noise in the network.

We also examine the ability of community detection
to recover specific communities of interest. As shown by
Good et al. (2010), Newman-Girvan modularity typically
provides high scores for a large number of diverse commu-
nity structures. Our results show that incorporating guidance
into community detection focuses the search toward specific
regions of the modularity landscape that both contain high-
modularity solutions and agree with the provided guidance.

5.1 Methodology
In our evaluation3, we follow Reichardt et al. (2006) and
use simulated annealing (Kirkpatrick et al. 1983) to mini-

3An open source implementation of our algorithm is available
on the first author’s website, along with all relational networks and
ground truth partitions used in the experiments.
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mize the Hamiltonian (Eqn. 12). In the optimization, we use
an initial temp of 10K with a multiplicative cooling factor
of 0.985, returning the best state over 10 annealing trials.
Candidate successor generation is done by stochastic com-
munity reassignment of a random entity. Also, for compari-
son with Newman-Girvan modularity and the large number
of modularity-based methods, we set γ = α1 = α2 = 1,
choose Pij by Eqn. 2, and hold µ fixed at 1. For guid-
ance provided in the form of pairwise constraints, we weight
must-link and cannot-link constraints equally, setting wij =
wij = 1. Noise is added to the original relational networks
by uniformly adding and deleting edges at random.

Our experiments analyze two benchmark networks for
community detection under increasing levels of noise.
The Doubtful Sound Dolphin network, as used by
Lusseau et al. (2003), represents frequent associations be-
tween 62 dolphins living in Doubtful Sound, New Zealand.
Following the temporary departure of a single key dol-
phin (named SN100), the dolphin community split into two
smaller subgroups, which later reunited with the return of
SN100. The Zachary Karate Club network (Zachary 1977)
shows the friendships between the 34 members of a univer-
sity karate club. The club later divided into two groups fol-
lowing an internal dispute among its members. In both of
these benchmark networks, we know the resulting partitions,
which we use as ground truth. The goal of community detec-
tion in both of these networks is to predict the ground truth
communities given the relationships between entities.

We also examine a new Political Sentiment network that
represents cooperative and hostile relationships between na-
tions. It was created by identifying 336,555 distinct political
events between 196 nations (or representatives of those na-
tions) that were reported in news articles from January 1,
2005 through December 4, 2010. Each event had a corre-
sponding Goldstein score (Goldstein 1992) assigned to it,
which ranges from −10 (very hostile) to +10 (very cooper-
ative) indicating the political character of the event. For each
pair of nations that share events, we computed the average
Goldstein score for cooperative (score > 0) acts, and elimi-
nated nation pairs with less than six events total during that
(approximately) six-year period. We then formed a network
of 56 cooperative nations by connecting pairs of entities that
had average Goldstein scores that were greater than or equal
to 5.4, eliminating isolated vertices. This threshold of 5.4
was chosen from the Goldstein scale to identify coopera-
tive relationships between nations that included substantial
amounts of material support, instead of lesser cooperative
actions, such as diplomatic agreements or policy support.

Since we do not have ground truth in the Political Sen-
timent network, we found the highest scoring community
partition through extensive search, and measure against this
partition for evaluation purposes. All constraints and labels
are extracted from this community partition, allowing us to
measure agreement to this particular community structure.
The goal is to recover these specific communities from the
network and background knowledge with less search and in
the presence of noisy relationships.

Newman-Girvan modularity (Eqn. 1) provides a measure
for the quality of the resulting communities with respect to

the relational network without considering the ground truth
partitions. For all experiments that add noise to the relational
network, we measure the modularity of the resulting com-
munities with respect to the original (non-noisy) graph in
order to accurately assess the quality of the discovered com-
munities independent of noise.

To measure the agreement of the discovered communi-
ties to either ground truth or a specific community structure,
we use the pairwise F-measure (Basu 2005) – a variation of
the information-theoretic F-measure adapted to measure the
number of same-community pairs. The pairwise F-measure
is the harmonic mean of precision and recall, given by

F-measure =
2 · precision · recall
precision + recall

(17)

precision =
|Pcorrect |
|Ppred |

recall =
|Pcorrect |
|Psame |

,

where Ppred is the set of entity pairs predicted to be in the
same community, Psame is the set of entity pairs actually in
the same community, and Pcorrect = Ppred

⋂
Psame is the

set of correct predictions.
Our experiments examine the performance of community

detection in semi-supervised learning, in which the back-
ground knowledge is given in batch to inform a single pass
of community detection. We sample both the labels and pair-
wise constraints randomly from the ground truth communi-
ties. In the case of pairwise constraints, we extract must-link
and cannot-link constraints in equal proportions.

5.2 Results
Figures 1(a)–(d) depict the performance of semi-supervised
community detection with various amounts of guidance
as the benchmark networks are perturbed by noise. With
no noise, Newman-Girvan modularity4 shows high per-
formance. However, the addition of either labels or pair-
wise constraints only serves to improve performance over
Newman-Girvan modularity. Adding even a small amount
of guidance can significantly boost performance, even in the
original (non-noisy) networks. For the dolphin network, the
addition of only five constraints or labels increases the F-
measure by 2–3%; the addition of ten constraints or labels
improves the F-measure by 5–10%. For the karate network,
we see a similar pattern, although to a lesser degree, with five
constraints or labels increasing the F-measure by 1–2% and
ten constraints or labels increasing it by 3–4%. Note that the
karate network contains 34 vertices, and so providing one
label for each vertex (Figure 1(b)) shows performance in the
limit, which exactly recovers the ground truth community
structure as we would expect.

As the amount of noise in the network increases, the back-
ground knowledge focuses the discovery process toward the
target communities, compensating for the noisy relation-
ships. Without guidance, the performance of community de-
tection decreases severely as the amount of noise increases.
The guidance serves to dampen the effect of noise, retaining
higher performance. Therefore, community detection using

4In all figures, Newman-Girvan modularity is equivalent to our
approach without guidance.
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Figure 1: The performance of semi-supervised community detection with various amounts of guidance as the relational net-
works are perturbed by noise. The noise rate refers to the proportion of random vertex pairs that have an edge either added
or deleted. Figures (a)–(e) show the F-measure agreement to the target communities. Figure (f) shows the modularity of the
discovered communities in the Political Sentiment network. The error bars, shown in blue, depict the standard error of the mean
performances, which were averaged over 100 trials.

both the relational network and background knowledge may
be most appropriate for applications where the communities
may be obscured in noisy data, or where the network may
contain erroneous connections.

Figures 1(e)–(f) examine the ability of community detec-
tion to recover a specific community structure in the Polit-
ical Sentiment network using background knowledge. Re-
call that there are no ground truth communities for the Po-
litical Sentiment network, so we chose a specific partition-
ing with the highest modularity over an extensive search.
Since modularity induces a number of high-modularity so-
lutions, the task is then to recover the specific partitioning
given background knowledge extracted from its community
assignments. Additionally, the experiments did not employ
as exhaustive of a search as the ground truth community dis-
covery due to the practical time consideration of running the
experiment over many trials and parameter settings, so the
background knowledge also serves to focus the search on
the highest region of the modularity landscape in less time.

The results show that the background knowledge both fo-
cuses the community discovery process toward the target
communities and, again, compensates for noise in the net-
work. As Figure 1(f) reveals, all of the community partitions
discovered without noise show high modularity, including
the solutions which disagree with the target communities.
However, Figure 1(e) shows that the addition of background
knowledge yields solutions that increasingly match the tar-
get community structure. This ability to focus the solution
returned by the community detection process is especially

useful for applications with constraints on the acceptable so-
lutions or for investigating specific communities of interest.

We also compare our approach to the SNMF-SS algo-
rithm (Ma et al. 2010) for semi-supervised community de-
tection in Figure 2. To make this a rigorous comparison, we
tuned the parameters of SNMF-SS via line search to maxi-
mize performance on held-out data as measured over five tri-
als of five-fold cross-validation on the noise-free networks.
On the karate network, the performance of the two algo-
rithms is roughly equivalent on the noise-free network. As
the network becomes noisy, the performance of SNMF-SS
rapidly degrades due to its reliance on the network structure.
In comparison, our approach performs consistently better,
achieving up to a 71% increase.

On the dolphin network, SNMF-SS initially performs bet-
ter in noise-free scenarios with few constraints, but our ap-
proach shows significant improvement over SNMF-SS as
the network becomes noisy or when additional constraints
are supplied. In extreme noise scenarios, SNMF-SS again
performs slightly better, but at this point, both algorithms are
performing poorly due to the high noise (as shown in Figure
1(c)). The difference is further accentuated by SNMF-SS
using parameters that were chosen in a noise-free setting,
while our approach was tuned on the noisy network. Indeed,
we found that when we required SNMF-SS to tune its pa-
rameters on the noisy network as well (as would be required
in a real application with no knowledge of the true network),
the performance difference between the algorithms became
negligible in high-noise scenarios.
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Figure 2: The percent improvement in F-measure of our ap-
proach against SNMF-SS (Ma et al. 2010) as the benchmark
networks are perturbed by noise, averaged over 100 trials.

6 Conclusion
Incorporating background knowledge into the community
detection process can significantly improve performance, es-
pecially in scenarios where the relational network contains
noise. The background knowledge can also target the discov-
ery process on specific communities of interest, compensat-
ing for the tendency of Newman-Girvan modularity to indis-
criminately admit a large number of high-quality solutions.
Both of these scenarios are likely to occur in deployed ap-
plications involving community detection, and our approach
could serve as an important tool to improve community de-
tection performance in such situations.
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