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A diode, a device allowing unidirectional signal transmission, is a fundamental element of logic structures

and lies in the heart of modern information systems. Spin wave or magnon, representing a collective quasi-

particle excitation of the magnetic order in magnetic materials, is a promising candidate of information carrier

for the next generation energy-saving technologies. Here we propose a scalable and reprogrammable pure spin

wave logic hardware architecture using domain walls and surface anisotropy stripes as waveguides on a single

magnetic wafer. We demonstrate theoretically the design principle of the simplest logic component, a spin

wave diode, utilizing the chiral bound states in a magnetic domain wall with Dzyaloshiskii-Moriya interaction,

and confirm its performance through micromagnetic simulations. Our findings open a new vista for realizing

different types of pure spin wave logic components and finally achieving an energy-efficient and hardware-

reprogrammable spin wave computer.

I. INTRODUCTION

In the post silicon era, Moore’s law is not sustainable, partly

due to the power consumption caused by the Joule heating

from electric current. To avoid the unmanageable power dis-

sipation, people have been trying to use various (quasi-) parti-

cles other than electrons as information carrier, such as photon

in photonics, [1] electron spin in spintronics, [2] phonon in

phononics, [3, 4] and spin wave in magnonics. [5–8] Among

these efforts, the magnonics, which can be realized in insula-

tors, is particularly interesting mainly due to its energy-saving

benefit because spin waves produce no Joule heating. Since

both spin waves and magnetic memory are associated with the

re-ordering of magnetic moments, it is possible and natural to

integrate both logic and storage operations through pure spin

wave information processing without the need of other infor-

mation architectures. New magnonics hardware architecture

design as we propose below allow magnonics to be realized

on a single magnetic thin film — a magnetic wafer using its

“soft” magnetic structures. Such an integrated spin wave cir-

cuit is reprogrammable by re-patterning the magnetic texture.

This is in contrast to most present day electronic technologies

that use the “hard” physical structures consisting of several

materials and layers.

Controlling the information transmission direction is a ba-

sic feature of all information processing systems, as im-

plemented in various diode structures. In addition to the

classical electric diode using p-n junction, there are optical

diode, [9] heat diode, [10, 11] acoustic wave (phonon) diode,

[12, 13]and spin-Seebeck diode etc. [14] In this paper, we

propose a design of the spin wave diode utilizing the spa-

tial separation of the spin wave bound states caused by the

Dzyaloshinskii-Moriya interaction (DMI) [15, 16] within a

magnetic domain wall. The DMI is an antisymmetric ex-

change coupling induced by spin-orbit interaction in mag-

netic materials with broken inversion symmetry, either in bulk
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lattice or at the interface. The functionality of this repro-

grammable spin wave diode is confirmed by micromagnetic

simulations.

II. MAGNETIC WAFER BASED SPIN WAVE

ARCHITECTURE

To construct spin wave logic components on a 2-

dimensional magnetic wafer, we first need waveguides or

wires that can transport spin waves. A magnetic domain wall

can be a natural waveguide using the domain wall bound state

as carrier as demonstrated numerically by Garcia-Sanchez et.

al. [17]. Another type of waveguide is to utilize the surface

spin wave mode induced by the easy-axis surface anisotropy

(EASA), [18, 19] with which the surface spins tend to point

in the surface normal direction. [20] To construct an EASA

wire, the surface of the magnetic wafer is decorated by EASA

along the wire path for the surface mode to propagate. Such

decoration can be either a capping layer of other materials or

simply a process that modifies the original surface structure.

The penetration depth of this EASA surface mode is inversely

proportional to the strength of EASA, i.e. the stronger the

EASA, the shallower the penetration. [18, 19] Both types of

spin wave waveguides do not have hard structure on the mag-

netic wafer, especially the domain wall wire, which can be

even moved to another position. The domain wall wire and

EASA wire can work simply because the dispersions for the

domain wall bound state and EASA surface state has either no

gap or smaller gap than the bulk spin waves. Within domains,

ignoring the dipolar coupling, the bulk spin wave dispersion

is: ωBulk = ω0 + Aexq
2 (the top black curve in Fig. 1(a) in-

set), where ω0 is the spin wave gap in the bulk, Aex is the

exchange coupling constant, and q is the in-plane wave vec-

tor. The domain wall bound state is gapless and its disper-

sion is ωBS = Aexq
2 (the bottom red curve in Fig. 1(a) inset)

[21, 22]. The dispersion of the EASA surface spin wave is ap-

proximately ωEASA = ω′
0+Aexq

2 with ω′
0 < ω0 (middle blue

curve in Fig. 1(a) inset). [18] The spin wave modes whose fre-

quency ω lies within the range ω′
0 < ω < ω0 can only prop-

agate in the domain wall wire and the EASA wire, but not
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FIG. 1. The domain wall circuit and EASA circuit. (a), upper: simulated EASA induced surface spin wave mode propagates along a U-shape

path decorated by EASA; lower: simulated spin wave interconnection from an EASA wire to a domain wall wire; both images are simulated on

an homogeneous magnetic wafer of size 1600nm×1600nm×150nm with spin wave excitation at the position indicated by the triangle; inset:

the dispersion relation for the bulk spin wave (black), EASA surface mode (blue), and domain wall bound state (red); the excitation frequency

is indicated by the dashed line lying below the bulk gap and above the surface wave gap. (b), simulated spin wave propagation in a domain

wall circuit made of the domain wall wires printed on a magnetic wafer with a biaxial anisotropy and four possible domain orientations, and

wafer size 2000nm×2000nm×10nm. (c), simulated EASA induced surface spin wave transporting through an EASA circuit in a homogeneous

magnetic wafer of size 2000nm×2000nm×30nm.

in the bulk. Through micromagnetic simulations, we demon-

strate in Fig. 1(a) the transport of spin waves in a U-shape

EASA wire (upper) and across an interconnection (lower) be-

tween an EASA wire and a domain wall wire.

Making use of the spin wave wires, an integrated spin

wave circuit can be imprinted onto a magnetic wafer. As

an example, for a magnetic wafer with biaxial anisotropy

along two perpendicular axes, we may create an artificial

chessboard-like pattern such that in each square the magnetic

order can point in any of the four possible orientations as

shown in Fig. 1(b). The domain walls are pinned along the

grid lines, which can be carved notches on the wafer surface.

Such chessboard-like magnetic structure can be used as 2-

dimensional memory similar to the 1-dimensional racetrack

memory. [23] However, instead of using magnetic domains

to store information, we propose to use domain walls as spin

wave wires, which can be interconnected to form a domain

wall circuit. Not only can the domain wall circuit be imprinted

in any pattern, but also be rewritten by re-orienting the mag-

netization direction of each square. Therefore, this type of

chessboard domain wall circuit is extremely flexible to con-

struct a large number of different spin wave circuits. Simpler

circuits can be realized in a wafer with uniaxial anisotropy. It

is also possible to use EASA wires to build spin wave circuit:

upon a magnetic wafer, EASA wires can be imprinted into any

pattern of circuits by simply decorating the surface of the cir-

cuits by EASA as shown in Fig. 1(c). A more general design

may use a hybrid circuit that contains both domain wall and

EASA wires.

III. SPIN WAVE DIODE

To demonstrate the concept of our design of a spin wave

diode, we use the magnetic wafer that has uniaxial anisotropy

along y direction and contains two magnetic domains with a

Bloch domain wall in between as shown in Fig. 2(a), where

the magnetization in the left/right domain points in ±y direc-

tion, respectively. The magnetization within the wall evolves

from y to −y by rotates out of plane in the x direction. When

there is no DMI, the bound spin wave state propagates iden-

tically to both ±y directions along the domain wall wire (see

Fig. 2(a)). However, the presence of DMI effectively applies

a magnetic field in the domain wall region as shown below,

and the bound spin wave states that propagate in opposite di-

rections are spatially separated towards two edges of the wire

as illustrated in Fig. 2(b).

A. Design principle

This spatial separation feature allows us to design the spin

wave diode as shown in Fig. 2(c, d). The two terminals pat-

terned on the left side of the domain wall (indicated by light

blue rectangles) are made of EASA wires. The upper ter-

minal only overlaps with the left half of domain wall, while

lower terminal covers the whole domain wall width. The

diode works as the following: In the forward direction, the

spin wave is injected from the upper terminal as shown in

Fig. 2(c). The two terminals are connected via the left half

of the domain wall wire because the down-going spin wave is

localized on the left half of the wall. However, in the reverse

direction when the spin wave is injected from the lower ter-

minal, the up-going spin wave is localized on the right half of

the domain wall and hence cannot reach the upper terminal as
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(a) Domain wall without DMI

D > 0

(b) Domain wall with DMI

D > 0

(c) Diode - forward direction

D > 0

(d) Diode - reverse direction

D = 0

(e) Domain wall without DMI

D > 0

(f) Domain wall with DMI

D > 0

on

(g) Diode - forward direction

D > 0

off

(h) Diode - reverse direction

FIG. 2. The design of the diode and the simulations. Top row: (a), Domain wall wire without DMI: the bound spin wave state propagates in

both directions identically, where the domain wall region is shaded with darker brown color and is pined at the kink position; (b), Domain wall

wire with DMI: the bound states propagating to upward/downward are spatially shifted to the right/left side of the wall; (c), Spin wave diode -

forward direction: spin wave transmits from the upper to the lower terminal. (d), Spin wave diode - reverse direction: the spin wave is blocked

from lower to upper terminal. The wavy lines denote the route of spin wave propagation. Bottom row: Numerical micromagnetic simulations

of the domain wall wire (color map of mz): (e), without DMI, the bound spin wave state travels symmetrically, (f), with DMI, the bound spin

wave states become chiral; and spin wave diode: (g), the forward direction, (h), the reverse direction. In all panels, the little green bar indicates

the spin wave injection location where an oscillating magnetic field is applied.

shown in Fig. 2(d). This unidirectional transport of spin waves

is clearly the diode effect. Note that the spin wave diode is a

pure magnetic structure with no physical structure.

The operation of the spin wave diode is confirmed by nu-

merical micromagnetic simulations using a yttrium iron gar-

net (YIG) thin film of thickness 30nm, with parameters given

in the Methods section. Fig. 2(e/f) shows the spatial shift of

the up-going spin wave bound state in the domain wall wire

under the influence of DMI. Fig. 2(g/h) shows the diode ef-

fect for the forward/reverse spin wave propagations, a behav-

ior that confirms our analyses above. The power loss in the

forward direction is about 11.6 dB (power decreased by 14

times), while the power loss in the reverse direction is about

24 dB (power decreased by 254 times), therefore the power

loss in the reverse direction is much larger than the forward di-

rection. In these simulations, we artificially set high damping

above and below the diode terminals to eliminate the bound-

ary effects.

B. Theory

Obviously, the crucial ingredient for realizing the spin wave

diode effect is the spatial separation of the spin wave bound

states caused by the DMI in the domain wall. To prove this,

we adopt the bulk form of DM energyEDMI = Dm·(∇×m),
for which Bloch domain wall is favored against Néel wall. We

can understand the chiral feature of the bound states in a semi-

classical way by transforming the equation of motion for spin

wave dynamics into an effective Schrödinger equation. [22]

The spin wave dynamics is governed by the Landau-Lifshitz-

Gilbert (LLG) equation:

ṁ = −γm×Heff + αm× ṁ, (1)

where m(r, t) is the unit vector in the direction of the magne-

tization, α is the Gilbert damping parameter, and γHeff =
Kmyŷ + Aex∇

2m + D∇ × m is the effective magnetic

field acting on m due to contributions from anisotropy (along

ŷ), exchange, and DMI. In the absence of DMI, the do-

main wall width is determined as ∆ =
√

Aex/K, the same

for the Bloch and Néel domain wall. When DMI is in-

cluded, the domain wall twists slightly for the Néel wall

[24], but remains unchanged for the Bloch wall. Let m̂0 =
(sin θ0 cosφ0, sin θ0 sinφ0, cos θ0) be the static magnetic tex-

ture of the domain wall along ẑ, where θ0(z) and φ0(z) are

the polar and azimuthal angle of m̂0(z) with respect to ẑ axis.

Let δm = mθêθ +mφêφ be the spin wave excitation on top

of the static m̂0, where êθ, êφ ⊥ m̂0 are the two transverse

directions to m̂0. As for the dynamics of δm, previous stud-

ies show that the effect of the inhomogeneous magnetization
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FIG. 3. The spatial profile for the effective scalar potential and mag-

netic field. The spatial distribution of the scalar potential V (z) and

the magnetic field B(z) in y-z plane. The density map is the scalar

potential and the disk size represents the magnitude of the magnetic

field pointing in x direction.

texture on δm can be represented by a scalar potential [22],

while the effect of DMI can be represented by a vector poten-

tial. [25]

The static structure of a Bloch domain wall is unmodi-

fied by the DMI and still takes the Walker profile: θ0(z) =
π/2, φ0(z) = π/2 + 2 arctan[exp(z/∆)], where the magne-

tization within the wall rotating out of y-z plane in certain

direction depending on the sign of D. [26] By redefining

ψ = mθ−imφ, the LLG equation (1) governing the dynamics

of δm can be recasted into an effective Schrödinger equation

for ψ:

i~
∂

∂t
ψ =

[

1

2m∗

(

p̂−
q

c
A
)2

+ V

]

ψ, (2)

where the effective mass m∗ = ~/2Aex, the momentum op-

erator p̂ = −i~∇, the scalar potential V = −~K cos 2φ0,

and the vector potential A = (Dm∗c/q) sinφ0ẑ, which cor-

responds to an effective magnetic field perpendicular to the y-

z plane: B = ∇ ×A = −(Dm∗c/q)φ′0 cosφ0x̂. Therefore,

the behavior of the spin wave in a Bloch domain wall struc-

ture is equivalent to the motion of a charged particle with mass

m∗ and charge q in a potential well V (z) and magnetic field

B(z)‖x̂. The spatial profiles for the potential V and magnetic

field B are plotted in Fig. 3. The potential well V (z) is a spe-

cial one not only due to its reflectionlessness, but also for the

existence of a bound state at the bottom of the potential well

with zero energy in z-direction.

Based on the effective Schrödinger equation (2), we may

understand the transport behavior of the bound states within

domain walls semiclassically: a) for D = 0, the bound state

only feels the potential well V (z) with a vanishing magnetic

field B = 0, so it is confined in z direction within the well and

travels along the domain wall in ±y directions symmetrically

as shown in Fig. 2(a); b) however, for D > 0, the effective

D < 0

off

(a) Reverse direction

D < 0

on

(b) Forward direction

FIG. 4. Reprogramming the diode by changing the sign of the DMI

parameter. The forward direction of the spin wave diode for D < 0
is opposite to that for D > 0 in Fig. 2(g, h). The insets on the top

right are the spin wave propagation diagrams.

magnetic field B pointing in the x̂ direction (perpendicular to

the thin film) is non-zero and maximizes at the domain wall

center (see Fig. 3). Consequently the spin wave moving up-

wards to +y (downwards to −y) bends to the right (left) due

to the effective Lorentz force (see Fig. 2(b)). A head-to-head

Néel domain wall can also be stabilized by the DMI, but it

does not have the spatial separation behavior because the cor-

responding vector potential A is proportional to D2, much

weaker than a Bloch wall.

C. Reprogrammability

If DMI originates from the inversion symmetry breaking at

the surface in magnetic thin films, the spin wave diode works

just as well, but for a head-to-head Néel domain wall instead.

The advantage of interfacial DMI is its tunability by external

electric field, which can tune the magnitude and even the sign

of the DMI parameter D. [27, 28] In our system, the D can

be tuned by applying a gating voltage throughout the whole

thin film. When D changes sign (D < 0), the direction of the

effective magnetic field B also changes from x̂ to −x̂, so the

spin wave moving to +y (−y) now bends to the left (right),

opposite to that in Fig. 2(b,f). Consequently, the forward di-

rection of the spin wave diode also changes as shown in Fig. 4.

In fact, by continuously tuning the value and sign of D using

a perpendicular electric field, the spin wave diode can have i)

L→R transmission only (D > 0), ii) R→L transmission only

(D < 0), iii) L↔R transmission (D ≃ 0). We demonstrate

the real time switching of the three stages of transmission by

continuously tuning parameterD in a movie in supplementary

materials.

Another way of tunning the functionality of the spin wave

diode is to shift the domain wall position, which can be real-

ized in various ways, for instance, by applying magnetic field,

or via current-induced spin-transfer torque, or purely by spin

wave with magnonic spin-transfer torque. For this purpose,

we design a two-side spin wave diode as shown in Fig. 5,

where the terminals are connected to the domain wall from

the opposite sides instead of the same side as in Fig. 2. Fig. 5
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(a) (b) (c) (d) (e)

FIG. 5. Reprogramming the diode by moving domain wall position. The functionality is tuned by the domain wall position (from position 1 to

5, domain wall center is indicated by the dashed line). Spin wave is injected from left (right) terminal for the upper (lower) row. (a), position

1, both way off. (b), position 2, diode with forward direction from right to left. (c), position 3, two way on. (d), position 4, diode with forward

direction from left to right, opposite to position 2. (e), position 5, both way off, similar to position 1. The kinks are to pin the domain walls.

Simulated on a 2-dimensional film of size 1600nm × 1600nm with an additional perpendicular anisotropy in the terminal area to mimic the

EASA in 3-dimensional samples. (See the movie in the supplementary materials for simulated real time switching among these functions by

current-induced domain wall motion.)

shows the functionality of the device for five different domain

wall positions pinned by the five kinks. Depending on the do-

main wall position, the two terminals can either be completely

disconnected, manifest the diode effect, or be connected in

both ways. Therefore, by repositioning the domain wall, the

device function can be easily modified. In the supplementary

materials, we demonstrate the real time change of the spin

wave transmission properties due to the domain wall motion

caused by a spin current.

IV. CONCLUSIONS

In conclusion, we proposed a reprogrammable magnonic

hardware architecture on a single magnetic wafer based on

two types of waveguides using domain walls and EASA

stripes. Utilizing the chiral property due to DMI in the do-

main wall wire, we demonstrated by micromagnetic simula-

tions the first building block on this spin wave architecture —

a spin wave diode. Our findings open the gate towards repro-

grammable pure spin wave circuits on a single magnetic wafer

and ultimately realizing a magnonic computer.

V. METHODS

The simulation is performed in COMSOL Multiphysics

using the mathematical module where the LLG equation is

transformed into weak form and solved by the generalized-

alpha method (amplification of high frequency is 0.6) in a

3-dimensional environment. The sample is a yttrium iron

garnet (YIG) thin film (size 1600nm × 1600nm × 30nm if

not mentioned otherwise). The parameters for YIG are: the

anisotropy of the magnetic wafer K = 3.88 × 104 A/m, ex-

change coefficient Aex = 3.28 × 10−11 A·m, the gyromag-

netic ratio γ = 2.21×105 Hz/(A/m), [22] the DMI coefficient

D = 1.0 × 10−3 A. The thickness of the EASA layer is 3nm

andKs = 1.0×10−3 A. In order to stabilize the domain wall,

a hard-axis anisotropy in z direcion Kh = 1.0 × 105 A/m is

applied and a groove with thickness of 10nm is made to pin

the domain wall. The frequency of the exciting field f = 2
GHz is applied locally at the position indicated by the green

bar in each simulation figures. The damping coefficient in the

working area α = 10−4, while the damping near the boundary

is set to α = 0.5 to eliminate boundary effects such as reflec-

tions. In the simulation of Fig. 5, the additional perpendicular

anisotropy in the terminal area is taken as Ks = 0.8K.

Acknowledgements: J.X. thanks Yizheng Wu, Donglai

Feng, and Lei Zhou for helpful remarks on the manuscript.

This work was supported by the National Natural Sci-

ence Foundation of China (11474065, 91121002), Na-

tional Basic Research Program of China (2014CB921600,

2011CB925601, and 2015CB921400). R.W. also acknowl-

edges support of the 1000-talent program. Work at UCI

was supported as part of the SHINES, an Energy Frontier

Research Center funded by the U.S. Department of Energy,

Office of Science, Basic Energy Sciences under Award No.

SC0012670.



6

[1] J. L. O’Brien, A. Furusawa, and J. Vučković, Nature Photonics
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