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ABSTRACT 
Linear vibrations are studied for a straight uniform finite 

beam element of general orientation spinning at a constant 
angular speed about a fixed axis in the inertial space. The 
gyroscopic and circulatory matrices and also the geometric 
stiffness matrix of the beam element are presented. The effect of 
the centrifugal static axial load on the bending and torsional 
dynamic stiffnesses is thereby accounted for. The Rayleigh/ 
Timoshenko/Saint-Venant theory is applied, and polynomial 
shape functions are used in the construction of the deformation 
fields. Non-zero off-diagonal elements in the gyroscopic and 
circulatory matrices indicate coupled bending/shearing/torsional/ 
tensional free and forced modes of a generally oriented spinning 
beam. Two numerical examples demonstrate the use and per-
formance of the beam element. 

1. INTRODUCTION 
Spinning finite beam elements in structural vibration 

analysis have been treated by several researchers since the early 
1970's. Practical applications are found for turbines, combustion 
engines, space structures, etc. An early investigation of spinning 
flexible rotors modelled by use of finite shaft elements was 
made by Ruhlin in 1970. He employed the Euler/Bemoulli beam 
theory but neglected gyroscopic moments for the finite shaft 
elements. In 1980 NelsonI 21  presented a study of flexible rotors 
which utilized a finite Rayleigh/Timoshenko spinning shaft 
element. Rotatory inertia, bending/shearing deformation and 
gyroscopic forces and also second-order effects of a large static 
axial load were considered by him. Asymmetric rotors were 
studied by Kang, Shih & Leem. They developed a finite beam 
element for modelling asymmetric shafts. A method for calculat-
ing matrices for a generally oriented finite beam element was 
given by Likinsm in 1972.  

• A set of governing linear differential equations of motion, in 
body-fixed coordinates, for a generally oriented spinning 
Euler/Bemoulli/Saint-Venant finite beam element, with distrib-
uted parameters, was established by Wittrick & Williamsm in 
1982. They derived the dynamic stiffness matrix in stationary 
harmonic vibration for the spiraling beam element. In order to 
obtain simplified differential equations with constant coeffi-
cients, they assumed that the static axial sectional force along 
the beam (from the centrifugal field) did not vary irrespective of 
the orientation of the element. They also assumed that the 
torsional motion of the beam element did not couple with the 
bending/tensional motion. In 1988, Leung & Fungm established, 
by use of an analytical mechanics approach and assumed shape 
functions, the governing constant-coefficient matrices of a 
spinning Euler/Bemoulli/Saint-Venant finite beam element, also 
neglecting the coupling between the torsional and bending/ 
tensional motions. 

In 1991, Lundbladm advanced an exact (without spatial 
discretization errors) harmonic dynamic stiffness matrix of a 
generally oriented spinning Rayleigh/Timoshenko/Saint-Venant 
beam element considering stiffness, inertia, gyroscopic and cir-
culatory effects. He also included internal and external viscous 
damping effects. Lundblad showed that couplings exist between 
the torsional motion and the bending/shearing/tensional motion. 
Like Wittrick & WilliamsI 51  he approximated the static axial 
sectional force in the generally oriented element as being con-
stant. Lundblad's method involves extensive numerical work 
when establishing the dynamic stiffness matrix. 

The present work adopts Lundblad's classical mechanics 
approach using d'Alembert forces in the derivation of the con-
stant-coefficient spinning-speed-dependent gyroscopic, circula-
tory, and geometric stiffness matrices G=G(Q), 11=11(12) and 
10=Kg(C2). These matrices appear in the equations of motion of 
a discretized damped beam element. In matrix form one has 
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Figure 1. Perspective view of straight uniform beam 
element 12 in co-rotating global coordinate system XYZ. 
Beam spins at constant angular rate Q about global X axis 
the direction of which is fixed in inertial space Beam end 
translations and rotations n, to n,2  and vectorially 
associated end loads N, to N12  are indicated. Local 
coordinate system xyz (with non-dimensional length 
coordinate t=/L). A beam lamina dx translated u and 
rotated • from nondisplaced position is shown (different 
scales for geometry and deformation have been used). 
Beam properties are: mass distribution m, lamina radii of 
inertia rx, r), and rz, tensional stiffness EA, torsional 
stiffness Gl„ bending stiffnesses El, and El„ and shearing 
stiffnesses k,GA and k,GA. 

M WO+ [C+G(52)] n(t)+ [K + Kg(f2)+ H(51)] n(t)= NQ) 	(1) 

Here n is the nodal displacement vector containing the six 
beam end translations and the six beam end rotations taken in a 
co-rotating coordinate system. The load vector N contains the 
vectorially associated end forces and end moments. The constant 
spinning speed is denoted by U. 

In the derivation of the geometric stiffness matrix, the 
spatial variation of the axial load (due to centrifugal forces) is 
accounted for. Rayleigh/limoshenko/Saint-Venant theory and 
polynomial shape functions are used throughout. The elastic 
stiffness matrix K. the damping matrix C and the mass matrix 
M in Equation (1) are independent of the spinning speed and 
can be found elsewhere , e.g., in Archerisl  or Paemienieckil 91, 
and are not reproduced here. The effect of a co-rotating ambient 
medium of Winkler type along each beam member (as included 
in the work by L,undbladm) can be taken into account in the 
same manner as used by Sallstromm for a non-rotating beam 
element. The case with a rotating beam element in a non-
rotating damped ambient medium will not be treated here. 

The present work is an extension of that by Leung & Fung [61  
in the sense that it considers also rotatory inertia and shear 
deformation in a manner which is consistent with the assump-
tions used by Rayleigh and Timoshenko. The matrices derived 
here can, therefore, be compared to the results by Leung & 
Funt only in some special cases.  

2. COORDINATES AND INERTIA LOADING 
A typical finite spinning beam element is shown in Figure I. 

The beam element is uniform and initially straight (in the 
non-spinning state) with its undeformed geometric centre line 
coinciding with the local coordinate axis x. The shear centre and 
the mass centre are assumed to coincide with the geometric 
centre of the beam cross section. The non-dimensional coordi-
nate 4=x/L, varying between zero at beam end number 1 and 
unity at beam end number 2, will be used in the assumed 
polynomial shape functions. No external loads act on the ele-
ment except at its ends 1 and 2. The distributed inertia forces U 
and moments (I) acting on a beam lamina of unit length and with 
cross-sectional area A are 

	

= —1 a(4)PdA 	(1)(4)= —/ P x aR) PdA 	(2a, b) 

with 

UT  = U, U, Uj 
	

(3a,b) 

The forces per unit length in the local directions x, y, z are 
denoted by 1/5, Uy  and th, and the corresponding moments about 
the axes x, y, z by Or  0, and Or  The acceleration vector a of 
the lamina element dA is determined by its position and by its 
relative motion in the co-rotating global coordinate system XYZ, 
and also by the spinning speed U of that coordinate system. The 
position of the lamina element dA is given by the coordinates 
Y(4) and z() of the undeformed beam axis in the global 
coordinate system XYZ and by the translation u(4) and rotation 
0(4) of the beam cross-section in the local coordinate system 
xyz, and, finally, by the position vector p 0  of the element dA 
within the non-rotated beam cross-section A. By evaluating the 
integrals in Equations (2a,b), with the proper acceleration vector 
a and position vector p = Po + x p, inserted, one obtains the 
inertia loading as 

U = 1.15, + Ug  + Uc + B. 	 (4a) 

Urn  = —kzu u 	U5 = —eu 
	

(4b—d) 

• = 05,+ r135  + 05 + B5 	 (4e) 

= —A(42$ 	cbg 
	 43, = —40 
	

(4f —h) 

The distributed loads 11 5, and Om  are the usual inertia loads 
of a vibrating non-spinning beam in a fixed coordinate system. 
The gyroscopic parts, U5  and Or  and the circulatory parts, U. 
and cbc, of the inertia loading are used in the following for the 
derivations of the gyroscopic and circulatory matrices, respec-
tively. State-independent static centrifugal loads B 5  and S, act 
on the beam element. These loads will cause an axial sectional 
force in the beam element. The influence of the axial loading on 
the vibratory motion will be taken into account by considering 
the geometric stiffness effect in the analysis. 
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o 	(r,2 —r) 

The matrix A )  of mass per unit length and the matrix 

of mass moments of inertia per unit length are used in a mass 

matrix derivation, 

0 
2 

0 0 

A? = in 1 0 A=m 0 [r

s 

r: 0 

r‘2I 

(5a,b) 

0 I 0 0 

They are given here for completeness bu will not be further 

used in this work. The matrices ie and AT with elements ac), 
and aVi , are associated to Coriolis forces and moments. They 

can be obtained by use of the projections fl„, fly  and R on the 

local xyz directions of the spin vector a These skew-symmetric 

matrices are 

0 	—2f2, 	?Sly  

2f2, 	0 	—2f21  

—21ly 	2fIx 	0 

0 
	

—C1z(rz2 +/-:—/-,2) 	fly(r:+ rt2  —ry2) 

fli(r:+ry2 —r,2) 
	 - 

— fly  (r 2 + r 2  — r 2) 
	

flx(r:+ r,2 —rs2) 

(6b) 

For a real beam the matrix element 41 and all are zero 

and they will be omitted in the future presentation of this work. 

The displacement-dependent centrifugal forces and moments are 

represented by the two matrices Ar and A. 

In Equation (8a) the matrix L (not to be confused with the 
beam length L) is the transformation matrix from the global XYZ 

to local xyz coordinates. 

3. SHAPE FUNCTIONS AND ASSUMED 
DEFORMATIONS 

The gyroscopic, circulatory and geometric stiffness matrices 
will all be derived in consistency with an assumed deformation 
field of the beam element. The static deformation functions of a 

Rayleigh/Timoshenko/Saint-Venant beam element loaded at its 
ends in bending/shearing, torsion and tension will be used. The 

linear and angular displacements of the beam element at a 

position k can be calculated as functions of the nodal transla-
tions and rotations (see Figure 1), together with the assumed 

shape functions, 

i ti(4,)} 
= tit()n 

(14) 
(9) 

Here the shape function matrix IP is 

(6a) 

(8a) 

The elements of these two matrices are denoted by ae ., and 

ari  in the following. It can be noted that the matrix 44 45°)  is 

generally neither symmetric nor skew-symmetric, which results 

in a circulatory matrix of a general form. The static loads due to 

centrifugal forces and moments acting on the beam element are 

here represented by the column vectors Bu  and 

(10) 

The shape functions ur,, of the beam element used here can 

be found in the textbook by PrzemienieciciI 21  and they are 
repeated for completeness, 
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(12a, b) 

Vt. ] = 1 — 4 	 1111.7 — 

w3.3(e) = to — 341  + 24) + 0,(1 — / (1 + e) 

N/3.5(0) = «-4+42 -0L + e,(-4 +2)L / 21/(1 + 

t1/3.909,)= [(342— 243) + eyE,1 / ( 1  + 

= [(V — 451-,  + 1),(4 — 42)L / / (1 + 9,) 

= [(g — g2)/ 1(1  + e) 

w5.5(0)= [( 1  — + 342) + 0,(l — 4)1 / (1 + e y) 

kif 5 • 9(9) = [(-6  + 6t2) IL] 1 ( 1 + 

w5.11(e,) = f(—  24+ 3;2) + e,e) ( 1  + 0,) 

The bending/shearing ratio parameters are defined as 

= 
12E1 	 12E1, 

0 	 ec  — 
Y 

The shape functions of an Euler/Bemoulli beam element can 
be obtained as the special case for which both 0, and 0, are zero. 
The gyroscopic, circulatory and geometric stiffness matrices of a 
spinning Euler/Bemoulli beam element can thus easily be 
recovered, if required, from the matrices presented below. 

4. GYROSCOPIC AND CIRCULATORY MATRICES 
The consistent nodal load vector N due to the gyroscopic 

parts of the distributed inertia loading is given by the relation, 
see Cook, Malian & Plesha", 

I T  {Us  
Ns  = .10 	cbg } 	 (13) 

Using Equations (4c) and (4g) for the gyroscopic part of the 
inertia load, together with the assumed linear and angular 
velocities fenT I T  = 'Y it, one obtains 

—G 	G=.ITT[A 
0 
 in o 	Ldt 	(14a,b) 

Ad 
J  

Equation (14b) gives the 12x12 gyroscopic matrix of the 
beam element. The 96 non-zero elements of this skew-symmet-
ric matrix are given in Appendix. 

The consistent nodal load vector N, due to the circulatory 
parts of the distributed inertia loading is 

Using Equations (4c1) and (4h) for the circulatory part of the 
inertia load, together with the assumed linear and angular 
displacements in Equation (9), one obtains 

— H n 	H= WT [A: A:o,1 ‘11 Ld 
	

(16a,b) 

Equation (16b) gives the non-symmetric circulatory 12x12 
matrix H. This matrix generally holds 136 non-zero elements as 
given in Appendix. This implies that couplings exist in all 
possible combinations of bending/shearing, tensional and tor-
sional vibrations. 

S. AXIAL LOAD DISTRIBUTION 
When a large static axial compressive/tensional load act on a 

beam element of a frame structure, the stiffnesses in bending 
and torsion of that element are decreased/increased. Since the 
static distributed centrifugal loads Bo  and B, make the axial 
loads dependent on the spinning speed Q of the structure, large 
spinning speeds may cause buckling instability of the structure. 
The calculation of the axial loads must be treated as a non-linear 
problem calling for an iterative solution method for spinning 
speeds causing large deformations. 

However, for small deformations a linear analysis can be 
made and the compressive axial loads can be obtained by 
superimposing the solutions of two complementary static prob-
lems. In the first problem the consistent loads N et=  pertaining to 
the distributed inertia loads Bo  and B, are calculated for each 
beam element. These loads are applied to the joints of the 
structure. The corresponding static displacements p can then 
easily be calculated by use of the assembled global static stiff-
ness matrix K of the structure. In the second problem the 
distributed inertia loads Bu  and B4, are applied together with 
fictitious so-called fixed-loads, I. e., the loads that should be 
applied to the joints of the structure to prevent them from 
moving. These nodal loads are equal to the reversed consistent 
nodal loads, -Mx'. This means that each beam element can be 
studied separately. Superposition of the solutions of these two 
complementary problems gives the solution of the actual prob-
lem and the total actual static axial load distribution H(t). 

In the first problem a constant static compressive axial load 
Ho  for each beam element is easily determined since the axial 
deformation of each beam element is implicitly known through 
the vector pa Here both the displacement vector pft  and the 
axial load Ho  in each beam element are proportional to the 
square of the spinning speed Q. 

The consistent nodal loads due to the static centrifugal 
loading can be calculated as 

Nam  = .j.  TT { "} Ld 
B 

Be 
	 (17) 

GAL! 

N=j tin 4)-1 Ld4 
The force and moment elements of the consistent nodal load 

(15) 	vector Nwm  can be calculated using Equations (8a,b) for static 
centrifugal load. One finds 
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(18a) 
	Y()= Y, + dY 	zY.=y2 — Y l 	 (20a, b) 

462 = Z.,— Z, 	 (20c, d) 

NI- . 

• 

(2111.1130  + 2013.213„ + 9llu2"0„ + l013"9 2) — 0000080 

= a  (2113.210„, + 20[5.3'0,2  + 913,3"0„, + 

+ 	 (1k) 

= Artl" 

L 2  
Nit  = —120 (813018' i + 8 13.311y2+ 413.3"9,, + 5 0.3"ey) 

+ —
2

[

• 

I
.2

13 
	

(18f) 

Arra' = (.46(613.21ezi+ 500ea + 413.2"0., + 5 13.13:2) -E e fie30z2 (188) 

Here (Y„Z,) and (Y2,Z2) are the YZ-coordinates of the beam 
ends 1 and 2. The axial load distribution Iffn(k) of a beam with 
both ends fixed and with the applied external load given by 
Equation (19) can now be calculated with basically an axial 
equilibrium consideration as 

Hfix = Hr(24 — I) + HP(3k1 — 1) (21a)  

=ImLf2 2(1,,Y,+1,,Z,) (21b)  

=.1mLC22(1,264Y + ,AZ) (21c)  

The total compressive axial load distribution is thus given by 

(I 8h) 
H(t)= Ho + Hr(24— I) + 41(342 — 1) 	 (22) 

Nr =g-0-

• 

(913„2130  + iopze„ +21p,p3„ + 2013„2"8„)+ poet , (ISO 
6. GEOMETRIC STIFFNESS MATRIX 

The geometric stiffness matrix for a beam studied in the 
xz-plane can be derived, see Cook, Mallcus & Plesha", as 

/Vr" = 67

• 

(900'0n  + I 013010,2 + 	+ 2013.3"0„2) — 13420y1(18j) 
(23) 

L 2  
Air =IT:0(4/320,, + 513.2 '0,„ + 6E5.037, + 513.3 0„2)+ 13421:1„2(1 8k) 

L2 
= 120 (4134130+ 51Vea + 613.2"Ozt + 513.2"8,2) 

L „ 
+ PCVz2 (181) 

Here the /3.1 and IL" are the static centrifugal loads in the 

direction i at the beam ends 1 and 2, respectively, see Equation 
(8). The additional bending/shearing parameters 0, 1 , 0,2. 0, 1  and 
ea  are defined in Equation (A.2) in Appendix. 

In the second problem the axial load variation !1(4) within 
each beam element depending on the distributed inertia loads E, 
and 13, will be determined. The centrifugal force distributions are 
given by Equations (8a,b). Their dependence on the beam ele-
ment orientation is given by the 3x3 transformation matrix L 
with elements I.  The force distribution along the beam axis can 
be extracted as 

= trl 	112Y(4)÷ /13Z(4)1 	 (19) 

As the beam lamina position (Y(0, Z(0) varies linearly with 
the beam coordinate 4, one has 

The row vector 5P3.. is the third row of the matrix `P in 
Equation (10). The elements of the geometric stiffness matrix 
pertaining to the displacement in the xz-plane are given in 
Appendix. The stiffness in torsion is also affected by the axial 
force in a beam element developed for a spinning structure. The 
torsional stiffness GI, of an element is reduced with the factor 
Hai?. Here, the parameter i , is the radius of area inertia and Ho  
is the constant axial force calculated when the consistent loads 
of Equation (18) are applied. 

7. NUMERICAL EXAMPLES 
Two example problems have been studied, and the 

numerical results are presented below. The first example has 
been chosen to verify the stiffness reduction represented by the 
geometric stiffness matrix ICI = 10(C2). In the second example, 
the bending/torsional coupling effect for a straight beam is 
studied. Only beams having a doubly-symmetric cross-section 
will be considered here. 

EXAMPLE A: CANTILEVER BEAM ON A ROTATING 
RIGID RING 

The fundamental eigenfrequency and the stability of a 
spinning cantilever beam are studied. The Euler/Bemoulli beam 
theory is employed. The cantilever beam is clamped to a rigid 
ring and directed along a radius towards the centre, see Figure 2. 
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Figure 2. Spinning rigid ring of radius R with a radially 
oriented cantilever beam of length L=1.0 m. Beam has 
circular cross-section with diameter 2r=10.0 mm. Young's 
modulus is E=200 GPa. Density is p=8000 kg/m 3. 
Interesting beam properties are: bending stiffnesses 
ElftElz=98.2 Nm2, mass per unit length rr0.628 kg/m, 
radii of inertia r,=3.54 mm and ry=r2=2.5 mm. Fundamental 
frequency for zero spinning speed is co, 0=43.9 racVs. 

The ring spins in its plane around the centre. In Figure 3 the 
beam is studied for the large ratio a=R/L=100 of radius to beam 
length. The beam is then subjected to a nearly uniformly distrib- 
uted axial load and the classical Greenhill 1121  buckling load 
should be recovered. Instability by divergence occurs when the 
fundamental eigenfrequency has decreased to zero. The calcu- 
lated fundamental eigenfrequency is plotted versus the spinning 
speed for four cases in Figure 3. Subdivisions of the beam into 
one and four finite elements of equal length are made. The finite 
elements used have a geometric stiffness matrix either taking 
into account a linearly varying compressive axial load or assum- 
ing an average constant axial load in each beam. element. The 
Greenhill buckling load qc=7.837EIlL3  corresponds to the critical 

, 0=0.3562312(Egmer/2  spinning speed R=0.07980)10 with to 
=43.9 radix Figure 3 shows the significance of allowing a 
linearly varying compressive axial load. One finite element with 
a linear axial load gives better results than four finite elements 
with an average constant axial load in each beam element. In 
Figure 4 the beam is studied for the ratio ct=R/L equal to 1.0 and 
0.5. Also here the fundamental eigenfrequency is plotted versus 
the spinning speed. The beam is modelled with four elements 
taking into account a parabolically varying compressive axial 
load. The calculated speeds which give instability by divergence 
for the two cases are indicated in Figure 4. The numerical results 
presented in Figure 4 coincide with those given by Gurgozel' 31 . 
Various similar structures for other parameter values have also 
been studied of Bauer & BideP l . 

Figure 3. Calculated dimensionless fundamental frequency 
ro,/e),„ plotted versus dimensionless spinning speed 12/o), 0  
of cantilever beam in Figure 2 for ratio cc=R/L=100. Beam 
is modelled with one and four finite elements, respectively, 
of equal length. Axial compressive load is taken as con-
stant within each element or as linearly varying within 
each element. 

1.2 
CO, /C0, 0  

1.0 

0.8 

0.8 
a=1.0 	\ sce = 0.50 

.... 
.... 	- 

0.852 tow 	\ 1.29 tom  

	

I 	- 

00 

Figure 4. Calculated dimensionless fundamental frequency 
Wr)n, plotted versus dimensionless spinning.speed 
of cantilever beam in Figure 2 for ratios a.R/L. equal to 1.0 
and 0.50. Beam is modelled with four finite elements of 
equal length. Axial compressive load varies parabolically 
within each beam element. 

EXAMPLE B: CANTILEVER BEAM SPINNING AS A 
BLADE 

Free and forced vibration of a spinning cantilever beam 
system is studied. The beam is oriented perpendicularly to the 
spin axis. which passes through the clamped end of the beam. 
see Figure 5. The beam has a cruciform cross-section with a low 
torsional stiffness GI, as compared to the bending stiffnesses Ely  
and El,. A similar beam was studied by Leung & Fun? 1  but 
their beam was much stiffer in torsion. Figure 6 shows the 
calculated lowest six natural frequencies of the beam plotted 
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Figure 5. Spinning cantilever beam of length L=853 m 
oriented perpendicularly to spin axis passing through 
clamped end. Beam has doubly-symmetric cruciform 
cross-section with dimensions a=0.20 m and /3 0 mm. 
Young's modulus is E=200 GPa, density p=8000 kg/m 3, 
and Poisson's ratio v=0.30. Beam properties are: bending 
stiffnesses Ely=0,=0.40 MNm2, shearing stiffnesses 
kz6A=ky6A=38.8 MN, torsional stiffness 04=0.277 kNm 2, 
mass per unit length rr9.6 kg/m, radii of inertia 4=57 7 
mm and ry=r,=40.8 mm. Displacements p,, p2  and /33  of 
beam end are shown. 

Figure 6. Calculated lowest six dimensionless eigenfre-
quencies rafil, of beam in Figure 5 plotted versus dimen-
sionless spinning speed Q/C2 0  with 00=(E/y /mL4 ) 2=3.19 
rad/s. 

Figure 7. Calculated magnitudes and phases of three 
complex dimensionless flexibilities are plotted versus 
dimensionless load frequency co/D.,,. Spinning speed is 
atsni . Normalizing flexibilities are em=L3/3Ely  and 
e210=L2/2E4. 

versus the spinning speed. The four natural frequencies to" 0 2 , 
cos  and tu6  pertaining to bending coincide with the results 
presented by Leung & Pune For zero spinning speed 0 the 
eigenfrequencies pertaining to eigenmodes describing a bending 
motion in the XY-plane coincide with the corresponding eigen-
frequencies for the fl-plane. The two distinct eigenfrequencies 
to, and co, for zero spinning speed 0 in Figure 6 pertain to 
torsional motion. When the spinning speed Q increases the 
system becomes stiffer mainly because of the increasing 
tensional axial load depending on the centrifugal acceleration. 
For a non-zero spinning speed II, separate eigenmodes in 
bending and torsion do no longer exist, i.e., the eigenmodes 
describe a coupled motion in both bending in the XY-plane and 
torsion about the Y-direction, or bending in the fl-plane and 
tension in the Y-direction. Note that the eigenmodes discussed 
here are described in a co-rotating coordinate system. In Figure 
7 the magnitudes and phases of three displacements are plotted 
versus the frequency of a harmonic load applied to the beam in 
Figure 5 in the p,-direction. Note that both the load and the 
displacements are taken in a co-rotating coordinate system. The 
coupling between bending in the XY-plane and torsion about the 
Y-direction shown in Figure 7 is not included in the paper by 
Leung & Rine It should be observed that the Rayleigh/ 
Timoshenko beam theory has been used in the present study. 

8. CONCLUDING REMARKS 
The gyroscopic, circulatory and geometric stiffness matrices 

of a spinning finite Rayleigh/Timoshenko/Saint-Venant beam 
element have been derived. In combination with the classical 
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(A.1j) 

(A.1k) 

stiffness, damping and mass matrices of such a beam element, 
these matrices constitute the discrete counterpart to the exact 
dynamic stiffness matrices presented by Wittrick & Williams (21  
(Euler/Bemoulli beam theory) and Lundbladm (Rayleigh/ 
Timoshenko beam theory). The ability to represent a spatially 
varying axial load distinguishes the present discretized approach 
from the 'exact' approach presented by the above authors. 
Another advantage of using the discrete parameter element over 
the exact distributed parameter element is that the dynamic 
stiffness can be computed with a drastically reduced effort and 
time. The matrices are also well suited for a transient vibration 
analysis with time-marching algorithms. 

The coupling elements of the gyroscopic and circulatory 
matrices predict a coupled bending/shearing/tensional/torsional 
vibration of the generally oriented spinning beam. Some of the 
coupling elements are, to the authors knowledge, presented here 
for the first time for a discretized element. The coupled free 
vibration of a spinning beam system with the influence on the 
bending/shearing motion by the torsional coupling has been 
demonstrated in a numerical example. 
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- APPENDIX 
The 96 non-zero elements of the skew-symmetric gyroscopic 

matrix G of the beam element defined by Equation (I4b) are, 
except for the common divisor 840, 

3 1 , 2 = 8,8 =8ii =gm = a„(1(2948, 1  + 2806,2)L 
	

(A. I a) 

go = g2.9 =- 	= - gm = 	+ 28013 2)L 
	

(A. 1 b) 

S.5 = - 87.„=-gm = gm = - a 3(420),, + 350y,) L 2 
	

(A.1c) 

go = - 82.82 = - &A = g,, =a' 2(428 1  + 350a) V 
	

(A. 1 d) 

go = - g2.2 =- gm = g7.2  = a„( 92(12690  + 1400a)L 
	

(A. le) 

g h9 = -gm  = -gm = gt3 =4 3(1260y ,+1400y2)L 
	

(A. I 

g im  = g5, 7 =- gni = - g7.5 = a„(1(2800  + 3513,2) L 2 
	

(A.1g) 

81. t2 = 86.7= - 812,, = - sto = aott.1 2(280z , + 350,)L' 
	

(A.1h) 

82.4 = g2.10 = g4,8 = g 5.10 = g4.2 = g10.2= g6.4 = &ICU 

= 420430,, 	 (A.1 i) 

35,4 = :3.10 = g 4,9 	S9,10 	g4.3 	810.3 	89.4 810.9 

=-420‘410, 1  

g4,5= g0  I8 = g5,4 = g IL 10 = 704120y1 40,DL 

84.6= 810.12 =8o4 = - 81110 = 704:130z1 49:0 L 

84 II= 85.10 = 8,84 = g105  = — 70C(ey , —2e yo L 

84.82 =- kw = - gag = 8,0.6 =-70a1(941  - 20a)L 

go = gas = - g3,2 =8qo =a.)22(3120, 8% + 2940,03„, + 29413, 20„ 

	

+ 28013,29y2)L 	 (A.1o) 
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gm = - gm , = - g =g„., = -a, 3(440, 1 021  +420,,9„+350,20„ 

	

+350,20,2)L2 	 (Alp) 

=8L9 83.t gu= 883  = a:1(108008:i + 1260,1 0a  +1260,28 i  

	

+1400,20,2) L 	 (A.1q) 

gm, = L .= — g ii.2= - &Ls =a 3(266,,611  + 280„0„+350,20„ 

	

+350,28,2)L2 	 (A.1r) 

gm = -89, 12 = - gm = gm, = -;(1(4413,03, 1  +3500 84  420„0„ 

	

+350/20,2)L2 	 (A.1s) 

83, 12 = 86.9 =-812.3 = 89.6 = a,(260, 1 13„ +350,,13, 2 + 280,20, 

	

+350„20,2)L2 	 (Alt) 

	

85.6 = 	 = /4,1(800 8, 	+ 70,,0„ + 70, 20„ 

	

+ 7040,2) e 	 (A. I u) 

86,12 = 8&ii = 812.5 = 811.6 = 41(68,16 1 + 70,1 8a T 70y2Ozi 

	

+ 70,20a) e 	 (A.1v) 

The additional bending/shearing parameters are defined as 

	

ey) 	(A.2a,b) 

e„ = I / + et) 	13„=0,/(1+0,) 
	

(A.2c,d) 

It should be noted that none of the 96 elements above 
vanishes when the Euler/Bemoulli theory (en  = ea  = o) is 
employed. 

The 136 non-zero elements of the non-symmetric circulatory 
12 x 12 matrix H in Equation (16b) are, except for the common 
divisor 2520L, 

= h„ = 840arl, e 
	

(A.3a) 

= h,„= hi , = hs.,=41,(8828,, + 8400„)L 2 
	

(A.3b) 

h„ = h.,„= hi  = h, =121(8828.„ + 8400„)L 2 
	

(A.3c) 

	

= 	= 	= - h„.., = - a ,)„(1260 	y , + 1050,,)L' 
	

(A.3d) 

	

kJ = - h,„= af),,(12600 	+ 10500)e 
	

(A.3e)  

= ht , =420e, e 
	

(A.3f) 

h „I = h,„ = 	= ht,= af),,(3780 1  + 4200,2)e 
	

(A.3g) 

= 	= 	= 	= 4 3(3780,, + 4200,2) L 2 
	

(A.3h) 

/1 1.11  = - 	= h „„ = - 	= 41(8400  +1050„)e 
	

(A.3i) 

	

= -h, = h, = - h,,= -ar! 2(840, 1 + 10564) 1. 3 
	

(A.3j) 

kJ = h,,, = a r„,(9368,2, + 17648. l &2 + 8400,) L '  

3024a?.;20,21 	 (A.3k) 

12 2  = 12 8 ,9  = a r),,„(9360 y ,E1 + 8820„0„+8820„0 1  +8400,20,2)e 

- 3024a220,,0„ 	 (A.31) 

12 t2 = lie , = an,(9360, 1 0, 1 + 8826,,6,, 4" 8820,20„ +84004022) L 2  

- 30244.30„0„ 	 (A.3m) 

= 11 2.  = - h,,,= - 	- 12641 9 „ L 	 (A.3n) 

1:42 = h„„ = - h im = - 12 45  = - 126040„ L. 	 (A.3o) 

= - „ = - a r). „(1320 y ,0 + 1260„0, 2 +1050,20„ 

	

+1050,20, 2)L 3  ÷ 252400(3, 1  -50,2)L 	(A.3p) 

= -12,723(1328,„13„ + 1260„ 'ea  + o5e„e„ 

	

+ 1058,,0,,) L' + 25240„(30  -50„) L 	(A.3q) 

h„= - h,= h„,= - 	= af).22(1320 +2318A, + 1050z22) L3 

+252400(0,, -50,2) L 	(A.3r) 

12„= 	=an,(324020 +756000,2 +4200,22)L 2  

- 3024410,2 , 	 (A.3s) 

/1 2.9 =43  =ar:23(3249,„13,, + 3780„0„ + 3780, 20„ +4200,20,2)e 

+ 30244213, 1 00 	 (A.3t) 

11 2,„ = -hi, =aflosene„ +84000„+ losey,e„ 

	

+1050a)L ,  +252,3029:0.„- 50 L 	(A.3u) 

h ,,,= -h, = -an2(780, 1 8, 1 + 840,, On  + 1050„,00  

	

+ 10513„,0„) L 3  - 252(410„0,,, -58,,)L 	(A.3v) 

1:2. „= h„,= h,,,= - 	= - (1r:22(7802  + 1890,, 0, 2  10513‘23) 

+ 252a220„(0„ - 56,0 L 	(A.3w) 
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= /19, 9  = an3(9360, + 17640$0,2  + 8400) L 2  

	

+ 302440,2 1 	 (A.3x) 

h,,,= 	- 	- h,,=1260a0,9,, L 	 (A.3y) 

h„, = km = - h,,, = - h„,= 1260a020, 1  L 	 (A.3z) 

h3, 5  =-h = 	= - a mtn(13202„, + 2310, 1 0,2  

	

+ 1050„22)L3 - 25240,,(0„, - 50, 2) L 	 (A.3A) 

f1 3.6 = -frig  = au723(1320,,9„ + 1050,,0, 2 + I260a130  

+ 1050,20„)V - 25248„,03„ - 50, 2) L 	(A.3B) 

	

= - h129  = a „(°,1,(1320 	+ 1059,,,0„+ 1260„ 20„ 

+ 1050,28,2)e -252.ney,(0„- sea) L 	(A.3C) 

hm -= h9.2  = an,(3240,, 1 0 1  +3780, 1 0,2 + 37813„20„ +4200,20,2) L" 

+ 3024a 230,,0„ 	 (A.3D) 

Pim = / 3  = an3(32482,, + 7560,,0,2 + 4200;2) L 2  

	

- 3024a,r220y2 i 	 (A.3E) 

h„. ,=-h,, = ;7,3(789 1 + 1890,42 + 1050,22)L 3  

7 25244,10,,(0„, - 50a) L 	(A.3F) 

h,,, 2 = -h9, 6  =-(41(780, 1 0„ + 1050$0,2 + 840„20„ 

+ 1050,20,2)V - 252:4,10„,(0 1 , - 50, 2) L 	(A.3G) 

	

hio.lo = 8404 L 2 	 (A.3H) 

= h101 1  = 2104(0„, + 40,2) L 2 	 (A.31) 

h, 4 =12,,,,0 =21041,0„, + 40„2„) L 2 	 (A.33) 

/1/46= haw = 2104(0,, +40, 2)V 	 (A.3K) 

h6, 4  = haft, = 210c41(0„ + 40:.„) L 2 	 (A.3L) 

114. 10 = h ie., = 420an L 2 	 (A.3M)  

kJ= hum - an,(240, 1 0„ + 210, 10:2  + 210,20 + 210,29:2) 

+ 4242(80,,0„ + 50,203!  + 50, 10„ + 200,2012) LtA.3T) 

h 5.  „ =h11 , 5  = - (If:B (18920  +420,,0,+  2102,2)L 4  

- 844(0,2, +50,,04  -50;2)L 2 	 (A.3U) 

hs.t2=h11.5 =ar.23(180„,01  +210„,0„+ 210,20;1 + 210,20,2)L4  

-424(213„,0„ +50, 28„ +50,,0„- 100,20,2)4:L3V) 

h„„ = h,„ = a ri.23(188, 1 0,, + 210„,0„ + 210, 20,, + 21040,2) L4  

- 42022(29,,0„ + 50„20„ + 59,,0,2  - 100,20a2) 42A.3W) 

/1/4 6 = h,,,, = a cme:22(240;21  +420„0:, + 210f) L4  

+ 84(41(40 + 50„012  + 108z22) L 2 	 (A.3X) 

= a „(1(780, 1 8„ + 1050, 1 0„+ 840„20„ + 1050,42) 1? 

+252arbe $ (9„ - 50„)L 
	

(A.3Y) 

h„, = h,2  6  = -ar.)220891,1 420 1 0„ + 219,27) L 4  

- 84a;1(0,2, +50„012 - 58)L 2 
	

(A.3Z) 

It should be noted that several elements representing a 
coupling between motions in tension, torsion, and bending/ 
shearing in the two planes xy and xz, will vanish in the case that 
the spin axis X is parallel to any of the principal axes x, y and z. 

The symmetric geometric stiffness matrix for displacement 
in the xz-plane has been derived from Equation (23). The 
contribution to the geometric stiffness matrix from the constant 
part of the axial loading is, except for the common divisor 60L, 

h, , 1 = h =-2140,1 -  20a) L 2  

k w = h 	 - 20 z) L 2  

= h m.6 = - 2104(0,, -20,2)L 2  

= 	= - 2104103:1  - 20:2) L' 

/1 55 = h „  = aT33(2402y , + 420,1 8n + 2102,2)L4  

+ 84a:22(402y1  + 59, ( 13„,+ 1002,2)L 2  

(A.3N) 

(A.30) 

(A.3P) 

(A.3Q) 

(A.3R) 

kr, = 	= 	= -H,(720,2 , + 1200,,0, 2 + 608) 	(A.4a)  3.9 

kr, =k  - -k'3  = -kr, = -kr„ = 602,, L 	 (A.4b) 

kr, = kt.„ 	+ 1013,03„2 +502„2)L 2 	 (A.4c) 

kr 1 , =H,(202  + 100, 1 0,2 + 502a) L 2 	 (A.4d) 

= h11 , 12  = - an,(248,,,0„ + 210„,0„ + 210, 20: , + 210,,2012)  L4  

+ 424(80„,011  + 50,28„ + 50, 1 012  + 200,20:2) LtA.3S) 

Here, the constant axial load is 14=Ho-H, 11'-H2fi ‘. The linear 
variation of the axial loading H,,=2H,r" contributes to the geo-
metric stiffness with, except for the common divisor 840L, 
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kr, = — kr, = kr, = — H„(50402„, + 8400,2 8,1  + 4200)2,2  (A.5a) kr,=_kr,= kr, = — H,(1440„2 1  + 2520,,E1„+ 1400 2,2) (A.6a) 

kr; = 	kr, = H ,,(8402  + I 120 „,E 	+ 7 Oe ,22) L (A..5b) kr, =—kr„ =11,(300,2, +490,2 0,2  + 3562,2)L (A.6b) 

kr, , = — Icr„ = — 	120„0,2 +70132,2)L (A.5c) kr„=_kr„=—H,(1202,, +630,,0,2 + 3502,2)L (At) 

kr, = —14(280„2, + 	+ 3502,2)V (A.5d) 4'5 = — /00,2 , + 148, 1 8,2 + 1402,2)L 2  (A.6d) 

kr,, = H(1402, + 708, 18,3 + 358,12)L2  (A.5e) kr„=f4(602„ + 288, 1 0,2 + 1402,2)L 2  (A.6e) 

kfr.„ = -14(8402y, + 980,,t3„2  + 350,22)e (A.5f) lc: „ = — H „(3602„ +42(300„ + 140„22)L 2  (A.6f) 

The contribution from the quadratic variation Fi c=3H2r" of 
the axial loading is, except for the common divisor 420L, 
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