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Abstract. Let (M, g, σ) be a compact Riemannian spin manifold of dimension ≥ 2. For any metric g̃

conformal to g, we denote by λ̃ the first positive eigenvalue of the Dirac operator on (M, g̃, σ). We show
that

inf
g̃∈[g]

λ̃ Vol(M, g̃)1/n ≤ (n/2) Vol(Sn)1/n.

This inequality is a spinorial analogue of Aubin’s inequality, an important inequality in the solution
of the Yamabe problem. The inequality is already known in the case n ≥ 3 and in the case n = 2,
ker D = {0}. Our proof also works in the remaining case n = 2, ker D 6= {0}. With the same method

we also prove that any conformal class on a Riemann surface contains a metric with 2λ̃2 ≤ µ̃, where µ̃
denotes the first positive eigenvalue of the Laplace operator.
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1. Introduction

Let (M, g) be a compact Riemannian manifold of dimension n ≥ 2. We assume that M is spin, and we
fix a spin structure σ on M . For any metric g̃ in the conformal class [g] of g, we write λ+

1 (g̃) for the
smallest positive eigenvalue of the Dirac operator with respect to (M, g̃, σ). We define

λ+
min(M, g, σ) = inf

g̃∈[g]
λ+

1 (g̃)Vol(M, g̃)1/n.

If (M, g) is the round sphere Sn equipped with the unique spin structure on Sn, we simply write λ+
min(Sn).

It was proven in [Lot86] (kerD = {0}) and [Am03b] (kerD 6= {0}) that

λ+
min(M, g, σ) > 0.

Several articles have been devoted to the study of this spin-conformal invariant. A non-exhaustive list is
[Hij86, Lot86, Bär92, Am03a]. In this article we will prove the following.

Theorem 1.1. Let (M, g, σ) be a compact spin manifolds of dimension n ≥ 2. Then,

λ+
min(M, g, σ) ≤ λ+

min(S
n) =

n

2
ω

1
n
n (1)
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where ωn stands for the volume of the standard sphere Sn.

A similar inequality, established by Aubin, played a prominent role in the solution of the Yamabe problem,
see [LP87] for a good overview. We define

Y (M, [g]) := inf
g̃∈[g]

λ1(Lg̃)Vol(M, g̃)2/n ∈ {−∞} ∪ R,

where Lg̃ := 4n−1
n−2∆g̃ + Scalg̃ denotes the conformal Laplacian of (M, g̃). The number Y (M, [g]) is called

Yamabe constant of (M, [g]) if Y (M [g]) ≥ 0. The definition of the Yamabe constant in the negative case

is slightly different. For the sphere one has Y (Sn) = n(n − 1)ω
2/n
n . Aubin has shown in [Aub76] that

Y (M, [g]) ≤ Y (Sn) for any n-dimensional compact manifold M . Furthermore if strict inequality holds,
then he showed using previous work by Yamabe and Trudinger that g is conformal to a metric of constant
scalar curvature. If M is not conformally flat and of dimension at least 6, then strict inequality was proven
in [Aub76] as well. The idea of his proof is to construct a good test function. For all other conformal
manifolds (except the sphere Sn, of course!) the strict version of Aubin’s inequality Y (M, [g]) < Y (Sn)
follows from work of Schoen and the positive mass theorem.

The proof of our theorem relies on constructing a suitable test spinor, and hence both the inequality and
the construction are inspired by Aubin’s work together with spinorial techniques provided by [BG92]. The
main idea of our construction is to start with a Killing spinor on the round sphere. Under stereographic
projection this spinor then yields a solution to the equation Dψ = c|ψ|2/(n−1)ψ on flat Rn. This solution
will be rescaled, cut off and finally transplanted to a neighborhood of a given point p of the manifold M .
For this transplantation we carry out several calculations in a well-adapted trivialization of the spinor
bundle.

The first steps in our proof are common in all dimensions. However, in some final estimates one has to
distinguish between the cases n ≥ 3 and n = 2.

In dimension n ≥ 3 two other proofs for the theorem have already been published: a geometric con-
struction [Am03b, Theorem 3.1] and a proof using an invariant for non-compact spin manifolds [Gro06].
In these dimensions, it is mostly the method of proof that is interesting and helpful: the trivialization
presented here has less terms in the Taylor expansion than the trivialization by using parallel transport
along radial geodesics. Some formulae of our article also enter in [Gro06]. The calculations of our article
also provide helpful formulae used in [AHM03], [AH03] and [Rau06].

The main interest of the theorem however lies in the case n = 2. The easier subcase n = 2, kerD = {0}
could be dealt with by a modification of the geometric proof [Am03b, Theorem 3.2], but the subcase
n = 2 and kerD 6= {0} remained open for longtimes. Große’s method fails as well for n = 2 as the
contribution of a cut-off function in [Gro06, Lemma 2.1(ii)] is too large. We assume that her method can
be adapted by using a logarithmic cut-off function, but the details have not been worked out yet.

Our method of proof in dimension 2 actually admits applications to other problems as well. For example,
one obtains the following proposition that provides a negative answer to a question raised in [AAF99].

Proposition 1.2 (See Corollary 7.2). Let (M, g) be a Riemann surface with fixed spin structure σ. For
any metric ḡ in the conformal class [g], let µ1(ḡ) be the first positive eigenvalue of the Laplacian, and let
λ+

1 (ḡ) be the first positive eigenvalue of the Dirac operator on (M, ḡ, σ). Then

inf
ḡ∈[g]

λ+
1 (ḡ)2

µ1(ḡ)
6

1

2
.

Spinors and Dirac operator also appear in many other problems in modern physics. Some associated
analytical problems as e.g. the analysis of Dirac-harmonic maps might also profit from the techniques de-
veloped in our article. Dirac-harmonic maps are supersymmetric anologues of harmonic maps. Although
considerable progress was achieved recently (see [CJLW06] and other articles by the same authors), many
interesting questions remain open, e.g. efficient criteria for the existence of solutions on generic manifolds.
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The article is organized as follows: in Section 2, we recall that λ+
min(M, g, σ) has a variational character-

ization. Then, in Section 3 we introduce a well-adapted local trivialization of the spinor bundle, called
the Bourguignon-Gauduchon-trivialization. In Section 4 we calculate the first terms of the Taylor devel-
opment of the Dirac operator in this trivialization. In the following, i.e. in Section 5, we construct a good
test spinor using a Killing spinor on Sn, and then in Section 6, we set this spinor in the functional to get
Theorem 1.1 in dimension n ≥ 3. In the last section, i.e. in Section 7, we describe the modifications for
the case n = 2 and prove the proposition.

Acknowledgments. The authors want to thank Oussama Hijazi (Nancy) for his support and encouragement
for working at this article. B. Ammann wants to thank C. Bär for some discussions about related subjects.
We thank the referee for drawing our attention to the article [Tak02]. B. Ammann thanks the Max-Planck
institute for gravitational physics, at Potsdam-Golm for its hospitality.

2. A variational formulation for the spin conformal invariant

For a section ψ ∈ Γ(ΣM) we define

J(ψ) =

( ∫
M

|Dψ|
2n
n+1 vg

)n+1

n

∫
M 〈Dψ,ψ〉vg

.

At some places we will wirte Jg instead of J inorder to indicate, that the functional is defined with respect
to g. Based on some idea from [Lot86], Ammann proved in [Am03a] that

λ+
min(M, g, σ) = inf

ψ
J(ψ) (2)

where the infimum is taken over the set of smooth spinor fields for which
(∫

M

〈Dψ,ψ〉vg

)
> 0.

Hence, to prove Theorem 1.1, we are reduced to find a smooth spinor field ψ satisfying the condition
below and such that J(ψ) ≤ λ+

min(Sn) + ε where ε > 0 is arbitrary small.

3. The Bourguignon-Gauduchon-trivialization

As already explained before, the proof of our main theorem is based on a the construction of a suitable
test spinor. We first construct a “good” spinor field of Rn and then transpose it on the manifold. In order
to carry this out, we need to locally identify spinor fields on (Rn, geucl) and spinor fields on (M, g). Such
an identification will be provided by a well-adapted local trivialization of the spinor bundle of Σ(M, g).

If a spin manifold N carries two metrics g1 and g2, then it is a priori unclear how to identify spinors on
(N, g1) and spinors on (N, g2). Bourguignon and Gauduchon [BG92] constructed a convenient map from
the spinor bundle of (N, g1) to the spinor bundle of (N, g2) that allows us to identify spinors, and it is
this identification that will provide the necessary identification to us. The trivialization will be called
Bourguignon-Gauduchon-trivialization.

This trivialization is more efficient than the commonly used “trivialization by parallel transport along
radial geodesics”: with respect to the Bourguignon-Gauduchon-trivialization less terms appear in the
Taylor expansion in Section 4.

Let (M, g) be a Riemannian manifold with a spin structure σ : Spin(M, g) → SO(M, g). Let (x1, . . . xn)
be the Riemannian normal coordinates given by the exponential map at p ∈M :

expp : U ⊂ TpM ∼= Rn −→ V ⊂M

(x1, . . . , xn) 7−→ m
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Let

G : V −→ S2
+(n,R)

m 7−→ Gm := (gij(m))ij

denote the smooth map which associates to any point m ∈ V , the matrix of the coefficients of the metric g
at this point, expressed in the basis (∂i := ∂

∂xi )1≤i≤n . Since Gm is symmetric and positive definite, there
is a unique symmetric and positive definite matrix Bm such that

B2
m = G−1

m .

Since
t(BmX)Gm(BmY ) = geucl(X,Y ) , ∀X,Y ∈ Rn ,

where geucl stands for the Euclidean scalar product, we get the following isometry defined by

Bm : (Texp−1
p (m)U

∼= R
n, geucl) −→ (TmV, gm)

(a1, . . . , an) 7−→
∑

i,j

bji (m)ai∂j(m)

for each point m ∈ V , where bji (m) are the coefficients of the matrix Bm (from now on, we use Einstein’s
summation convention). As the matrix Bm depends smoothly on m, we can identify the following SOn-
principal bundles:

SO(U, geucl) SO(V, g)

U ⊂ TpM V ⊂M

-
η

? ?

-
expp

where η is given by the action of B on each component vector of a frame in SO(U, geucl). The map η
commutes with the right action of SOn, therefore the map η can be lifted to the spin structures

Spin(n) × U = Spin(U, geucl) Spin(V, g) ⊂ Spin(M, g)

U ⊂ TpM V ⊂M

-
η̄

? ?

-
expp

Hence, we obtain a map between the spinor bundles ΣU and ΣV in the following way:

ΣU = Spin(U, geucl) ×ρ Σn −→ ΣV = Spin(V, g) ×ρ Σn

ψ = [s, ϕ] 7−→ ψ = [η̄(s), ϕ] (3)

where (ρ,Σn) is the complex spinor representation, and where [s, ϕ] denotes the equivalence class of (s, ϕ)
under the diagonal action of Spin(n).

We now define

ei := bji∂j ,

so that (e1, . . . , en) is an orthonormal frame of (TV, g). Denote by ∇ (resp. ∇̄) the Levi-Civita connection
on (TU, geucl) (resp. (TM, g)) as well as its lift to the spinor bundle ΣU (resp. ΣV ). The Christoffel

symbols of the second kind Γ̃kij are defined by

Γ̃kij := 〈∇̄eiej, ek〉 ,

hence Γ̃kij = −Γ̃jik.
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Remark 3.1. To distinguish the Clifford multiplications on these two spinor bundles, one should use
different notations (for instance · and ·̃) but in the rest of the paper, we prefer to write · in both cases to
make the paper easier to read. With this convention, if ψ ∈ ΣxU for some x in U , we have

ei · ψ = ∂i · ψ. (4)

Proposition 3.2. If D and D̄ denote the Dirac operators acting respectively on Γ(ΣU) and Γ(ΣV ), then
we have

D̄ψ̄ = Dψ + W · ψ̄ + V · ψ̄ +
∑

ij

(bji − δji )∂i · ∇∂jψ , (5)

where W ∈ Γ(Cl TV ) and V ∈ Γ(TV ) are defined by

W =
1

4

∑

i,j,k
i6=j 6=k 6=i

bri (∂rb
l
j)(b

−1)kl ei · ej · ek (6)

and

V =
1

4

∑

i,k

(
Γ̃iik − Γ̃kii

)
ek =

1

2

∑

i,k

Γ̃iik ek (7)

where, for any point m ∈ V , and the coefficients of the inverse matrix of Bm are denoted by (b−1)kl (m) .

Proof. For all spinor field ψ ∈ Γ(ΣU), since ψ̄ ∈ Γ(ΣV ) and by definition of ∇̄ (see e.g. [LM89, Theorem
4.14], [Bär91, I Lemma 4.1]), we have

∇̄ei ψ̄ = ∇ei(ψ) +
1

4

∑

j,k

Γ̃kij ej · ek · ψ̄ . (8)

Taking Clifford multiplication by ei on each member of (8) and summing over i yields

D̄ψ̄ =
∑

i

ei · ∇eiψ +
1

4

∑

i,j,k

Γ̃kijei · ej · ek · ψ̄ .

Now, using that ei =
∑

j b
j
i∂j a and that by (4), ei · ∇eiψ = ∂i · ∇eiψ, we obtain that

D̄ψ̄ =
∑

ij

bji∂i · ∇∂jψ +
1

4

∑

i,j,k

Γ̃kijei · ej · ek · ψ̄

and hence,

D̄ψ̄ = Dψ +
∑

ij

(bji − δji )∂i · ∇∂jψ +
1

4

∑

i,j,k

Γ̃kijei · ej · ek · ψ̄.

See also [Pfa02] for a similar formula, worked out in more detail.

Note that by the definition of ek, we have

Γ̃kijek = Γ̃kijb
l
k∂l .

On the other hand, we compute the Christoffel symbols of the second kind

Γ̃kijek = ∇̄eiej = bri ∇̄∂r (b
s
j∂s) = bri (∂rb

s
j)∂s + bri b

s
jΓ
l
rs∂l ,

where as usually the Christoffel symbols of the first kind Γlrs are defined by

Γlrs∂l = ∇̄∂r∂s .

Therefore we have

Γ̃kijb
l
k = bri (∂rb

l
j) + bri b

s
jΓ
l
rs ,

and hence

Γ̃kij =
(
bri (∂rb

l
j) + bri b

s
jΓ
l
rs

)
(b−1)kl . (9)
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Now, we can write
1

4

∑

i,j,k

Γ̃kijei · ej · ek = W + V

where W ∈ Γ(Λ3TV ) and V ∈ Γ(TV ) are defined by

W =
1

4

∑

i,j,k
i6=j 6=k 6=i

Γ̃kijei · ej · ek

and

V =
1

4

( ∑

i=j 6=k

Γ̃kijei · ej · ek +

=0︷ ︸︸ ︷∑

i6=j=k

Γ̃kijei · ej · ek +
∑

j 6=i=k

Γ̃kijei · ej · ek +

=0︷ ︸︸ ︷∑

i=j=k

Γ̃kijei · ej · ek

)

=
1

4

∑

i,k

(
Γ̃iik − Γ̃kii

)
ek

which is (7).

First note that by (9) we have

W =
1

4

∑

i,j,k
i6=j 6=k 6=i

(
bri (∂rb

l
j)(b

−1)kl + bri b
s
jΓ
l
rs(b

−1)kl

)
ei · ej · ek .

However, ∑

i,j,k
i6=j 6=k 6=i

bri b
s
jΓ
l
rs(b

−1)kl ei · ej · ek = 0

since Γlrs = Γlsr and ei · ej = −ej · ei. Therefore we obtain (6). �

4. Development of the metric at the point p

In this section we give the development of the coefficients Γ̃kij in the coordinates (x1, . . . , xn) at the fixed
point p ∈M .

For any point m ∈M , r denotes the distance from p to m. Recall that in the neighborhood of p, we have
the following development of the metric g (see for example [LP87]):

gij = δij +
1

3
Riαβj(p)x

αxβ +
1

6
Riαβj;γ(p)x

αxβxγ (10)

+

(
1

20
Riαβj;γλ(p) +

2

45

∑

m

Riαβm(p)Rjγλm(p)

)
xαxβxγxλ +O(r5)

where
Rijkl = 〈∇ej∇eiek, el〉 − 〈∇ei∇ejek, el〉 − 〈∇[ej ,ei]ek, el〉

and where
Rijkl;m = (∇R)mijkl Rijkl;mn = (∇2R)nmijkl

are the covariant derivatives of Rijkl in direction of em (and ep). Therefore we write

Gm = Id +G2 +G3 +O(r4)

with (
G2

)
ij

=
1

3
Riαβj(p)x

αxβ

and (
G3

)
ij

=
1

6
Riαβj;γ(p)x

αxβxγ



A SPINORIAL ANALOGUE OF AUBIN’S INEQUALITY 7

Writing

Bm = Id +B1 +B2 +B3 +O(r4)

with (
B1

)
ij

= Bijαx
α ,

(
B2

)
ij

= Bijαβx
αxβ

and (
B3

)
ij

= Bijαβγx
αxβxγ ,

the relation B2
mGm = Id yields B1 = 0 and

0 =
(
2B2 +G2

)
+
(
2B3 +G3

)
,

hence 



bji = δji −
1
6Riαβjx

αxβ − 1
12Riαβj;γx

αxβxγ +O(r4)

(b−1)ji = δji + 1
6Riαβjx

αxβ + 1
12Riαβj;γx

αxβxγ +O(r4)
(11)

We also have

∂lb
j
i = −

1

6

(
Rilαj +Riαlj

)
xα −

1

12

(
Rilαj;β +Riαlj;β +Riαβj;l

)
xαxβ +O(r3) . (12)

4.1. Development of Γkij, V and W.

Γkij =
1

2
gkl
(
∂igjl + ∂jgil − ∂lgij

)

=
1

2

(
∂igjk + ∂jgik − ∂kgij

)
+O(r2)

=
1

6

(
Rjiαk +Rjαik +Rijαk +Riαjk −Rikαj −Riαkj

)
xα +O(r2)

Using the relations Rijαk +Rjiαk = 0, Rjαik −Rikαj = −2Rikαj and Riαjk −Riαkj = −2Riαkj we then
have

Γkij = −
1

3

(
Rikαj +Riαkj

)
xα +O(r2) (13)

On the other hand, since ∂rb
l
j and Γlrs have no constant term, Formula (9) yields

Γ̃kij =
(
δri (∂rb

l
j) + δri δ

s
jΓ

l
rs

)
δkl +O(r2) ,

and hence

Γ̃kij = ∂ib
k
j + Γkij +O(r2) .

We have

V =
1

4

∑

i,k

(
Γ̃iik − Γ̃kii)ek

=
1

4

∑

i,k

(
∂ib

i
k + Γiik − ∂ib

k
i − Γkii

)
ek +O(r2)

=
1

4

∑

i,k

(
Γiik − Γkii

)
ek +O(r2)
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since ∂ib
i
k = ∂ib

k
i .

Moreover, we have
∑

i

(
Γiik − Γkii

)
= −

1

3

∑

i

(
Riiαk +Riαik

)
xα +

1

3

∑

i

(
Rikαi +Riαki

)
xα + O(r2)

= −(Ric)αk +O(r2)

Therefore we proved that

V =
(
−

1

4
(Ric)αk x

α +O(r2)
)
ek . (14)

The aim now is to show that

W =
1

4

∑

i,j,k
i6=j 6=k 6=i

bri (∂rb
l
j)(b

−1)kl ei · ej · ek

is O(r3). First note that by Equations (11) and (12) bri has no term of order 1 and ∂rb
l
j has no term of

order 0. Hence, any term in W of order < 3 is a product of the 0-order term of bri and of a term of order
1 or 2 of ∂rb

l
j .

Therefore W has no term of order 0. To compute the terms of order 1 and 2, we write

W =
1

4

∑

i,j,k
i6=j 6=k 6=i

(
δri (∂rb

l
j)δ

k
l +O(r3)

)
ei · ej · ek .

We have ∑

i,j,k
i6=j 6=k 6=i

∂ib
k
j ei · ej · ek = 0

since

∂ib
k
j = ∂ib

j
k and ej · ek = −ek · ej .

Therefore W has no term of order 1 and 2. We proved that

W = O(r3) (15)

Remark 4.1. Similar calculations yield

V = −
(1

4
(Ric)αk x

α +
1

6
(Ric)αk,β x

αxβ +O(r3)
)
ek .

W = −
1

144

∑

i,j,k
i6=j 6=k 6=i

Rlβγk

(
Rjiαl +Rjlαi

)
xαxβxγ ei · ej · ek +O(r4) .

We do not give details here because we do not need explicit computations of terms of order 2 for V and
terms of order 3 for W in the proof of Theorem 1.1.

5. The test spinor

5.1. The explicit spinor. In this section we construct a good test spinor on Rn. The spinor bundle on
Rn is trivial, so we can identify the fibers. Let ψ0 ∈ Σ0Rn with |ψ0| = 1. We set f(x) := 2

1+r2 , where

r := |x|, hence ∂if = −xif
2. Then we define

ψ(x) = f
n
2 (x)(1 − x) · ψ0. (16)

One calculates

∇∂iψ = −f
n
2 ∂i · ψ0 −

n

2
f
n
2
+1xi(1 − x) · ψ0, (17)
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and hence

Dψ =
n

2
fψ (18)

|ψ| = f
n−1

2 (19)

|Dψ| =
n

2
f
n+1

2 . (20)

5.2. Conformal change of metrics. In order to explain a geometric interpretation of this spinor,
we have to recall the behavior of spinors and the Dirac operators under conformal changes. See e.g.
[Hit74, Hij01] for proofs.

Let (N, h) be a spin manifold of dimension n. Consider a conformal change of metric h̃ = F−2h for

any positive real function F on (N, h). The map TN → TN , X 7→ X̃ = FX induces an isomorphism

of principal bundles from SO(N, h) to SO(N, h̃). It lifts to a bundle isomorphism between the Spin(n)-

principal bundles Spin(N, h) and Spin(N, h̃), and passing to the associated bundles one obtains a map

ΣhN = Spin(N, h) ×ρ Σ → ΣehN = Spin(N, h̃) ×ρ Σ

ϕ 7→ ϕ̃

between the spinor bundles, which is a fiberwise isometry and we have

X̃ ·̃ ϕ̃ = X̃ · ϕ

(see [Hij01] for more details on this construction).

By conformal covariance of the Dirac operator, we have, for ϕ ∈ Γ(ΣN),

D̃
(
F
n−1

2 ϕ̃
)

= F
n+1

2 D̃ϕ, (21)

5.3. Geometric interpretation. We apply this formula to a particular case: let p be any point of the
round sphere Sn. Then Sn\{p} is isometric to Rn with the metric

gS = f2geucl , (22)

with

f(x) =
2

1 + r2
.

Hence we set N := Rn, h = geucl, F = f−1. One calculates with (18) and (21) that Φ := F
n−1

2 ψ̃ satisfies
DΦ = n

2 Φ on Sn \ {p}, and |Φ| = 1. Hence, the possible singularity at p can be removed (see e.g. the
Removal of singularity theorem [Am03c, Theorem 5.1]), and one sees that Φ is an eigenspinor to the
eigenvalue n/2 on the round sphere Sn. The equality discussion in Friedrich’s inequality [Fri80] implies
that Φ is a Killing spinor to the constant −1/2, i.e. it satisfies

∇XΦ = −
1

2
X · Φ.

Hence we have seen that our spinor ψ is the “conformal image” of a Killing spinor on Sn.

6. The proof of Theorem 1.1 for n ≥ 3

We begin with the following Proposition.

Proposition 6.1. The metric g on M can be chosen such that

Ricg(p) = 0 and ∆g(Scalg)(p) = 0 .
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Proof. Consider a conformal change of the metric g̃ = e2ug for any real function u on (M, g). Then it is
well known that the Ricci curvature (2, 0)-tensor Ricg̃, the scalar curvature Scalg̃ and the Laplacian ∆g̃

corresponding to the metric g̃ satisfy (see for example Hebey [Heb97] or Aubin [Aub76])

Ricg̃ = Ricg − (n− 2)∇2u+ (n− 2)∇u⊗∇u+ (∆gu− (n− 2)|∇u|2g)g ,

Scalg̃ = e−2u
(
Scalg + 2(n− 1)∆gu− (n− 1)(n− 2)|∇u|2g

)
, (23)

As a first step, we can assume that Scalg(p) = 0. Then, let us choose u such that

u(x) =
1

2(n− 2)

(
Ricg(p)ij −

Scalg(p)

n
gij(p)

)
xixj −

∆g(Scalg)(p)

48(n− 1)
(x1)4

in a neighborhood of the point p. Since u(p) = 0 and (∇u)(p) = 0, it is straightforward to see that
Ricg̃(p) = 0. Moreover, taking the Laplacian of both members of Equation (23), a simple computation
shows that ∆g̃Scalg̃(p) = 0. �

Let ϕ̄ ∈ ΣUM where U is the open neighborhood of a point p ∈ M as defined in the previous sections.
With the help of formulas (14) and (15), we have the following

Corollary 6.2. For any metric g on M chosen as in Proposition 6.1, we have

D̄ϕ̄ = Dϕ+
∑

ijkαβγ
i6=j 6=k 6=i

Aijkαβγx
α xβ xγ ei · ej · ek · ϕ̄+ W′ · ϕ̄+ V · ϕ̄+

∑

ij

(bji − δji )∂i · ∇∂jψ (24)

where Aijkαβγ ∈ R and where W′ ∈ Γ(Λ3TV ), V ∈ Γ(TV ), |W′| ≤ C r4 and |V| ≤ C′ r2 (C and C′

being positive constants independent of ϕ).

Remark 6.3. Using the formulae in Remark 4.1, we obtain the formula

Aijkαβγ = −
1

144
Rlβγk

(
Rjiαl +Rjlαi

)
,

Assume now that ψ is the test spinor constructed in Section 5. Let ε > 0 be a small positive number.
We set

ϕ(x) := ηψ(
x

ε
) =: ψε(x)

where η = 0 on Rn \ Bp(2δ) and η = 1 on Bp(δ), and that ψ, defined as in (16) satisfies the following
relations (17), (18), (19) and (20) where f is again defined by

f(x) =
2

1 + r2
.

We now prove some lemmas which will be useful in the proof of Theorem 1.1.

Lemma 6.4. We have ∣∣∣∣∣∣

∑

ij

(bji − δji )∂i · ∇∂j (ψ(
x

ε
))

∣∣∣∣∣∣
≤ C

r3

ε
f
n
2 (
x

ε
) (25)

where f = 2
1+r2 ;.

Proof. At first, we prove that:
∑

ijαβ

Riαβjx
αxβ∂i ·

(
∇∂jψ(

x

ε
)
)

= 0. (26)

Indeed, using (17), we compute that

(∇∂jψ)(
x

ε
) = −

f
n
2 (xε )

ε
∂j · ψ0 −

nf
n+2

2 (xε )

2ε
xj(1 −

x

ε
) · ψ0.
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and obtain

∑

ijαβ

Riαβjx
αxβ∂i·(∇∂jψ)(

x

ε
) = −

f
n
2 (xε )

ε

∑

ijαβ

Riαβjx
αxβ∂i·∂j ·ψ0−

nf
n+2

2 (xε )

2ε

∑

ijαβ

Riαβjx
αxβxj∂i·(1−

x

ε
)·ψ0.

Now, since if i 6= j, ∂i · ∂j = −∂j · ∂i and since

∑

αβ

Riαβjx
αxβ =

∑

αβ

Riβαjx
αxβ =

∑

αβ

Rjαβix
αxβ ,

(we have used that Rjαβi = Rβijα = Riβαj), we get that

∑

ijαβ

Riαβjx
αxβ∂i · ∂j · ψ0 = −

∑

i,αβ

Riαβix
αxβψ0 = 0

since Ric(p) = 0. The first summand vanishes.

The second summand vanishes as
∑

βj Riαβjx
βxj = 0.

This proves (26). Now, by the development of bji (11), we easily obtain that

∣∣∣∣∣∣

∑

ij

(bji − δji )∂i · ∇∂j (ψ(
x

ε
))

∣∣∣∣∣∣
≤ C

r3

ε
|∇ψ|(

x

ε
).

Differentiating expression (16), we see that

|∇ψ| ≤ C(f
n
2 + rf

n+2

2 ).

Together with rf(r) = 2r
1+r2 = 1 − (1−r)2

1+r2 ≤ 1 we obtain the lemma. �

Now, we can start the proof of Theorem 1.1. We have, with the notations of Corollary 6.2:

D̄ψ̄ε(x) = ∇̄η · ψ̄(
x

ε
) + η D̄(ψ̄(

x

ε
))

= ∇̄η · ψ̄(
x

ε
) +

η

ε
Dψ(

x

ε
) + η

∑

ijkαβγ
i6=j 6=k 6=i

Aijkαβγx
α xβ xγ ei · ej · ek · ψ̄(

x

ε
)

+ηW′ · ψ̄(
x

ε
) + ηV · ψ̄(

x

ε
) + η

∑

ij

(bji − δji )∂i · ∇∂j(ψ(
x

ε
)) .

Therefore we have

D̄ψ̄ε(x) = ∇̄η · ψ̄(
x

ε
) +

η

ε

n

2
f(
x

ε
) ψ̄(

x

ε
) + η

∑

ijkαβγ
i6=j 6=k 6=i

Aijkαβγx
α xβ xγ ei · ej · ek · ψ̄(

x

ε
)

+ηW′ · ψ̄(
x

ε
) + ηV · ψ̄(

x

ε
) + η

∑

ij

(bji − δji )∂i · ∇∂j(ψ(
x

ε
)) .

We write that

|D̄ψ̄ε|
2(x) = I + II + III + IV + V + VI + VII + VIII + IX + X + XI + XII + XIII + XIV + XV

+XVI + XVII + XVIII + XIX + XX + XXI
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where

I = |∇̄η|2 |ψ̄|2(
x

ε
)

II =
η2

ε2
n2

4
|ψ̄|2(

x

ε
) f2(

x

ε
)

III = η2|
∑

ijkαβγ
i6=j 6=k 6=i

Aijkαβγx
α xβ xγ ei · ej · ek · ψ̄|

2(
x

ε
)

IV = η2 |W′|2|ψ̄(
x

ε
)|2

V = η2|V|2|ψ̄(
x

ε
)|2

VI = 2ℜe < ∇̄η · ψ̄(
x

ε
),
η

ε

n

2
f(
x

ε
)ψ̄(

x

ε
) >

VII = 2ℜe < ∇̄η · ψ̄(
x

ε
), η

∑

ijkαβγ
i6=j 6=k 6=i

Aijkαβγx
α xβ xγ ei · ej · ek · ψ̄(

x

ε
) >

VIII = 2ℜe < ∇̄η · ψ̄(
x

ε
), ηW′ · ψ̄(

x

ε
) >

IX = 2ℜe < ∇̄η · ψ̄(
x

ε
), ηV · ψ̄(

x

ε
) >

X =
η2

ε
n f(

x

ε
)η

∑

ijkαβγ
i6=j 6=k 6=i

Aijkαβγx
α xβ xγ ℜe < ei · ej · ek · ψ̄, ψ̄ > (

x

ε
)

XI =
η2

ε
n f(

x

ε
)ℜe < ψ̄(

x

ε
),W′ · ψ̄(

x

ε
) >

XII =
η2

ε
n f(

x

ε
)ℜe < ψ̄(

x

ε
),V · ψ̄(

x

ε
) >

XIII = 2 η2
∑

ijkαβγ
i6=j 6=k 6=i

Aijkαβγx
α xβ xγ ℜe < ei · ej · ek · ψ̄(

x

ε
),W′ · ψ̄(

x

ε
) >

XIV = 2 η2
∑

ijkαβγ
i6=j 6=k 6=i

Aijkαβγx
α xβ xγ ℜe < ei · ej · ek · ψ̄(

x

ε
),V · ψ̄(

x

ε
) >

XV = 2η2ℜe < W′ · ψ̄(
x

ε
),V · ψ̄(

x

ε
) >

XVI = 2ℜe < ∇̄η · ψ̄(
x

ε
), η
∑

ij

(bji − δji )∂i · ∇∂j(ψ(
x

ε
)) >

XVII =
nη2

ε
f(
x

ε
)ℜe < ψ̄(

x

ε
),
∑

ij

(bji − δji )∂i · ∇∂j(ψ(
x

ε
)) >

XVIII = 2η2ℜe <
∑

ijkαβγ
i6=j 6=k 6=i

Aijkαβγx
α xβ xγ ei · ej · ek · ψ̄(

x

ε
),
∑

ij

(bji − δji )∂i · ∇∂j(ψ(
x

ε
)) >

XIX = 2η2 ℜe < W′ · ψ̄(
x

ε
),
∑

ij

(bji − δji )∂i · ∇∂j(ψ(
x

ε
)) >

XX = 2η2 ℜe < V · ψ̄(
x

ε
),
∑

ij

(bji − δji )∂i · ∇∂j(ψ(
x

ε
)) >

XXI = η2

∣∣∣∣∣∣

∑

ij

(bji − δji )∂i · ∇∂j(ψ(
x

ε
))

∣∣∣∣∣∣

2

.
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Since V is a vector field, we have

XII = 0

Assume now that x ∈ Bp(2δ). Using the fact that |∇̄η| ≤ Cr4 (C being a constant independent of ε) and
since r ≤ δ ≤ 1, we have:

I + III + IV + V + VII + VIII + IX + XIII + XIV + XV ≤ C r4 fn−1(
x

ε
) .

and

VI + XI ≤
C

ε
r4 fn(

x

ε
) .

Since f ≤ 2 and since r2 ≤ C on Bp(2δ), we obtain that

VI + XI ≤ C
r2

ε
fn−

1
2 (
x

ε
) .

In the same way, using relation (25) and the fact that for all ε, rεf(xε ) ≤ 1, we have also

X + XVI + XVII + XVIII + XIX + XX + XXI ≤ C
r2

ε
fn−

1
2 (
x

ε
) .

Therefore we obtain that

|D̄ψ̄ε|
2(x) ≤

n2

4ε2
fn+1(

x

ε
) + C r4 fn−1(

x

ε
) +

C

ε
r2 fn−

1
2 (
x

ε
)

≤
n2

4ε2
fn+1(

x

ε
) [1 + ∆]

where

∆ = C ε2r4 f−2(
x

ε
) + Cε r2 f− 3

2 (
x

ε
).

Since |D̄ψ̄ε|
2 ≥ 0 we have ∆ ≥ −1. Moreover, if we define

g(x) = 1 +
n

n+ 1
x− (1 + x)

n
n+1 , ∀x ≥ −1 ,

then

g′(x) =
n

n+ 1

(
1 − (1 + x)

−1

n+1

)
, ∀x > −1 .

Therefore g admits a minimum at 0 on the interval [−1,+∞[. This yields that, ∀x ≥ −1,

(1 + x)
n
n+1 ≤ 1 +

n

n+ 1
x .

We then have

|D̄ψ̄ε|
2n
n+1 (x) ≤ (

n

2ε
)

2n
n+1 fn(

x

ε
) [1 + ∆]

n
n+1 ≤ (

n

2ε
)

2n
n+1 fn(

x

ε
) +

n

n+ 1
(
n

2ε
)

2n
n+1 fn(

x

ε
)∆ .

Taking into account the definition of ∆ and integrating over M leads to
∫

M

|D̄ψ̄ε|
2n
n+1 dvg ≤ ε

−2n
n+1 [A + B + C] , (27)

where

A =

∫

Bp(2δ)

(n
2

) 2n
n+1

fn(
x

ε
) dvg

B = C

∫

Bp(2δ)

ε2r4 fn−2(
x

ε
) dvg

C = C

∫

Bp(2δ)

ε r2 fn−
3
2 (
x

ε
) dvg.
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Since the function f is radially symmetric, we can compute A with the help of spherical coordinates:

A =

∫

Bp(2δ)

(n
2

) 2n
n+1

fn(
x

ε
)ωn−1G(r) rn−1dr ,

where ωn−1 stands for the volume of the unit sphere Sn−1 and

G(r) =
1

ωn−1

∫

Sn−1

√
|g|rx dσ(x) |g|y := det gij(y).

From Proposition 6.1, Hebey [Heb97] or Lee-Parker [LP87], we know that

G(r) ≤ 1 +O(r4) .

Therefore, we can estimate A in the following way:

A ≤
(n

2

) 2n
n+1

ωn−1

[∫ 2δ

0

fn(
x

ε
) rn−1dr + C

∫ 2δ

0

fn(
x

ε
) rn+3dr

]

≤
(n

2

) 2n
n+1

ωn−1 ε
n

[∫ 2δ
ε

0

2nrn−1

(1 + r2)n
dr + Cε4

∫ 2δ
ε

0

rn+3

(1 + r2)n
dr

]
.

Since ∫ 2δ
ε

0

rn+3

(1 + r2)n
dr ≤ O

(∫ 2δ
ε

1

r3−ndr

)

we get that

A ≤
(n

2

) 2n
n+1

ωn−1 ε
n

[∫ 2δ
ε

0

2nrn−1

(1 + r2)n
dr + o(1)

]
,

and hence

A ≤
(n

2

) 2n
n+1

ωn−1 ε
n

[∫ 2δ
ε

0

2nrn−1

(1 + r2)n
dr + o(1)

]
. (28)

Let us show that

B = o(εn). (29)

Since dvg ≤ Cdx, setting y = x
ε , we have

∫

Bp(2δ)

r4fn−2(
x

ε
) dvg ≤ Cεn+4

∫

Bp(
2δ
ε

)

r4fn−2((
y

ε
) dy

≤ C εn+4

∫ 2δ
ε

0

rn+3

(1 + r2)n−2
dr.

≤ C εn+4O

(∫ 2δ
ε

1

r7−n dr

)
.

It is easy to check that relation (29) follows if n ≥ 3. In the same way, we can prove that C = o(εn).

Together with Equation (28), we can conclude that
∫

M

|D̄ψ̄ε|
2n
n+1 dvg ≤ ε

−2n
n+1

+n

[(n
2

) 2n
n+1

ωn−1

∫ +∞

0

rn−1fn(r)dr + o(1)

]
,

which yields
(∫

M

|D̄ψ̄ε|
2n
n+1 dvg

)n+1

n

≤ εn−1

[(
n2

4

) n
n+1

ωn−1I

]n+1

n

(1 + o(1)) , (30)

where

I =

∫ +∞

0

2nrn−1

(1 + r2)n
dr .
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We are now going to estimate
∣∣∫
M ℜe < D̄ψ̄ε, ψ̄ε > dvg

∣∣. We start by computing

∣∣∣∣
∫

M

ℜe < D̄ψ̄ε, ψ̄ε > dvg

∣∣∣∣ ≥ A′ − B′ − C′ − D′ − E′ ,

where

A′ =

∫

Bp(δ)

n

2ε
fn(

x

ε
)dvg

B′ =

∣∣∣∣
∫

M

ℜe < ∇̄η · ψ̄(
x

ε
), ηψ̄(

x

ε
) > dvg

∣∣∣∣ ,

C′ =

∣∣∣∣∣∣∣

∫

M

η2
∑

ijkαβγ
i6=j 6=k 6=i

Aijkαβγx
α xβ xγ ℜe < ei · ej · ek · ψ̄, ψ̄ > (

x

ε
) dvg

∣∣∣∣∣∣∣
,

D′ =

∣∣∣∣
∫

M

η2ℜe < W′ψ̄(
x

ε
), ψ̄(

x

ε
) > dvg

∣∣∣∣

E′ =

∣∣∣∣∣∣

∫

M

η2ℜe <
∑

ij

(bji − δji )∂i · ∇∂j(ψ(
x

ε
)), ψ̄(

x

ε
) > dvg

∣∣∣∣∣∣
.

(The term in V is zero). Note that A′ = 1
ε

(
n
2

)1− 2n
n+1 A where η has been replaced by 2η. As to obtain

(29), we get that

B′ + C′ + D′ ≤ C

∫

Bp(2δ)

fn−1(
x

ε
) dvg ≤ 0(εn) = o(ε−1)

and

E′ ≤ C

∫

Bp(2δ)

r3

ε
fn−

1
2 (
x

ε
) dvg ≤ o(εn−1).

Moreover, with the same method which was used to obtain (28), we get

A′ ≥
n

2
ωn−1 ε

n−1 I [1 + o(1)] .

This proves that ∣∣∣∣
∫

M

ℜe < D̄ψ̄ε, ψ̄ε > dvg

∣∣∣∣ ≥
n

2
ωn−1 ε

n−1 I [1 + o(1)] . (31)

Finally, Equations (30) and (31) allow to estimate J(ψ̄ε) in the following way:

J(ψε) =

( ∫
M |D̄ψ̄ε|

2n
n+1 dvg

)n+1

n

∫
M

ℜe < D̄ψ̄ε, ψ̄ε > dvg
≤
n

2
ω

1
n

n−1 I
1
n [1 + o(1)] .

By (22), we have

wn−1I =

∫

Rn

fndx = ωn

Therefore, we proved that for the test spinor ϕ, we have

J(ψ̄ε) ≤ λ+
min(Sn) [1 + o(1)] . (32)

Hence Theorem 1.1 is proven.
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Remark 6.5. There is a variant of this proof which needs less calculations. As a first step, one proves that
for any ε > 0 there is a test spinor ϕε on Rn with support in B0(1) such that JR

n

geucl
(ϕε) ≤ λ+

min(Sn) + ε
where ε > 0. The argument for this coincides with the above proof, but the terms IV to XXI vanish, as
Rn is flat.

In a second step, one transplants this compactly supported spinor ϕε to the arbitrary compact spin
manifold (M,Λ2g), where Λ > 0 is constant, and one obtains a spinor ϕε on (M,Λ2g). The terms IV
to XXI reappear. However, from our Taylor expansion worked before, it is easy to see that for Λ → ∞
these terms dissapear.

One concludes that there for any ε > 0 there is a Λε > 0 and a spinor ϕε on (M,Λ2
εg) such that

JΛ2
εg

(ϕε) < λ+
min(Sn) + 2ε.

Together with

λ+
min(M, g, σ) = λ+

min(M,Λ2
εg, σ) ≤ JΛ2

εg
(ϕε)

the theorem follows.

This proof is simpler. We chose the way presented above because of various reasons. One the other hand,
as indicated in the introduction, in the case n ≥ 3 it is not the result, but the method of proof which
is interesting. The above formulae enter at several places in the literature, e.g. [AHM03], [AH03] and
[Rau06]. Secondly, the simpler proof is close to Große’s proof [Gro06] and we refer to her article for the
probably most elegant proof in dimension n ≥ 3. Also in her proof some Taylor expansions from the
present article are used.

7. The case n = 2

The 2-dimensional case is simpler since g is locally conformally flat. On the other hand, some estimates
of the last section are no longer valid in dimension 2, hence some parts have to be modified. These
modifications will be carefully carried out in this section.

Let (M, g) be a compact Riemannian surface equipped with a spin structure. If ḡ is conformal to g we
denote by µ1(ḡ) the smallest positive eigenvalue of ∆ḡ. We prove the theorem.

Theorem 7.1. There exists a family of metrics (gε)ε conformal to g for which

lim sup
ε→0

λ+
1 (gε)

2Volgε(M) 6 4π

lim inf
ε→0

µ1(gε)Volgε(M) > 8π.

Theorem 7.1 clearly implies Theorem 1.1.
Roughly, these metrics can be described as follows. At first we choose a metric in the conformal class
which is flat in a neighborhood of a point p. We remove a small ball around it and glue in a large
truncated sphere. This removal and gluing can be done in such a way that we stay within a conformal
class. ε→ 0. In the limit this truncated sphere is getting larger and larger compared to the original part
of M .

Agricola, Ammann and Friedrich asked the following question [AAF99]:

Let M be a two-dimensional torus equipped with a trivial spin structure, can we find on M a Riemannian
metric g̃ for which λ+

1 (g̃)2 < µ1(g̃)?

To understand this question, recall that the two-dimensional torus carries 4 spin structures. Three of
them (the non-trivial ones) are spin boundaries: for these spin structures it is easy to find flat examples
with λ+

1 (g̃)2 = 1
4µ1(g̃). For the trivial spin structure, one has λ+

1 (g̃)2 = µ1(g̃) for all flat metrics and

λ+
1 (g̃)2 > µ1(g̃) for many S1-equivariant one’s.
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Clearly, Theorem 7.1 answers this question but says much more: firstly, the result is true on any compact
Riemannian surface equipped with a spin structure and not only when M is a two-dimensional torus.
In addition, the metric g̃ can be chosen in a given conformal class. Finally, this metric g̃ can be chosen
such that (2 − δ)λ+

1 (g)2 < µ1(g) where δ > 0 is arbitrarily small. More precisely Theorem 1.1 shows the
corollary

Corollary 7.2 (Proposition 1.2 of the Introduction). On any compact Riemannian surface (M, g), we
have

inf
λ+

1 (ḡ)2

µ1(ḡ)
6

1

2

where the infimum is taken over all metrics ḡ conformal to g.

7.1. C0-metrics. Let f be a smooth positive function and set ḡ = f2g. Let also for u ∈ C∞(M)

Iḡ(u) =

∫
M |∇u|ḡdvḡ∫
M
u2dvḡ

.

It is well known that µ1(ḡ) = inf Iḡ(u) where the infimum is taken over the smooth non-zero functions u
for which

∫
M
udvḡ = 0. Another way to express µ1(ḡ) is

µ1(ḡ) := inf
V

sup
u∈V \{0}

Iḡ(u) (33)

where the infimum runs over all 2-dimensional subspaces V of C∞(M). We now can write all these
expressions in the metric g. We then see that for u ∈ C∞(M), we have

Iḡ(u) =

∫
M

|∇u|2gdvg∫
u2f2dvg

and µ1(ḡ) is characterized in a way analogous to (33). Now if f is only continuous, we can define ḡ = f2g.
The symmetric 2-tensor ḡ is not really a metric since f is not smooth. We then say that g is a C0-metric.
We can define the first eigenvalue µ1(ḡ) of ∆ḡ using the definition above.

Suppose that

(1 + ρ)−1f ≤ f̃ ≤ (1 + ρ)f. (34)

Then

(1 + ρ)−2If̃2g(u) ≤ If2g(u) ≤ (1 + ρ)2If̃2g(u).

From the variational characterization (33) it the follows that

(1 + ρ)−2µ1(f̃
2g) ≤ µ1(f

2g) ≤ (1 + ρ)2µ1(f̃
2g),

which is a special case of a result by Dodziuk [Dod82, Proposition 3.3]. In particular, we get

Lemma 7.3. If (fn) is a sequence of smooth positive functions that converges uniformily to f , then
µ1(f

2
ng) tends to µ1(f

2g).

In the same way, if ḡ = f2g is a metric conformal to g where f is positive and smooth, we define

Jḡ(ψ) =

∫

M

|Dḡψ|
2
ḡdvḡ

∫

M

〈Dḡψ, ψ〉ḡdvḡ

.

The first eigenvalue of the Dirac operator Dḡ is then given by λ+
1 (ḡ) = inf Jḡ(ψ) where the infimum is

taken over the smooth spinor fields ψ for which
∫
M
〈Dḡψ, ψ〉dvg > 0. Now, as explained in paragraph 5.2

we can identify spinors for the metric g and spinors for the metric ḡ by a fiberwise isometry. Moreover,
using this identification, we have for all smooth spinor field:

Dḡ(f
− 1

2ϕ) = f− 3
2Dgϕ.
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This implies that if we set ϕ = f
1
2ψ, we have

J ′
ḡ(ϕ) :=

∫

M

|Dgϕ|
2f−1dvg

∫

M

〈Dgϕ,ϕ〉dvg

= Jḡ(ψ)

and the first eigenvalue of the Dirac operator Dḡ is given by

λ+
1 (ḡ) = inf J ′

ḡ(ϕ) (35)

where the infimum is taken over the smooth spinor fields ϕ for which

∫

M

〈Dgϕ,ϕ〉dvg > 0. Now, when

ḡ = f2g is no longer smooth, but a C0-metric, we can use (35) to define λ+
1 (ḡ).

Under the assumption (34), we get

(1 + ρ)−1J ′
f̃2g

(ϕ) ≤ J ′
f2g(ϕ) ≤ (1 + ρ)J ′

f̃2g
(ϕ),

and hence

(1 + ρ)−1λ+
1 (f̃2g) ≤ λ+

1 (f2g) ≤ (1 + ρ)λ+
1 (f̃2g).

We have proven a result similar to Lemma 7.3:

Lemma 7.4. If (fn) is a sequence of smooth positive functions that converges uniformly to f , then
λ+

1 (f2
ng) tends to λ+

1 (ḡ).

7.2. The metrics (gα,ε)α,ε. In this paragraph, we construct the metrics (gα,ε)α,ε conformal to g which
will satisfy:

lim sup
ε→0

λ+
1 (gα,ε)

2Volgα,ε(M) 6 4π (36)

and

lim inf
α→0

lim inf
ε→0

µ1(gα,ε)Volgα,ε(M) > 8π. (37)

Clearly this implies Theorem 1.1. By Lemmas 7.3 and 7.4, it suffices to construct C0-metrics (gα,ε)α,ε.
Recall that the volume of M for a C0-metric is defined by Volf2g(M) =

∫
M f2dvg. At first, without loss

of generality, we can assume that g is flat near a point p ∈M . Let α > 0 be a small number to be fixed
later such that g is flat on Bp(α). We set for all x ∈M and ε > 0,

fα,ε(x) =

{
ε2

ε2+r2 if r 6 α
ε2

ε2+α2 if r > α

where r = dg(., p). The function fα,ε is continuous and positive on M . We then define for all ε > 0,
gα,ε = f2

α,εg. The symmetric 2-tensors (gα,ε)α,ε will be the desired C0-metrics. For these metrics, we
have

Volgα,ε(M) =

∫

M

f2
α,εdvg =

∫

Bp(α)

f2
α,εdvg +

∫

M\Bp(α)

f2
α,εdvg.

Since g is flat on Bp(α), we have
∫

Bp(α)

f2
α,εdvg =

∫ 2π

0

∫ α

0

ε4r

(ε2 + r2)2
drdΘ.

Substituting ρ = r2/ε2 we obtain

∫

Bp(α)

f2
α,εdvg = πε2

∫ α2

ε2

0

1

(1 + ρ)2
dr = πε2 + o(ε2).



A SPINORIAL ANALOGUE OF AUBIN’S INEQUALITY 19

Since f2
α,ε 6 ε4

α4 on M \Bp(α), we have
∫
M\Bp(α)

f2
α,εdvg = o(ε2). We obtain

Volgε(M) = πε2 + o(ε2). (38)

7.3. Proof of relation (36). We define on R2 as in subsection 5.1 the spinor field

ψ(x) = f(x)(1 − x) · ψ0

where f(x) = 2
1+|x|2 , |ψ0| = 1. We have

Dψ = fψ and |ψ| = f
1
2 . (39)

Now, we fix a small number α > 0 such that g is flat on Bp(2α). Then, let δ be a small number such that
we take 0 6 δ 6 α. Assume that ε tends to 0. Furthermore let η be a smooth cut-off function defined on
M by

η(x) =

∣∣∣∣∣∣

1 if r ≤ δ2

log(r)
log(δ) − 1 if r ∈ [δ2, δ]

0 if r ≥ δ

The function η is such that 0 6 η 6 1, η(Bp(δ)) = {1}, η(Rn \Bp(2δ)) = {0} and

κδ :=

∫

M

|∇η|2dvg → 0 for δ → 0. (40)

Identifying Bp(2δ) in M with B0(2δ) in R2, we can define a smooth spinor field on M by ψε = η(x)ψ
(
x
ε

)
.

Using (39), we have

Dg(ψε) = ∇η · ψ
(x
ε

)
+
η

ε
f
(x
ε

)
ψ
(x
ε

)
. (41)

Since 〈∇η · ψ(xε ), ψ(xε )〉 ∈ iR and since |Dgψε|
2 ∈ R, we have

∫

M

|Dgψε|
2f−1
α,εdvg = I1 + I2 (42)

where

I1 =

∫

M

|∇η|2
∣∣∣ψ
(x
ε

)∣∣∣
2

dx and I2 =

∫

M

η2

ε2
f2
(x
ε

) ∣∣∣ψ
(x
ε

)∣∣∣
2

f−1
α,εdx.

By (39),
∣∣ψ
(
x
ε

)∣∣2 ≤ 2 and hence

I1 6 2

∫

M

|∇η|2dvg = 2κδ → 0 (43)

for δ → 0. Now, by (39),

I2 6
2

ε2

∫

Bp(2δ)

f3(
x

ε
)f−1
α,εdx.

Since fα,ε = 1
2f(xε ) on the support of η, we have

I2 6
2

ε2

∫

Bp(2δ)

f2(
x

ε
)dx.

Mimicking what we did to get (38), we obtain that

I2 6 8π + oε(1)

where oε(1) denotes a term tending to 0 for ε→ 0. Together with (42) and (43), we obtain
∫

M

|Dgψε|
2f−1
α,εdvg 6 8π + 2κδ + oε(1). (44)

In the same way, by (41), since

∫

M

〈Dg(ψε), ψε〉dvg ∈ R and since 〈∇η · ψ(xε ), ψ(xε )〉 ∈ iR, we have

∫

M

〈Dg(ψε), ψε〉dvg =

∫

M

η2

ε
f
(x
ε

) ∣∣∣ψ
(x
ε

)∣∣∣
2

dvg.
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By (39), this gives ∫

M

〈Dg(ψε), ψε〉dvg =

∫

M

η2

ε
f2
(x
ε

)
dvg.

With the computations made above, it follows that
∫

M

〈Dg(ψε), ψε〉dvg = 4πε+ o(ε).

Together with (44) and (38), we obtain

λ+
1 (gα,ψ)2Volgα,ψ(M) 6

(
J ′
gα,ε(ψε)

)2

Volgα,ε(M) 6

(
8π + 2κδ + oε(1)

4πε+ o(ε)

)2

(πε2 + o(ε2))

= 4π + 2κδ +
1

4π
κ2
δ + oε(1).

Letting ε then δ go to 0, we get Relation (36).

7.4. Proof of relation (37). As pointed out by the referee the metrics gα,ε coincide with metrics
contructed in [Tak02], and relation (37) is proven in this article.
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[Hij86] O. Hijazi, A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing Spinors, Commun.

Math. Phys. 104 (1986), 151–162.
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