A SPINORIAL ANALOGUE OF AUBIN’S INEQUALITY
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ABSTRACT. Let (M, g,0) be a compact Riemannian spin manifold of dimension > 2. For any metric §
conformal to g, we denote by X the first positive eigenvalue of the Dirac operator on (M, g, o). We show
that

_ien[f] X Vol(M, §)/™ < (n/2) Vol(§™)M/™,

g€lg

This inequality is a spinorial analogue of Aubin’s inequality, an important inequality in the solution
of the Yamabe problem. The inequality is already known in the case n > 3 and in the case n = 2,
ker D = {0}. Our proof also works in the remaining case n = 2, ker D # {0}. With the same method
we also prove that any conformal class on a Riemann surface contains a metric with 232 < [, where fi
denotes the first positive eigenvalue of the Laplace operator.
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1. INTRODUCTION

Let (M, g) be a compact Riemannian manifold of dimension n > 2. We assume that M is spin, and we
fix a spin structure o on M. For any metric § in the conformal class [g] of g, we write ] (g) for the
smallest positive eigenvalue of the Dirac operator with respect to (M, g,c). We define

Ao (M, g,0) = inf AT (g)Vol(M, g)*/.
gelg

If (M, g) is the round sphere S™ equipped with the unique spin structure on S, we simply write A (S™).
It was proven in [Lot86] (ker D = {0}) and [AmO03b] (ker D # {0}) that
At (M, g,0) > 0.

Several articles have been devoted to the study of this spin-conformal invariant. A non-exhaustive list is
[Hij86, Lot86, Biar92, Am03a]. In this article we will prove the following.

Theorem 1.1. Let (M, g,0) be a compact spin manifolds of dimension n > 2. Then,
1

Noin(M, 9,0) < Ny (8") = S wi (1)

min min
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where wy, stands for the volume of the standard sphere S™.

A similar inequality, established by Aubin, played a prominent role in the solution of the Yamabe problem,
see [LP87] for a good overview. We define

Y@L@D::%ﬁAﬂLQWMAL@W"e{—m}UR

g€lg

where Lj := 42=2 A5 + Scalg denotes the conformal Laplacian of (M, ). The number Y (M, [g]) is called
Yamabe constant of (M, [g]) if Y (M[g]) > 0. The definition of the Yamabe constant in the negative case
is slightly different. For the sphere one has Y (S") = n(n — l)wi/ ", Aubin has shown in [Aub76] that
Y (M,g]) < Y(S") for any n-dimensional compact manifold M. Furthermore if strict inequality holds,
then he showed using previous work by Yamabe and Trudinger that g is conformal to a metric of constant
scalar curvature. If M is not conformally flat and of dimension at least 6, then strict inequality was proven
in [Aub76] as well. The idea of his proof is to construct a good test function. For all other conformal
manifolds (except the sphere S™, of course!) the strict version of Aubin’s inequality Y (M, [g]) < Y (S™)
follows from work of Schoen and the positive mass theorem.

The proof of our theorem relies on constructing a suitable test spinor, and hence both the inequality and
the construction are inspired by Aubin’s work together with spinorial techniques provided by [BG92]. The
main idea of our construction is to start with a Killing spinor on the round sphere. Under stereographic
projection this spinor then yields a solution to the equation D = ¢|i)|?/ "~y on flat R”. This solution
will be rescaled, cut off and finally transplanted to a neighborhood of a given point p of the manifold M.
For this transplantation we carry out several calculations in a well-adapted trivialization of the spinor
bundle.

The first steps in our proof are common in all dimensions. However, in some final estimates one has to
distinguish between the cases n > 3 and n = 2.

In dimension n > 3 two other proofs for the theorem have already been published: a geometric con-
struction [Am03b, Theorem 3.1] and a proof using an invariant for non-compact spin manifolds [Gro06].
In these dimensions, it is mostly the method of proof that is interesting and helpful: the trivialization
presented here has less terms in the Taylor expansion than the trivialization by using parallel transport
along radial geodesics. Some formulae of our article also enter in [Gro06]. The calculations of our article
also provide helpful formulae used in [AHMO03], [AH03] and [Rau06].

The main interest of the theorem however lies in the case n = 2. The easier subcase n = 2, ker D = {0}
could be dealt with by a modification of the geometric proof [Am03b, Theorem 3.2], but the subcase
n = 2 and ker D # {0} remained open for longtimes. Grofie’s method fails as well for n = 2 as the
contribution of a cut-off function in [Gro06, Lemma 2.1(ii)] is too large. We assume that her method can
be adapted by using a logarithmic cut-off function, but the details have not been worked out yet.

Our method of proof in dimension 2 actually admits applications to other problems as well. For example,
one obtains the following proposition that provides a negative answer to a question raised in [AAF99].

Proposition 1.2 (See Corollary 7.2). Let (M, g) be a Riemann surface with fixed spin structure o. For
any metric g in the conformal class [g], let p1(g) be the first positive eigenvalue of the Laplacian, and let
)\fL (g) be the first positive eigenvalue of the Dirac operator on (M,g,o). Then

M (@) 1

inf 2L (Q) < =

gelgl p1(9) 2

Spinors and Dirac operator also appear in many other problems in modern physics. Some associated
analytical problems as e.g. the analysis of Dirac-harmonic maps might also profit from the techniques de-
veloped in our article. Dirac-harmonic maps are supersymmetric anologues of harmonic maps. Although
considerable progress was achieved recently (see [CJLWO06] and other articles by the same authors), many
interesting questions remain open, e.g. efficient criteria for the existence of solutions on generic manifolds.
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The article is organized as follows: in Section 2, we recall that /\:;in (M, g,0) has a variational character-
ization. Then, in Section 3 we introduce a well-adapted local trivialization of the spinor bundle, called
the Bourguignon-Gauduchon-trivialization. In Section 4 we calculate the first terms of the Taylor devel-
opment of the Dirac operator in this trivialization. In the following, i.e. in Section 5, we construct a good
test spinor using a Killing spinor on S™, and then in Section 6, we set this spinor in the functional to get
Theorem 1.1 in dimension n > 3. In the last section, i.e. in Section 7, we describe the modifications for
the case n = 2 and prove the proposition.

Acknowledgments. The authors want to thank Oussama Hijazi (Nancy) for his support and encouragement
for working at this article. B. Ammann wants to thank C. Bar for some discussions about related subjects.
We thank the referee for drawing our attention to the article [Tak02]. B. Ammann thanks the Max-Planck
institute for gravitational physics, at Potsdam-Golm for its hospitality.

2. A VARIATIONAL FORMULATION FOR THE SPIN CONFORMAL INVARIANT

For a section ¢ € I'(XM) we define

(fur DUl F10y)
f]\{[ <D¢7 1/’>”g

At some places we will wirte J,; instead of J inorder to indicate, that the functional is defined with respect
to g. Based on some idea from [Lot86], Ammann proved in [Am03a] that

(M. g,0) = inf J (4) 2)

where the infimum is taken over the set of smooth spinor fields for which

(/M<D1/),1/)>vg) > 0.

Hence, to prove Theorem 1.1, we are reduced to find a smooth spinor field v satisfying the condition
below and such that J(¢) < At. (S") + ¢ where £ > 0 is arbitrary small.

min

3. THE BOURGUIGNON-GAUDUCHON-TRIVIALIZATION

As already explained before, the proof of our main theorem is based on a the construction of a suitable
test spinor. We first construct a “good” spinor field of R™ and then transpose it on the manifold. In order
to carry this out, we need to locally identify spinor fields on (R™, geucl) and spinor fields on (M, g). Such
an identification will be provided by a well-adapted local trivialization of the spinor bundle of (M, g).

If a spin manifold IV carries two metrics g1 and gz, then it is a priori unclear how to identify spinors on
(N, g1) and spinors on (N, g2). Bourguignon and Gauduchon [BG92] constructed a convenient map from
the spinor bundle of (N, g1) to the spinor bundle of (N, g2) that allows us to identify spinors, and it is
this identification that will provide the necessary identification to us. The trivialization will be called
Bourguignon- Gauduchon-trivialization.

This trivialization is more efficient than the commonly used “trivialization by parallel transport along
radial geodesics”: with respect to the Bourguignon-Gauduchon-trivialization less terms appear in the
Taylor expansion in Section 4.

Let (M, g) be a Riemannian manifold with a spin structure o : Spin(M, g) — SO(M, g). Let (z1,...xzy)
be the Riemannian normal coordinates given by the exponential map at p € M:

exp,:UCT,M=R" — VCM

(1,...yTn) — m
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Let
G:V — Si(n,R)
m— Gm o= (gi(m))i;

denote the smooth map which associates to any point m € V', the matrix of the coefficients of the metric g
at this point, expressed in the basis (9; := %)19—91 . Since G, is symmetric and positive definite, there
is a unique symmetric and positive definite matrix B,, such that

B, =G,'.
Since
HBnX)Gm(BnY) = gewa(X,Y), VX,Y € R™,
where geuel stands for the Euclidean scalar product, we get the following isometry defined by
B, : (Texp;,l(m)U = Rna geucl) I (Tm‘/a gm)
(a',...,a") Z bl (m)a'd;(m)
4,3
for each point m € V, where bg (m) are the coefficients of the matrix B,, (from now on, we use Einstein’s

summation convention). As the matrix B,, depends smoothly on m, we can identify the following SO,,-
principal bundles:

SO(U, geuel) —— SO(V, g)

|

UcCT,M

exp,,

VM

where 7 is given by the action of B on each component vector of a frame in SO(U, geuc1). The map 7
commutes with the right action of SO,,, therefore the map 7 can be lifted to the spin structures

Spin(n) x U = Spin(U, geuc1) . Spin(V, g) C Spin(M, g)

exp,, \

UcT,M VoM

Hence, we obtain a map between the spinor bundles XU and XV in the following way:
2U = Spin(U, geuel) Xp X — XV =Spin(V,g) x, Xy,
b =[s,0] — ¥ =li(s),¢] (3)

where (p, X,,) is the complex spinor representation, and where [s, ¢] denotes the equivalence class of (s, )
under the diagonal action of Spin(n).

We now define
€; = bfaj y
so that (ey,...,e,) is an orthonormal frame of (T'V, g). Denote by V (resp. V) the Levi-Civita connection

on (TU, geua1) (resp. (T'M,g)) as well as its lift to the spinor bundle XU (resp. V). The Christoffel
symbols of the second kind I‘fj are defined by

ffj = <v€iejvek> )

Tk — _T79
hence I'j; = —I'j,.
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Remark 3.1. To distinguish the Clifford multiplications on these two spinor bundles, one should use
different notations (for instance - and ~) but in the rest of the paper, we prefer to write - in both cases to
make the paper easier to read. With this convention, if ¢ € ¥, U for some x in U, we have

e =0i 1. (4)

Proposition 3.2. If D and D denote the Dirac operators acting respectively on T'(XU) and T'(XV), then
we have _ _
Dp=Dp+W-p+V-p+> (b =), Vs, (5)
j
where W € T(C1 TV) and V € T(T'V) are defined by
1

W= 1 Z b (Or bl)( Hrei - €j " Ck (6)
and
42( )ek— meek (7)

where, for any point m € V, and the coefficients of the inverse matriz of B, are denoted by (b=1)F(m) .

Proof. For all spinor field ¢ € T'(XU), since ¢ € T'(XV) and by definition of V (see e.g. [LM89, Theorem
4.14], [Bar91, I Lemma 4.1]), we have

Vel = Val@) + 1 T e en 0 )
J.k

Taking Clifford multiplication by e; on each member of (8) and summing over i yields
_ 1 ~ _
D1/):Zei-vei1/)+zzrijei-ej-ek-qjj.

Y
Now, using that e; =~ b/d; a and that by (4), e; - Ve,¢ = 8; - Ve, ¥, we obtain that

_ 1 ~ _
D’lﬁ = Zb{@z 'Vajw—f' Z fojei-ej c €k ’lﬂ
ij 05,k
and hence,
o , 1 ~ -
Dy =D+ (b] —6)0; Vo, b+ I > Theiej e .
ij 05,k
See also [Pfa02] for a similar formula, worked out in more detail.
Note that by the definition of e, we have
On the other hand, we compute the Christoffel symbols of the second kind
Te, = Ve,ej = biVa, (b305) = b7 (9,b3)0s + bIbITL, 0,

iYjtrs

where as usually the Christoffel symbols of the first kind T'.
F O = Va Os .

are defined by

S

Therefore we have
Tk r ! sl
I‘ijb = b} (0,b; )—i—blb]l"rS ,
and hence

I = (6(00)) + BT, ) ) (9)
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Now, we can write

1 ~
ZZI‘fjei-ej-ek =W+V
.5,k

where W € T'(A3TV) and V € T'(T'V) are defined by

1 Tk
W:Z Z Iyiei-e;- ek

1,4,k
itiFhA
and
=0 =0
1 ~ - ~ -
vV = Z( Z F§j6i~ej-ek+ Z Ffjei-ej-ek—k Z Ffjei-ej~ek—|— Z Ffjei-ej~ek)
i=j#k i#j=k j#i=k i=j=k
1 ~ =k
= ZZ ( i _Fii)ek
ik
which is (7).
First note that by (9) we have
1 Ly (p—1\k U (p—1\k
W= 3 (0@ + BT ) eeg e
ey
However,
> bl (b )€ e =0
1,4,k
iti kA
since 'L, =T and e; - e; = —e; - e;. Therefore we obtain (6). O
4. DEVELOPMENT OF THE METRIC AT THE POINT p
In this section we give the development of the coefficients ffj in the coordinates (x1,...,xy) at the fixed
point p € M.

For any point m € M, r denotes the distance from p to m. Recall that in the neighborhood of p, we have
the following development of the metric g (see for example [LP87]):

1 1
gij = 0ij+ gRiaﬁj (p)aa” + gRiaﬁjw(p)xafﬁﬂ?'y (10)
1 2
antl j — . . a, .0 A 5
+ (20Rw¢6g;7>\(p) + 15 ;Rzaﬁm(p)R]'yAm(p)> 2PV + O(T )

where
Riji = (Ve;Veen,er) = (Ve,Vesen, er) = (Vie, €k, €1)
and where
Rijkl;m = (VR)mijk:l Rijkl;mn = (sz)nmijkl
are the covariant derivatives of R;;; in direction of e,, (and e,). Therefore we write
Gm =1d+ Gy + G5+ O(r*)
with

(G2) o %Riaﬁj (p)z*z”
and

1
(G3>ij = gRiaBj;,y(p)(Ea(EB(E’y
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Writing
By, =1d+ By + By + B3 + O(r?)
with
(Bl) - = Bjjaz®,
ij
(B2> = Bijopr®a’
ij

and

(33),, = Bijagya®a’z7
ij
the relation B2,G,, = Id yields B; = 0 and
0=(2B:+Gs) + (2B3 + Gs) ,

hence ‘ ‘
b = 8 = gRiapae” = HRiaginae’s? +0(") (11)
(bil)g = 55 + %RZQQJIQ.IQ + f_QRiaﬁj;wxaxﬁfE’y + O(TA)
We also have
. 1 1
ob! = 5 (Rilaj + Riazj)wa ~ 13 (Rilaj;ﬁ + Rialji8 + Riaﬁj;l)$a$ﬁ +0(r*) . (12)

4.1. Development of I'*., V and W.

ij
ry = %gkl (aigjl + 0j9u — 8191'3')

= %(aigjk + 0;9ik — 6}@91‘3‘) +0(r?)

B %(Rﬁ“’“ + Rjaik + Rijok + Riajk = Rikaj — Rmm‘)xa +0(r?)

Using the relations Rijor + Rjiak = 0, Rjaik — Rikaj = —2Rikaj and Riqjx — Riakj = —2Riqr; we then
have
k 1 [ 2
L = _g(Rikaj + Riakj)w +0(r) (13)

On the other hand, since BTbé and I',, have no constant term, Formula (9) yields

Tk = (6{(8,172) +oreeT )55 Lo,

iYjrs

and hence

=k k k 2
We have

(Ni?k - fﬁ‘)ek

(aib;; LT bk — I‘Z-)ek +O(>r?)

™M =M

N N I N

/N
=&
B

. I‘fi>ek +0(r?)

=
Ea
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: i _ a7k

since 0;b}, = 0;b5.

Moreover, we have

Z ( b — Ffz) = —% Z (Riiak + Rmm)xo‘ + % Z (Rikai + Riaki)xa +0(r?)

%

= —(Ric)ak + O(r?)

Therefore we proved that

1
V= ( — 2 (Ric)ara” + 0(72))% . (14)
The aim now is to show that
1 ; _
W= Z by (0,65 (b )Fei e - en
it

is O(r3). First note that by Equations (11) and (12) b7 has no term of order 1 and (?Tbé- has no term of
order 0. Hence, any term in W of order < 3 is a product of the 0-order term of b] and of a term of order
1 or 2 of 3Tbé-.

Therefore W has no term of order 0. To compute the terms of order 1 and 2, we write

w=1 % (6706 +O(™) Jei - e; - -

4 -
i,7,k
i£jAkA
We have
E 61'17?61' c€jcCp = 0
i,k
i£jAkA
since
k _ J _
8ibj = 0;by, and ej ep=—er-ej.

Therefore W has no term of order 1 and 2. We proved that
W = 0(r?) (15)

Remark 4.1. Similar calculations yield

1 1
V = — (5 (Ric)ar 2 + & (Ric)ar,g 227 + 0(*))ex -

4
1 «@ 4
W= Z Ripyx (ijz + Rﬂm‘) 2°’aY ;e en +O(r) .
i Lkt

We do not give details here because we do not need explicit computations of terms of order 2 for V and
terms of order 3 for W in the proof of Theorem 1.1.

5. THE TEST SPINOR

5.1. The explicit spinor. In this section we construct a good test spinor on R™. The spinor bundle on
R™ is trivial, so we can identify the fibers. Let 1y € LoR™ with || = 1. We set f(z) := ﬁ, where
r:=|z|, hence 8; f = —z; f2. Then we define

n

Y(z) = f2(2)(1 —2) - to. (16)
One calculates

Voo = 10w — 5 (1 - ) -, (17)
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and hence
Dy = gﬁ/} (18)
| = 7 (19)
Dy = S (20)

5.2. Conformal change of metrics. In order to explain a geometric interpretation of this spinor,
we have to recall the behavior of spinors and the Dirac operators under conformal changes. See e.g.
[Hit74, Hij01] for proofs.

Let (N,h) be a spin manifold of dimension n. Consider a conformal change of metric h = F~2h for
any positive real function F' on (N, h). The map TN — TN, X — X = FX induces an isomorphism
of principal bundles from SO(N, k) to SO(N, h). It lifts to a bundle isomorphism between the Spin(n)-

principal bundles Spin(V, k) and Spin(N, k), and passing to the associated bundles one obtains a map
SN = Spin(N,h) x, % — XN =Spin(N,h) x,
p = ¢

between the spinor bundles, which is a fiberwise isometry and we have

—

Xg=X ¢
(see [Hij01] for more details on this construction).

By conformal covariance of the Dirac operator, we have, for ¢ € T'(XN),

B(F"T’l @):F"T“ Do, (21)

5.3. Geometric interpretation. We apply this formula to a particular case: let p be any point of the
round sphere S™. Then S™\{p} is isometric to R™ with the metric

gs = f2gcucl y (22)
with

2
M@ =1e

Hence we set N := R, h = geuet, F = f~1. One calculates with (18) and (21) that ® := F "z 4 satisfies
D® = §® on S" \ {p}, and |®| = 1. Hence, the possible singularity at p can be removed (see e.g. the
Removal of singularity theorem [AmO03c, Theorem 5.1]), and one sees that ® is an eigenspinor to the
eigenvalue n/2 on the round sphere S™. The equality discussion in Friedrich’s inequality [Fri80] implies
that @ is a Killing spinor to the constant —1/2, i.e. it satisfies

1
Vx® = —§X - .

Hence we have seen that our spinor 1 is the “conformal image” of a Killing spinor on S™.

6. THE PROOF OF THEOREM 1.1 FOR n > 3

We begin with the following Proposition.
Proposition 6.1. The metric g on M can be chosen such that

Ricgy(p) =0 and Ag(Scaly)(p) =0.
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Proof. Consider a conformal change of the metric g = e2“g for any real function u on (M, g). Then it is
well known that the Ricci curvature (2, 0)-tensor Ricg, the scalar curvature Scal; and the Laplacian Ay
corresponding to the metric g satisfy (see for example Hebey [Heb97] or Aubin [Aub76])

Ricg = Ricy — (n — 2)V2u 4 (n — 2)Vu ® Vu + (Agu— (n— 2)|Vu|§)g ,

Sca,lg — ¢ 2u (Sca,lg + 2(’rL — l)Aqu — (n — 1)(7’L — 2)|V’U/|§) s (23)
As a first step, we can assume that Scaly(p) = 0. Then, let us choose u such that
_ 1 : . Scaly(p) B i Ay(Scaly)(p) , 114
u(z) = m (Rlcg(p)lj - TQZJ (p)) TxT = m(fﬂ )

in a neighborhood of the point p. Since u(p) = 0 and (Vu)(p) = 0, it is straightforward to see that
Ricgz(p) = 0. Moreover, taking the Laplacian of both members of Equation (23), a simple computation
shows that AzScalsz(p) = 0. O

Let ¢ € ¥y M where U is the open neighborhood of a point p € M as defined in the previous sections.
With the help of formulas (14) and (15), we have the following

Corollary 6.2. For any metric g on M chosen as in Proposition 6.1, we have

Dp=Dp+ >  Aijrapya®a’aVei-ej-en- @+ W -0+ V-g+> (b =)0 Vo (24)
sk “
where Aijkapy € R and where W' € T(A3TV), V € T(TV), [W'| < Cr* and |V| < C'r? (C and C’
being positive constants independent of ¢ ).

Remark 6.3. Using the formulae in Remark 4.1, we obtain the formula

1
Rigyk (ijl + lem‘) ;

Aijrapy = — 72

Assume now that 1) is the test spinor constructed in Section 5. Let € > 0 be a small positive number.
We set

x
pla) = mp(2) = Ye(z)

where 7 = 0 on R™ \ B,(26) and n = 1 on B,(d), and that 1, defined as in (16) satisfies the following

relations (17), (18), (19) and (20) where f is again defined by

0=t

We now prove some lemmas which will be useful in the proof of Theorem 1.1.

Lemma 6.4. We have

; ; X 7'3 n I
> (b =6 - Vo, W(g)) < C?ff(g) (25)

ij
where f = H%;.
Proof. At first, we prove that:
> Riagia®a’0, - (Vo,p(2)) = 0. (26)

ijof

Indeed, using (17), we compute that

F3(2)
9

(Vo,0)(2) = = =—=20; - vho - ———==a/ (1= ) -y,
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and obtain

n n+2

ZRiaﬁjx JJ (va 1/1)( 5 % Zszﬁjx J/ﬁa a wo_ﬂ Zszﬁ]x x x38 (1——)’¢

tjof tjof tjof

Now, since if ¢ # j, 0; - 0; = —0; - 0; and since
Y Riagja®a’ =3 Rigaja®a’ =Y Rjapic®a’,
af af af

(we have used that Rjagi = Rgijo = Rigaj), we get that

Z Rinpjx®azP0; - 0 - by = — Z Riapiz®zPihg = 0
ijaB a8
since Ric(p) = 0. The first summand vanishes.

The second summand vanishes as > 5, RiapjaxPa? = 0.

This proves (26). Now, by the development of b (11), we easily obtain that
j j x T3 x
> (6] = 8))0i - Vo, (¥(2))| < C— V(D).
ij
Differentiating expression (16), we see that
VUl < O(f% +r /).

Together with rf(r) = 1i;2 =1- (};:22 <1 we obtain the lemma. O

Now, we can start the proof of Theorem 1.1. We have, with the notations of Corollary 6.2:

Dio(w) = Vn-9(2)+nDW(2))
= vnz/;(g)‘f’g_l/J(g)‘f‘n i];w Aijkagy.%'a xﬁxWei-ej-ek-qﬁ(g)
iFjFRAL

W B(D) 0V (D) +0 (0 = 60, - Vo, (v(2)) -

ij
Therefore we have

Die(@) = Vn-d(2)+ 25D +n Y Agrasia®a’ e ei-e;-ex9(2)

ijkaBy
iAjAkFA

W B(2) 40V - B(2) + Y (b = 60 Vo (U(2)) -

ij

o8

We write that

|DYe*(x) = I+II+III+IV +V + VI+ VII+ VIII +IX + X + XI + XII + XIII + XIV + XV
+X VI + XVII + XVIII + XIX + XX + XXI
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where
_ 0, T
I = |V77|2|¢|2(—)
2
T
II =
i) )
I = Ajiko 5’Yi.<. ol2(E
el “;h ikapy @’ a7V e e - ep - Y| (a)
iFiEkAi
- x
v o= WP
oy
vV = 772|V|2|1/)(—)|2
r.mn , T -
VI = 2 =), 4 S F(2)(=
Re < Vn - 1/)(8) - 2f(€)1/1(€)>
VII = 2Re< Vp- 1/)% Z Awkag,yzzr 2P e; - ej - ek 1/)( ) >
_ x / x
VI = 2%e <V $(2),n W' (g)
IX = 2%e<?n-w(£) nv- w<§>
X = - Az « @b ’Y§R T
nf ”;m jkapy a7 Re < e;-ej-ep 1/12/1>(8)
itk
2
n x T -, X
X1 = Lnpl = -
Con p(Eyme < a5, W 5(2) >
2
XII = %n ("”me<w(§>vw‘)<§>>
XIII = 2¢° ij;v Aijkapyx® xﬁx7§ﬁe<ei~ej~ek-1/;(§),wl'1/_)(§)>
Akt
T T
XIV = Ajjka TRe <ei -z -z
”;m ikapy 2P Y Re < e;-ej - ep - I/J(E) ¢(6)>
itk
) P—— _x
XV = 2p 3‘%€<W'¢(—)7V-¢(—)>
XVI = 2Re<Vp- 9 nz bl — 67)0; - Vag(w(x))>

ij

xvir = - ( YRe < (= )%:(bi—ﬂ)&-vajw(g)b
XVIIL = 2°Re< Y Agraga®c®alei-e; e -zﬁ(g),Z(bif —ﬁ)ﬁ@(%)b
Zr2t, K
- R
XIX = 2°Re<W -w(g),Z(bi = 67)0i - Vo;(¥(2)) >
¥}
e LT
XX = 2°Re< V. ¢(g)7Z(b§ = 61)0i - Vo; (¥(2)) >
ij
2
. . T
XXI = n? Z(bg —6)0; - Vaj@/’(g))

ij
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Since V is a vector field, we have

XII=0
Assume now that = € B,(24). Using the fact that |[Vn| < Cr* (C being a constant independent of ) and
since r < § < 1, we have:
x

I+ III+1IV + V + VII + VIII + IX + XIIT + XIV + XV < Cr* f771(2).

€
and

vi4xr< oty
3 3

Since f < 2 and since 72 < C on B,(26), we obtain that

2
VI+XI< ol =32y,
€ €
In the same way, using relation (25) and the fact that for all ¢, Zf(£) < 1, we have also
2
X + X VI + XVII + XVIII + XIX + XX + XXI < 0 f=5(%) .
5 €

Therefore we obtain that

2
712 n" ny1, % 4 n—1,% C 51,
|DYe|*(z) < @f (g)*’CT f (g)‘*‘ZT f 2(g)
n? x
< —fMHEn+A
< @A
where
A=Cet 2y 4 oer? 35,
€ €
Since | D1 |?> > 0 we have A > —1. Moreover, if we define
g(m)zl—i—nzlx—(l—i—:v)n%l, Vo > -1,
then
J(z) = 2 (1—(1+z)n;+11) Vo> —1.
n+1 ’
Therefore g admits a minimum at 0 on the interval [—1, +o00[. This yields that, Vo > —1,
n n
1 1 <1 .
(1+2) =t n—i—lx

We then have
n n

Do, | o < (L) g
D3| (2) < (32) 7 £(5) 14+ AT < ()P () +

Taking into account the definition of A and integrating over M leads to

n n _2n

()7 (DA,

/ D[ dv, < c7tt [A+B+C| | (27)
M

where

2n
N\ n+1 X
A= [ G réw
BP(Q(;)(2) g g
B = 0/ e2rt =Ly dy,
B, (26) €

C = C/ srzfnfg(z)dvg.
B, (26) 2
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Since the function f is radially symmetric, we can compute A with the help of spherical coordinates:
2n
n\ nt1 x
A= (3)T w6,
B, (25) \2 €

where w,,_1 stands for the volume of the unit sphere S*~! and

60) =5 [ Vil doto) ol = det s (1),

Wn—1

From Proposition 6.1, Hebey [Heb97] or Lee-Parker [LP87], we know that
G(r) <1+ 0(r*).

Therefore, we can estimate A in the following way:

25

2n
n

26
i n+1 n E n—1
A < (%) wnllo [ty o

IN

2

) f"(g)T"Jrng]

26 25

2n = nn—1 n+3
n n+1 € 2 T B r
< (—) Wp_1 " / 7dr+C£4/ ———dr|.
= \2 llou+ﬁn o (1+r7)r

Since
T gntd B
/ 72dr <0 / 3 ndr
o (L7 1
we get that
n % % 2nrn—1
A () F e | [F 2 o).
—\2 Wn—1¢ o (1+7r2)n r+o(l)
and hence
n % % 2nrn71
A<(—)" e / =g 1 28
—\2 Wn—1¢ o (1+72)n r+o(l) (28)
Let us show that
B =o(e"). (29)

Since dv, < Cdx, setting y = Z, we have

/ #WW%Ms;&M/ 2Ly dy
By (29) € Bp(22) €
2?6 ,r.n+3
< (C "+4/ — .
S ey
<

28
Ce"to (/ ’ rin dr) .
1

It is easy to check that relation (29) follows if n > 3. In the same way, we can prove that C = o(e").
Together with Equation (28), we can conclude that
2 n o oo
/ |D1/;E|n2_f1dvg < gmirtn [(—) s wn,l/ P () dr 4 0(1)] ,
M 2 0
which yields

nt1 n+tl

(/MIDwEI%dv,,)n <en? l(";)&wn_l.r}  1to(r)) (30)

where
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We are now going to estimate UM Re < Dy, . > dvg‘. We start by computing

V We < D, > dv,| > A~ B —C' - D — F,
M

where

&= [,

L) 267 €
/ Vv N hE
B = Re < Vn - (=), mp(=) > duy| ,
M € €
C = / n? Z Aijkapyx® 2?27 Re < e; - ej-ex -1, > (E)dvg )
M ijkafy ©
ittt
/ 2 LN i E
D - / PPRe < WH(2), (%) > du,
" € €

) > dug| .

B /Mn2me<Z(bg_(sgwi-vaj(w(g»,w

ij

o8

_2n_
(The term in V is zero). Note that A’ = %(%)1 "1 A where 1 has been replaced by 27. As to obtain
(29), we get that

B'+C' +D' < C/ f"_l(f)dvq <0(e™) =o(eh)
B, (26) el
and
x

3
E' < C/ T—fnfé(—)dvg <o(e" ™).
B,(26) € e

Moreover, with the same method which was used to obtain (28), we get

A > —w, 1" T [1+0(1)].

|3

This proves that

n

}/ Re < Dpe, b > dvg| > 5 Wn-1 e I [140(1)]. (31)
M

Finally, Equations (30) and (31) allow to estimate J(3.) in the following way:

n+1

n

o (U pigan,)
(2/18) - fM Re < D'J]E”lzg > dUg

By (22), we have
wnfllz/ fdr = wy,

Therefore, we proved that for the test spinor ¢, we have
J(0e) < Apin(S™) [L+0(1)] - (32)

min

Hence Theorem 1.1 is proven.
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Remark 6.5. There is a variant of this proof which needs less calculations. As a first step, one proves that
for any € > 0 there is a test spinor ¢, on R™ with support in By(1) such that Jgizd (pe) < AFL(S™) +¢

where € > 0. The argument for this coincides with the above proof, but the terms IV to XXI vanish, as
R™ is flat.

In a second step, one transplants this compactly supported spinor . to the arbitrary compact spin
manifold (M, A2g), where A > 0 is constant, and one obtains a spinor pz on (M, A%g). The terms IV
to XXI reappear. However, from our Taylor expansion worked before, it is easy to see that for A — oo
these terms dissapear.

One concludes that there for any € > 0 there is a A. > 0 and a spinor $; on (M, A2g) such that
Tazg(P2) < Aqin(S") + 2¢.
Together with
)\Jr

min

(Magaa) = )\ilin

(Mv Aggv U) < JA?(](@)
the theorem follows.

This proof is simpler. We chose the way presented above because of various reasons. One the other hand,
as indicated in the introduction, in the case n > 3 it is not the result, but the method of proof which
is interesting. The above formulae enter at several places in the literature, e.g. [AHMO03], [AHO03] and
[Rau06]. Secondly, the simpler proof is close to Grofe’s proof [Gro06] and we refer to her article for the
probably most elegant proof in dimension n > 3. Also in her proof some Taylor expansions from the
present article are used.

7. THE CASE n =2

The 2-dimensional case is simpler since g is locally conformally flat. On the other hand, some estimates
of the last section are no longer valid in dimension 2, hence some parts have to be modified. These
modifications will be carefully carried out in this section.

Let (M, g) be a compact Riemannian surface equipped with a spin structure. If g is conformal to g we
denote by u1(g) the smallest positive eigenvalue of Az. We prove the theorem.

Theorem 7.1. There exists a family of metrics (g:)e conformal to g for which

limsup A\f (ge)*Vol,, (M) < 47
e—0

lim iélf p1(ge)Volg (M) > 8m.
e—

Theorem 7.1 clearly implies Theorem 1.1.

Roughly, these metrics can be described as follows. At first we choose a metric in the conformal class
which is flat in a neighborhood of a point p. We remove a small ball around it and glue in a large
truncated sphere. This removal and gluing can be done in such a way that we stay within a conformal
class. € — 0. In the limit this truncated sphere is getting larger and larger compared to the original part
of M.

Agricola, Ammann and Friedrich asked the following question [AAF99]:

Let M be a two-dimensional torus equipped with a trivial spin structure, can we find on M a Riemannian
metric § for which \{ (§)% < u1(g)?

To understand this question, recall that the two-dimensional torus carries 4 spin structures. Three of

them (the non-trivial ones) are spin boundaries: for these spin structures it is easy to find flat examples
1

with Af(g)* = $41(g). For the trivial spin structure, one has Af(§)? = p1(g) for all flat metrics and

A ()% > pa(g) for many S'-equivariant one’s.



A SPINORIAL ANALOGUE OF AUBIN’S INEQUALITY 17

Clearly, Theorem 7.1 answers this question but says much more: firstly, the result is true on any compact
Riemannian surface equipped with a spin structure and not only when M is a two-dimensional torus.
In addition, the metric g can be chosen in a given conformal class. Finally, this metric ¢ can be chosen
such that (2 — §)Af (9)? < p1(g) where 6§ > 0 is arbitrarily small. More precisely Theorem 1.1 shows the
corollary

Corollary 7.2 (Proposition 1.2 of the Introduction). On any compact Riemannian surface (M,g), we

have
M (@)? 1
inf =2 (éi) <=
11(g) 2
where the infimum is taken over all metrics g conformal to g.

7.1. C’-metrics. Let f be a smooth positive function and set § = f2g. Let also for u € C*°(M)
Jur VUl gdvg
I-(u) — 9M gg
g(u) fM ugdvg

It is well known that ui1(g) = inf I3(u) where the infimum is taken over the smooth non-zero functions u
for which fM udvg = 0. Another way to express u1(g) is

p1(g) :=1inf sup Iz(u) (33)
V' uevi{o}

where the infimum runs over all 2-dimensional subspaces V' of C*°(M). We now can write all these
expressions in the metric g. We then see that for u € C*° (M), we have
Vu|2dv
Tyt = B Vels
‘ [ u?f2dvg
and f11(g) is characterized in a way analogous to (33). Now if f is only continuous, we can define g = f2g.

The symmetric 2-tensor g is not really a metric since f is not smooth. We then say that g is a CO-metric.
We can define the first eigenvalue p1(g) of Az using the definition above.

Suppose that
(L+p) ' f<f<A+p)f. (34)
Then
(L p) 2L oy () < Ipag(u) < (14 p) 1o, ().
From the variational characterization (33) it the follows that
(1+p) 2 (FPg) < ma(f29) < (1+p)*ma(F29),

which is a special case of a result by Dodziuk [Dod82, Proposition 3.3]. In particular, we get

Lemma 7.3. If (f,) is a sequence of smooth positive functions that converges uniformily to f, then
11 (fg) tends to pun(f2g).

In the same way, if § = f2g is a metric conformal to g where f is positive and smooth, we define

| 1Dz,
= M .
/ (Dg¥, ) gdvg
M

The first eigenvalue of the Dirac operator Dy is then given by Af(g) = inf J;(1)) where the infimum is
taken over the smooth spinor fields ¢ for which [, ,(Dgv,¢)dv, > 0. Now, as explained in paragraph 5.2
we can identify spinors for the metric g and spinors for the metric g by a fiberwise isometry. Moreover,
using this identification, we have for all smooth spinor field:

Dy(f~2¢) = fT2 Dy

J5(¥)
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This implies that if we set ¢ = f%w, we have

/M Dy f o,

J5(#) = T5(¥)
/ <Dg(p7 90>d/ug
M
and the first eigenvalue of the Dirac operator Dy is given by
Al (9) = inf T5(¢) (35)

where the infimum is taken over the smooth spinor fields ¢ for which / (Dgep, p)dvg > 0. Now, when
M

g = f2g is no longer smooth, but a C%-metric, we can use (35) to define A\f (g).

Under the assumption (34), we get
(L+p) " Thay () < Tfayl9) < (1+p)Tfa, (9),
and hence

(1+9)7'A (F29) < AT (f29) < (1 + p)AT (f29).
We have proven a result similar to Lemma 7.3:

Lemma 7.4. If (f,) is a sequence of smooth positive functions that converges uniformly to f, then
A (f2g) tends to AT (7).

7.2. The metrics (ga.c)a,.- In this paragraph, we construct the metrics (gu,e)a,e conformal to g which
will satisfy:

lim sup Af (ga,e)*Voly, (M) < 4r (36)
e—0
and
lim igf lim '(?f 141(ga,e)Voly, (M) > 8m. (37)
oa— £E—

Clearly this implies Theorem 1.1. By Lemmas 7.3 and 7.4, it suffices to construct C%-metrics (ga.c)a.c-
Recall that the volume of M for a C%-metric is defined by Volyz, (M) = [,, f?dv,. At first, without loss
of generality, we can assume that g is flat near a point p € M. Let o > 0 be a small number to be fixed
later such that g is flat on B,(«). We set for all z € M and € > 0,

52 3
- if r<a
fa.,s(x) — { E2—5r2 S

where r = dy(.,p). The function f, . is continuous and positive on M. We then define for all ¢ > 0,
Jae = f2.9- The symmetric 2-tensors (ga,c)a,c Will be the desired C%-metrics. For these metrics, we

have
VOlga,a (M) :/ f(i.,sdvg :/ f(i.,sdvg +/ f(i.,sdvg'
M Bp(a) M\ By (o)

Since g is flat on B, (), we have

/ ) 27 « 64’[”
2 gy, = / / R CY
Bya) O ° I o Jo (e2+7%)?

Substituting p = r?/e? we obtain

J

a2

2 2 [ <? 1 2 2
2 dvg, = Te / ————dr = me” + o(e”).
(@ 7 o (I+p)?

p
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Since f2 . < Z—i on M \ B,(a), we have fM\Bp(a) 12 .dvg = o(¢?). We obtain
Vol,_ (M) = 72 + o(e?). (38)
7.3. Proof of relation (36). We define on R? as in subsection 5.1 the spinor field
() = f(2)(1 =)o
where f(z) = ﬁ, [tho] = 1. We have
Dy = fi and [¢] = f?. (39)

Now, we fix a small number « > 0 such that g is flat on B,(2a;). Then, let § be a small number such that
we take 0 < 6 < a. Assume that e tends to 0. Furthermore let 1 be a smooth cut-off function defined on
M by

1 if r<é§?
n)=| 2H -1 if re6?4
0 if r>94

The function 7 is such that 0 <7 < 1, n(Bp(d)) = {1}, n(R™ \ Bp(2§)) = {0} and
Ks = / |Vn|2dv, — 0 for § — 0. (40)
M

Identifying B, (26) in M with By(26) in R?, we can define a smooth spinor field on M by 1. = n(x)t (£).
Using (39), we have

x n,/T x
Dy(pe) = Vn -1 (g) + gf (g) () (g) - (41)
Since (V- (2),9(£)) € iR and since |Dgipe|* € R, we have
/ |Dgte|* fobdvg = In + I (42)
M
where

b= [t () ae = [ 5 (2)]o (5] sata

By (39), ¢ (%)}2 < 2 and hence
I < 2/ |Vn|2dv, = 2ks — 0 (43)
M

for § — 0. Now, by (39),

2 3,

I < ) fotda.

e B (26) £
Since fq, = %f(%) on the support of 7, we have
L<2 £2(%)da.
€ JBy2s) €
Mimicking what we did to get (38), we obtain that
I, < 87+ 0.(1)

where o (1) denotes a term tending to 0 for ¢ — 0. Together with (42) and (43), we obtain

/ |Dgtpe | fo tdvg < 8T + 255 + 0-(1). (44)
M

In the same way, by (41), since / (Dg(¥e),1be)dvy € R and since (V- 9(%2),9(%)) € iR, we have
M

[ watevan, = [ ()] ()] dos
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this gives

[ waw vt = [ L5 (2)a,

With the computations made above, it follows that

/ <D9(¢6)vws>dv9 = 4me + o(e).
M

Together with (44) and (38), we obtain

2
A 0,02Vl (M) < (75, 00)) Vol 00 < (S 2 L) o)

dme + o(e)

1
= 4w+ 2Kks + Em% +o:(1).

Letting ¢ then § go to 0, we get Relation (36).

7.4. Proof of relation (37). As pointed out by the referee the metrics g, coincide with metrics
contructed in [Tak02], and relation (37) is proven in this article.
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