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Based on discretization methods for solving semi-in	nite programming problems, this paper presents a spline smoothing Newton
method for semi-in	nite minimax problems. �e spline smoothing technique uses a smooth cubic spline instead of max function
and only few components in the max function are computed; that is, it introduces an active set technique, so it is more e
cient
for solving large-scale minimax problems arising from the discretization of semi-in	nite minimax problems. Numerical tests show
that the new method is very e
cient.

1. Introduction

In this paper, we consider the following semi-in	nite mini-
max problems:

(�) min
�∈��

max
�∈�

� (�, �) , (1)

where � : �� ×�� → �. We assume (as in Assumption 3.4.1
in [1]) that both �(⋅, ⋅) and ∇��(⋅, ⋅) are Lipschtiz continuous
on bounded sets. Such a semi-in	nite minimax problem� is an exciting part of mathematical programming. It
has very widespread application backgrounds in optimal
electronic circuit design, linear Chebyshev approximation,
minimization of �oor area, optimal control, computer-aided
design, numerous engineering problems, and so forth (see
[1–8]). Over the past decade, many researchers had done a
lot of works on it and proposed some algorithms (see [9–
14]). However, e
cient algorithms for solving the problem� are few, because it is di
cult to design an algorithm
to deal with the nondi�erentiability of objective function
and the in	nite set �. A common approach for solving� is the discretization method. Generally, discretization of
multidimensional domains gives rise to minimax problems
with thousands of component functions. Computation cost is

increased; e
ciency of the discretization method is a�ected.
To overcome these problems, Polak et al. proposed algorithms
with smoothing techniques for solving 	nite and semi-
in	nite minimax problems (see [15, 16]). In [16], an active set
strategy which can be used in conjunction with exponential
(entropic) smoothing for solving large-scale minimax prob-
lems arising from the discretization of semi-in	nite mini-
max problems had been proposed. But the active set grew
monotonically. In this paper, using the feedback precision-
adjustment smoothing parameter rule which was proposed
by Polak et al. in [15], we propose a new discretization
smoothing algorithm for solving �. �e smoothing function
is cubic spline function not exponential function in our algo-
rithm. �e spline smoothing technique uses a smooth spline
function instead of thousands of component functions and
acts also as an active set technique, so only few components
in the max function are computed at each iteration. And the
active set does not growmonotonically; hence the number of
gradients and Hessian calculations is dramatically reduced,
and the computation cost is greatly reduced. Numerical
tests show that the new method is very e
cient for semi-
in	nite minimax problems with complicated component
functions.

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 852074, 7 pages
http://dx.doi.org/10.1155/2014/852074



2 Journal of Applied Mathematics

We assume that the problem � can be approximated by a
sequence of 	nite minimax problems of the form

(���) min
�∈��

max
�∈��

� (�, �) , (2)

where the sets �	, � = 1, 2, 3,. . . have 	nite cardinality. In
practice, we can expect that�	 ⊂ �	+1, that is, that they grow
monotonically, and that the closure of ∪∞

	=1�	 is equal to �.
However, it su
ces to assume, as in Assumption 3.4.2 in [1].

Assumption 1. �ere exist a strictly positive valued, strictly
monotone decreasing function Θ : � → � and constants� > 0 and �0 > 0, such that for every � > �0 and � ∈ �,
there exists a �� ∈ �	 such that

������ − ������� ≤ �Θ (�) . (3)

It is easy to satisify with Assumption 1. For example, let� = [�, �], �	 = [�, � + (� − �)/2	, � + 2((� − �)/2	), . . . , � +(2	 − 1)((� − �)/2	), �], Θ(�) = 1/(2	 − 1), � = 1/2‖�‖ =(1/2)(� − �).
We assume that �	 = {�	1 , . . . , �	�� }.
Next, we let

�	� (�) ≜ � (�, �	�) , � ∈ �	 = {1, 2, . . . , !	} , (4)

and de	ne

# (�) = max
�∈�

� (�, �) ,
#	 (�) = max

�∈
�
�	� (�) , (5)

and with this notation, the problems ��� assume the form

(�	) min
�∈��

#	 (�) . (6)

�e optimality functions $	 for the problems �	 are
de	ned by

$	 (�) ≜ −min
�∈Σ

{{{ ∑
�∈
�

-� [#	 (�) − �	� (�)]

+ 12
����������� ∑
�∈
�

-�∇�	�(�)�����������
2}}} ,

(7)

where Σ ≜ {- ∈ �
� | -� ≥ 0,∑�∈
� -� = 1}.
In [1], we 	nd the following result.

�eorem 2. Suppose that �̂ is an optimal solution to problems�	; then, $	(�̂) = 0.
�e corresponding optimality function for � is de	ned

(see �eorem 3.1.6 in [1]) by

$ (�) = − min
�∈��(�)

{A0 + 12����A����2} , (8)

where

C# (�) = conv�∈� {(# (�) − � (�, �)∇�� (�, �) )} . (9)

Referring to Lemma 3.4.3 in [1], we see that, under
Assumption 1, the following result must hold.

�eorem3. Suppose that {�	}∞	=0 is a sequence in�� converg-
ing to a point �̂. �en, #	(�	) → #(�̂) and $	(�	) → $(�̂)
as N → ∞.

In this paper, we consider to approximate uniformly#	(�) by the smooth spline introduced in [17].
Let us 	rst recall the formulation of multivariate spline.

Let I be a polyhedral domain of ��� which is partitioned
with irreducible algebraic surfaces into cells Δ = {Δ � | K =1, . . . , �}. A function L(M) de	ned on I is called a N-spline
function with Oth order smoothness, expressed for short asL(M) ∈ P��(I, Δ), if L(M) ∈ Q�(I) and L(M)|Δ � = R� ∈ ��,
where �� is the set of all polynomials of degree N or less in !	
variables. Similar to the smooth spline which approximates
uniformlymin{M1, M2, . . . , M��} given in [17], we can construct
a spline function L23(M; T) ∈ P23(��� , Δ2

MS) to approximate

uniformly max{M1, M2, . . . , M��} (as T → +0), where Δ2
MS is

the homogenous Morgan-Scott partition of type two in [17],
as follows:

L23 (M1, M2, . . . , M�� ; T) = M�1
+ �−1∑

�=1
U�(WM��+1 − �∑

�=1
M�� + T)

3

,
for M ∈ Δ �1,...,�� (T) ,

(10)

where U1 = 1/(6T2), U�/U�+1 = (N + 2)/N, 1 ≤ N ≤ !	,
and the cell Δ �1 ,...,��(T) is the region de	ned by the following
inequalities:

M�� − M��+1 ≥ 0, when 1 ≤ W < N,
(N − 1) M�� − �−1∑

�=1
M�� + T ≥ 0,

NM�� − �∑
�=1

M�� + T ≤ 0, when N + 1 ≤ W ≤ !	.
(11)

�e composite function \��,��(�) approximates uniformly#	(�) as ^	 → +0, where
\��,�� (�) = L23 (�1 (�) , �2 (�) , . . . , ��� (�) ; ^	) ,
for � such that

(�1 (�) , �2 (�) , . . . , ��� (�)) ∈ Δ �1 ,...,�� (^	) .
(12)

Proposition4. Suppose that ^	 > 0. For any� ∈ ��, we de	ne

Ω̂ (�) ≜ {� ∈ �	 | �	� (�) = #	 (�)} . (13)



Journal of Applied Mathematics 3

If the function ��(⋅) is continuous, then \��,��(⋅) is continuous
and is increasing with respect to ^	. Furthermore,

#	 (�) + ^	3 (1 − 1dddddΩ̂ (�)ddddd) ≤ \��,�� (�)
≤ #	 (�) + ^	3 (1 − 1N) ,

(14)

where |Ω̂(�)| denotes the cardinality of Ω̂(�).
Proof. L23(M1, M2, . . . , M�� ; T) is twice continuously di�eren-

tiable and if the functions ��(⋅), � ∈ �	 are continuous, it
is easy to know that \��,��(⋅) is continuous. From Lemma 1.1
in [18], we know \��,��(⋅) is increasing with respect to ^	.

According to (12), we have

\��,�� (�)
= �	�1 (�) + U1(�	�1 (�) − �	�2 (�) + ^	)3

+ ⋅ ⋅ ⋅ + U|Ω̂(�)| (dddddΩ̂ (�)ddddd �	�|Ω̂(�)|+1 (�)
− (�	�1 (�) + ⋅ ⋅ ⋅ + �	�|Ω̂(�)| (�)) + ^	)3

+ ⋅ ⋅ ⋅ + U�−1 ((N − 1) �	�� (�)
− (�	�1 (�) + ⋅ ⋅ ⋅ + �	��−1 (�)) + ^	)3.

(15)

From the de	nition of Ω̂(�), we know (W − 1)�	�� (�) −(�	�1 (�) + ⋅ ⋅ ⋅ + �	��−1 (�)) + ^	 = ^	, 1 ≤ W ≤ |Ω̂(�)|. From
the de	nition of Δ �1 ,...,��(^	), we know ^	 ≥ (W − 1)�	�� (�) −(�	�1 (�) + ⋅ ⋅ ⋅ + �	��−1 (�)) + ^	 ≥ 0, 1 ≤ W < N. �en, we have

�	�1 (�) + |Ω̂(�)|−1∑
�=1

U�^3	 ≤ \��,�� (�) ≤ �	�1 (�) + �−1∑
�=1

U�^3	. (16)

By U�/U�+1 = (W + 2)/W, we can obtain U� = (2/(W(W + 1)))U1 =1/(3W(W + 1)^2	). �us ∑|Ω̂(�)|−1
�=1 U�^3	 = (^	/3)(1 − (1/|Ω̂(�)|))

and ∑�−1
�=1 U�^3	 = (^	/3)(1 − (1/N)) and �	�1 (�) = #	(�).

Hence the desired result follows.

�e following proposition is proved in [19].

Proposition 5. (1) If all the functions �	�(⋅), � ∈ �	
are continuously di
erentiable, then \��,��(⋅) is continuously
di
erentiable and

∇�\��,�� (�) = ��∑
�=1

-�
��,�� (�) ∇��	� (�)

= �∑
�=1

-��
��,�� (�) ∇��	�� (�) ,

(17)

where

-��
��,�� (�)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{

1 − 3�−1∑
�=1

U�(ℎ� (�, ^	))2, �jO � = 1,
3 (� − 1) U�−1(ℎ�−1 (�, ^	))2

−3�−1∑
�=�

U�(ℎ� (�, ^	))2, �jO 2 ≤ � < N,
3 (N − 1) U�−1(ℎ�−1 (�, ^	))2, �jO � = N,0, �jO N < � ≤ !	,

(18)

and ℎ�(�, ^	) = W�	��+1 (�) − ∑�
�=1 �	�� (�) + ^	.

(2) For any � ∈ �� and ^	 > 0, -��
��,��(�) ∈ [0, 1), K� ∈ �	

and ∑��∈
� -��
��,��(�) = 1.

(3) If all the functions, �	�(⋅), � ∈ �	, are twice
continuously di
erentiable, then \��,��(⋅) is twice continuously
di
erentiable and

∇2
��\��,�� (�) = �∑

�=1
-��
��,�� (�) ∇2

��f
	�� (�)

+ �∑
�=1

( �∑̆
�=1

-��, ̆�
��,�� (�) ∇��	� ̆� (�))

× (∇��	�� (�))�,
(19)

where

-�1, ̆�
��,�� (�)

=
{{{{{{{{{{{{{{{{{{{{{

6�−1∑
�=1

U� (ℎ� (�, ^	)) kℎlm ̆o = 1,
− 6 ( ̆o − 1) U ̆�−1 (ℎ ̆�−1 (�, ^	))
+ 6�−1∑

�= ̆�
c� (ℎ� (�, ^	)) kℎlm 2 ≤ ̆o < N,

− 6 (N − 1) U�−1 (ℎ�−1 (�, ^	)) kℎlm ̆o = N,
-��, ̆�
��,�� (�)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

−6 (� − 1) U�−1 (ℎ�−1 (�, ^	))
+ 6�−1∑

�=�
U� (ℎ� (�, ^	)) kℎlm 1 ≤ ̆o < �,

− 6 ( ̆o − 1) U ̆�−1 (ℎ ̆�−1 (�, ^	))
+ 6�−1∑

�= ̆�
U� (ℎ� (�, ^	)) kℎlm � < ̆o < N,

6( ̆o − 1)2U ̆�−1 (ℎ ̆�−1 (�, ^	))
+ 6�−1∑

�= ̆�
U� (ℎ� (�, ^	)) kℎlm ̆o = �,

− 6 (N − 1) U�−1 (ℎ�−1 (�, ^	))kℎlm ̆o = N, �jO 2 ≤ � < N,
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-��, ̆�
��,�� (�)
= {− 6 (N − 1) U�−1 (ℎ�−1 (�, ^	)) kℎlm 1 ≤ ̆o < N,6(N − 1)2U�−1 (ℎ�−1 (�, ^	)) kℎlm ̆o = N.

(20)

From Proposition 5, we obtain the following results.

Corollary 6. For any � ∈ �� and K� ∈ �	,

lim
��→0

-��
��,�� (�)

=
{{{{{{{{{

1dddddΩ̂ (�)ddddd , i� K� ∈ Ω̂ (�) ,
0, i� K� ∉ Ω̂ (�) ,

lim
��→0

∇�\��,�� (�) = ∑
�∈Ω̂(�)

1dddddΩ̂ (�)ddddd∇��� (�) .

(21)

Proof. According to the de	nition of Δ �1 ,...,��(^	), we know

that N → |Ω̂(�)| as ^	 → 0. From Proposition 5 (1), we
know

lim
��→0

-�1
��,�� (�) = 1 − 3|Ω̂(�)|−1∑

�=1
U�^2	

= 1 − 3|Ω̂(�)|−1∑
�=1

13W (W + 1) ^2	 ^2	 = 1dddddΩ̂ (�)ddddd .

(22)

If K� ∈ Ω̂(�), (1 < � < N), then
lim
��→0

-��
��,�� (�) = 3 (� − 1) U�−1^2	 − 3|Ω̂(�)|−1∑

�=�
U�^2	

= 3 (� − 1) 13 (� − 1) �^2	 ^2	
− 3|Ω̂(�)|−1∑

�=�

13^2	 (1W − 1W + 1) ^2	 = 1dddddΩ̂ (�)ddddd .
(23)

If K� ∈ Ω̂(�), then N = |Ω̂(�)|. �at is

lim
��→0

-��
��,�� (�) = 3 (dddddΩ̂ (�)ddddd − 1) U|Ω̂(�)|−1^2	 = 1dddddΩ̂ (�)ddddd . (24)

�en, lim��→0-��
��,��(�) = 1/|Ω̂(�)|, K� ∈ Ω̂(�).

If K� ∉ Ω̂(�), (1 < � < N), then lim��→0-��
��,��(�) = 0.

It now follows from (21) and (17) that (21) holds.�e proof
is completed.

Next, let {^	}∞	=1 be an in	nite sequence such that ^	 →0, as � → ∞, and consider the sequence of approximating
problems

(���,��)min
�∈��

\��,�� (�) , � = 1, 2, 3, . . . , (25)

with \��,��(�) de	ned as in (12).

�eorem 7. �e problems (���,t�) epiconverge to the problem�.
Proof. Referring to�eorem 3.3.2 in [1], we see that to prove
the theorem it is su
cient to show that if {�	}∞	=1 is a
sequence in �� converging to a point �̂, then \��,��(�) →#(�̂).

�us, suppose that �	 → �̂ as � → ∞. �en,ddddd\��,�� (�	) − # (�̂)ddddd
≤ ddddd\��,�� (�	) − #	 (�	)ddddd + dddd#	 (�	) − # (�̂)dddd . (26)

Now, by �eorem 2, #	(�	) − #(�̂) → 0 as � → ∞, and,
since by assumption of ^	 → 0, as � → ∞, it follows
from (14) that \��,��(�	) − #	(�	) → 0 as � → ∞, which
completes our proof.

2. Spline Smoothing Newton
Method and Its Convergence

We combine Algorithm 3.1 in [18] with a discretization
precision test to produce an algorithm for solving the semi-

in	nite minimax problems �. �e Hessian ∇2
��\��,��(�) of

the smoothing spline function \��,��(�) can be modi	ed by
adding a multiple of the identity introduced in [20]; that is,

r��,�N (�) = s (�) t + ∇2
��\��,�� (�) , (27)

where s(�) = max{0, u − l(�)} with l(�) denoting the

minimum eigenvalue of ∇2
��\��,��(�) and u > 0.

Algorithm 8.

Data. Given �(0) ∈ ��, a monotone increasing sequence of
sets {�	}∞	=0, �	 = {�1, �2, . . . , ���}, of cardinality !	, with!	 → ∞ as� → ∞, satisfying Assumption 1, and de	ning

the functions�	�(�) = �(�, �	�), � = 1, 2, . . . , !	, a sequence
of monotone decreasing parameters {v	}∞	=0 > 0, such thatv	 → 0 as � → ∞, u > 0, and w > 0. Functionsx (^), x!(^), y(^): (0,∞) → (0,∞), satisfying x!(^) ≥ x (^) >y(^), for all ^ > 0, ̂̂ ≫ 1, ~1 ∈ (0, 1), ~2 ≫ 1, 0 < ~3 ≪ 1.
Parameter. Set �, � ∈ (0, 1).
Step 0. Set � = 0.
Step 1. Set K = 0, ^0 = v	, N = 0, L = 1, W = 9, ��,� = �(0).

Step 2. Let t = {� | max{�	1(��,�), . . . , �	�� (��,�)}−�	�(��,�)< ^�}; let N be the cardinality of t, and t = {K1, K2, . . . , K�}. Range
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{�	�� (��,�)}��=1 according to �	�1 (��,�) ≥ �	�2 (��,�) ≥ ⋅ ⋅ ⋅ ≥
�	�� (��,�).

If N = 1, the cell is Δ �1(^�).
Else if (Ñ − 1)�	��̃ (�(�,�)) − ∑�̃−1

�=1 �	�� (�(�,�)) + ^� ≥ 0, for
every Ñ ∈ {N, N−1, . . . , 2}, we have Ñ ∈ t ⊆ {N, N−1, . . . , 2}. LetN̂ be the maximum element of t; then the cell is Δ �1,...,��̂(^�).
Step 3. Compute ∇�\��,��(��,�). If ‖∇�\��,��(��,�)‖2 > y(^�), go
to Step 4. Else go to Step 9.

Step 4. Compute r��,��(��,�) according to (27); then compute

Cholesky factor � such that r��,��(��,�) = ��� and the
reciprocal condition number U(�) of �.

If U(�) ≥ ~1 and ^� ≥ ~3, go to Step 5.

Else if U(�) ≥ ~1 and the largest eigenvalue ��� ,max(��,�) ofr��,��(��,�) satis	es ��� ,max(��,�) ≤ ~2, go to Step 5.
Else go to Step 6.

Step 5. Compute the search direction

ℎ�,� = −r��,��(��,�)−1∇�\��,�� (��,�) ; (28)

go to Step 7.

Step 6. Compute the search direction

ℎ�,� = −∇�\��,�� (��,�) . (29)

Step 7. Compute the step length -�,� = ��, where W ≥ 0 is the
smallest integer satisfying

\��,�� (��,� + ��ℎ�,�) − \��,�� (��,�)
≤ ��� ⟨∇�\��,�� (��,�) , ℎ�,�⟩ . (30)

Step 8. Set ��,�+1 = ��,� + -�,�ℎ�,�, K = K + 1. Go to Step 2.

Step 9. If L = 1, compute ^∗ such that

x (^�) ≤ �����∇�\��,�∗ (��,�)�����2 ≤ x! (^�) ; (31)

go to Step 10.
Else set ^�+1 = 1/L(N+2), N = N+1, and K = 0; go to Step 2.

Step 10. If ^∗ ≥ ̂̂, set ^�+1 = min{^∗, ^�/(^� + 1)}, N = N + 1, andK = 0; go to Step 2. Else set L = max{2, ((1/ ̂̂) + 2)/(N + 1)},^�+1 = 1/L(N + 2), N = N + 1, and K = 0; go to Step 2.

Step 11. If

12�����∇�\��,��(��,�)�����2 ≤ w,
��∑
�=1

-�
��,�� (��,�) [#	 (��,�) − �	� (��,�)] ≤ w, (32)

where the -�
��,��(��,�) are de	ned by (17), set �	 = ��,�, ^	 =^�, replace � by � + 1, w by w/2, and go to Step 1.

Else go to Step 1.

�eorem9. Suppose that {�	}∞	=0 is a sequence constructed by

Algorithm 8. �en, any accumulation point �̂ of this sequence

satis	es s(�̂) = 0.
Proof. First note that it follows from Corollary 6 that condi-
tion (32) will be eventually satis	ed, since Algorithm 8 keeps
abating ^�. Next, note that

− ��∑
�=1

-�
��,�� [#	 (�	) − �	� (�	)]
− 12�����∇�\��,��(�	)�����2 ≤ $	 (�	) ≤ 0.

(33)

Since by construction

− ��∑
�=1

-�
��,�� [#	 (�	) − �	� (�	)]
− 12�����∇�\��,�� (�	)�����2 �→ 0, as � �→ ∞,

(34)

and $	(�	)→ �$(�̂) on any in	nite subsequence {�	}	∈$
that converges to �̂, the desired result follows.

3. Numerical Experiment

We have implemented Algorithm 8 using Matlab. In order
to show the e
ciency of the algorithm, we also have
implemented algorithm in [16] (denote PWY) using similar
procedures. Algorithm PWY was proposed by Polak et al. in
[16], which has been introduced in Section 1.

�e test results were obtained by running Matlab R2011a
on a desktop with Windows XP Professional operation
system, Intel(R) Core (TM) i3-370 2.40GHz processor, and
2.92GB of memory.

InAlgorithm 8, parameters are chosen as follows:� = 0.8,� = 0.77, ̂̂ = 105 ln !	, ~1 = 10−7, ~2 = 1030, ~3 = 1000 ̂̂,y(^) = min{0.1, 1000^/(�+1)2}, (x , x!) = (0.01, 0.2), u = 0.1,w = 1, !	 = 100 ⋅ 2	 + 1, and v	 = 1/(�2 + (1/R	)). In
the PWY algorithm, parameters are chosen as follows: T =0.1, y(R) = min{0.1, 1000/((� + 1)2R)}. �e results are listed
in Tables 1, 2, 3, 4, and 5. �∗ denotes the 	nal approximate
solution point and #∗ is the value of the objective function of
discretized problems ��� at �∗. � is the maximum number
of discrete points. Time is the CPU time in seconds.

Example 1 (see [21]). Let � = (�1, �2, �3, �4, �5, �6) ∈ �6

# (�, �) = �2
1 exp (−�2�) cos2 (�3� + �4) − cos (�)

+ �2
2�2

3 exp (−�1�) sin2 (�2�)
+ exp ((1 − �6)2�) + x25,

� = [0, 10] .
(35)
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Table 1: Test results for Example 1.

� Method #∗ Time �∗

1638401 Algorithm 8 2.000062 9.4203 (1.1065, 1.0071, 1.1483, 1.0785, 0.0022, 1.0000)

819201 PWY 2.000056 51.4509 (0.9586, 1.0027, 1.1604, 1.0501, −0.0023, 0.9999)
Table 2: Test results for Example 2.

� Method #∗ Time �∗

1638401 Algorithm 8 0.948184 5.8026 (−4.9016, 0.0002, 1.0046, −0.1800)
1638401 PWY 0.948046 14.8421 (−4.7261, −0.0000, 1.0000, −0.1472)

Table 3: Test results for Example 3.

� Method #∗ Time �∗

819201 Algorithm 8 4.999999 1.5466 (2.0363, 1.9958, 0.0095, 1.5724)

819201 PWY 5.000483 18.2670 (1.4796, 1.3277, 0.62892, 1.5704)

Table 4: Test results for Example 4.

� Method #∗ Time �∗

6553601 Algorithm 8 −0.999999 3.6721 (0.0000, −44.0111)
3276801 PWY −0.999986 86.8183 (−0.0036, −44.0000)

Table 5: Test results for Example 5.

� Method #∗ Time �∗

2560000 Algorithm 8 1.828804 2.8550 (0.5548, 0.6475, 0.5946, 0.7662)

640000 PWY 1.828698 4.1854 (0.5556, 0.6497, 0.5971, 0.7684)

Example 2 (see [21]). Let � = (�1, �2, �3, �4) ∈ �4

# (�, �) = (�1 + √�2
1 + cos (�) + 4)

× ln (sin� + exp (cos�1 + �2
2))

+ (exp (−�) − �3 + ��41 + �2
3

)2,
� = [0, 10] .

(36)

Example 3. Let � = (�1, �2, �3, �4) ∈ �4

# (�, �) = �2
2�2

3 exp (−�1�) sin2 (�2�)
− �1 cos (�) − �4 sin (�) + 5,

� = [0, 2v] .
(37)

Example 4. Let � = (�1, �2) ∈ �2

# (�, �) = �2
1 + 2�1�2 + l�1+�2 − l�,
� = [0, 10] . (38)

Example 5. Let � = (�1, �2, �3, �4) ∈ �4

# (�, �) = (�1 − �1)2�2
3

+ (�2 − �2)2�2
4 − 1 ,

� = [0, 1] × [0, 1] .
(39)

4. Conclusion

We have developed a spline smoothing Newton method for
the solution of semi-in	niteminimax problems using smooth
cubic spline anddiscretization strategy.At each iteration, only
few components in the max function are computed; hence,
the computation cost is greatly reduced. For semi-in	nite
minimax problems with complicated component functions,
numerical tests show that the new method is very e
cient.
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smoothing methods for convex semi-in	nite programming,”
Mathematics of Operations Research, vol. 34, no. 2, pp. 303–319,
2009.

[14] L. Zhang, S. Fang, and S. Wu, “An entropy based central
cutting plane algorithm for convex min-max semi-in	nite
programming problems,” Science China Mathematics, vol. 56,
no. 1, pp. 201–211, 2013.

[15] E. Polak, J. O. Royset, and R. S. Womersley, “Algorithms with
adaptive smoothing for 	nite minimax problems,” Journal of
Optimization �eory and Applications, vol. 119, no. 3, pp. 459–
484, 2003.

[16] E. Polak, R. S. Womersley, and H. X. Yin, “An algorithm
based on active sets and smoothing for discretized semi-
in	niteminimax problems,” Journal of Optimization�eory and
Applications, vol. 138, no. 2, pp. 311–328, 2008.

[17] G. Zhao, Z. Wang, and H. Mou, “Uniform approximation of
min/max functions by smooth splines,” Journal of Computa-
tional and Applied Mathematics, vol. 236, no. 5, pp. 699–703,
2011.

[18] L. Dong and B. Yu, “A spline smoothing Newton method for
	nite minimax problems,” Journal of Engineering Mathematics.
In press.

[19] L. Dong, B. Yu, and G. H. Zhao, “A smoothing spline homotopy
method for nonconvex nonlinear programming,” submitted.

[20] J. Nocedal, S. J.Wright, P. Glynn, and S.M. Robinson,Numerical
Optimization, Springer Series in Operations Research, Springer,
New York, NY, USA, 1999.

[21] X. Yu, Truncated Aggregate Smoothing Algorithms, School
of Mathematical Sciences, Dalian University of Technology,
Dalian, China, 2010.



Submit your manuscripts at

http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


