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A Spline-Trigonometric Galerkin Method and an
Exponentially Convergent Boundary Integral Method

By Douglas N. Arnold*

Abstract. We consider a Galerkin method for functional equations in one space variable which
uses periodic cardinal splines as trial functions and trigonometric polynomials as test
functions.

We analyze the method applied to the integral equation of the first kind arising from a
single layer potential formulation of the Dirichlet problem in the interior or exterior of an
analytic plane curve. In constrast to ordinary spline Galerkin methods, we show that the
method is stable, and so provides quasioptimal approximation, in a large family of Hubert
spaces including all the Sobolev spaces of negative order. As a consequence we prove that the
approximate solution to the Dirichlet problem and all its derivatives converge pointwise with
exponential rate.

1. Introduction. In this paper we formulate and analyze a new method for the
numerical solution of functional equations such as integral and differential equa-
tions. Our method is particularly appropriate for the solution of integral equations
arising from boundary integral formulations of boundary value problems in partial
differential equations. The desired solution to the boundary value problem is
typically obained at an interior point of the domain by integrating the solution of
the boundary integral equation times a smooth weighting function. In conjunction
with this procedure our method of solution of the integral equation will lead to
exponentially fast convergence of the solution and its derivatives away from the
boundary, in contrast to the polynomial rates of convergence achieved by the
majority of other practical discretization methods, such as finite element, finite
difference, and collocation methods.

The method we propose for solving the integral equation is a Galerkin method
with spline trial functions and trigonometric test functions, which we shall refer to as
the spline-trig method. Spline Galerkin methods, or finite element methods, in which
both the test and trial spaces consist of splines, have been widely studied. It is
however the novel aspect of the spline-trig method, the use of trigonometric
polynomials as test functions, which leads to the exponential convergence rates
referred to above.

Because of the novelty of the method and its analysis we shall not strive for
generality in this paper, but instead shall study the method in the context of one
relatively simple model problem. The problem we consider is the (interior and
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384 DOUGLAS N.ARNOLD

exterior) Dirichlet problem for Laplace's equation in two dimensions, to be solved
using a single layer potential formulation. Let T be a smooth simple closed curve in
the plane and let g be a given function on F. We seek a bounded continuous
function u on R2 such that

,   .-. Au = 0     onR2\T,
u = g      on T.

We shall represent the solution of (1.1) as a single layer potential. In order to avoid
difficulties of nonuniqueness when the interior domain has conformai radius one, we
follow [6], [11], [14] in seeking to express « as a normalized single layer potential plus
a constant. That is, we seek a function xp on L" of mean value zero and a real number
co such that

(1.2) u(z) = -^- flog\z-y\xp(y)dsv + oo,        zER2.
¿TT   Jy

Restricting z to T, we get the integral equation

(1.3) --}-:jlog\z-y\xKy)dsy + u = g(Z),       zET.

This equation has a unique solution. (In Section 4 we show, more precisely, that the
operator (xp, co) h» g defined by (1.3) is an isomorphism Hr(T) X R -* Hr+](T) for
any real number r. The space Hr(T) is the Sobolev space of order r on T, which is
precisely defined in Section 3. The circumflex denotes the subspace of codimension
one consisting of elements of mean value zero.) The unique solution u of (1.1) is
given by (1.2). For a proof of these facts see [9], [11], [14]. We remark that with the
single layer approach the solution to the single integral equation (1.3) enables the
determination of the solution to both the interior and exterior problems.

In Section 2 of this paper we define and discuss the spline-trig method for our
problem. In Section 3 we define a special doubly indexed family of Hubert spaces
and establish some properties we will require in the analysis of the method, which is
accomplished in the rest of the paper. In Section 4 it is shown that the method
provides stable, quasioptimal approximation of the solution of the integral equation
in a wide range of spaces including all the Sobolev spaces of negative order. The
rates of convergence in these spaces is determined in Section 5, and it is shown that
the corresponding approximation to the solution of the Dirichlet problem converges
along with all its derivatives with an exponential rate away from the boundary.
Polynomial convergence rates valid up to the boundary are also proved. In the final
section it is shown that the matrices arising from the discretization are well-condi-
tioned.

2. The Spline-Trig Galerkin Method. Rather than approximate the solution of
(1.3) directly, it is more convenient to parametrize T and change variables. We
assume that T admits an analytic parametrization, i.e., that we can find a real
analytic, 1-periodic function x: R -» R2 such that x' does not vanish and x\[0X]
parametrizes T. (For a discussion of the effect of weakening the analyticity condi-
tion, see Remarks 4.11 and 5.6.) Set g(t) = g(x(t)) and

(2.1) <p(t)=iï(x(t))\x'(t)\+a.
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We use the notation cp(0) for /0' <p(t)dt. Note that co may be recovered from qp as
tp(O), and then xp may be uniquely determined from cp and satisfies fT xp = 0. Thus
(2.1) establishes an isomorphism (xp, co) <-> <p (between the spaces Hr(T) X R and Hr,
r E R, defined in Section 3).

In terms of the new unknown, <p, (1.2) and (1.3) become

(2.2) u(z) = -±flog\z-x(t)\[<p(t)-cp(0)]dt + y(0),       zER2,
TT J0

(2.3) Arp(r) := -\ \\o%\x(t) - x(t)\[<p(t) - <p(0)] dt + «p(0) = g(r),
TT Jq

tGR.
We shall study the spline-trig method for the integral equation (2.3). This is a

Galerkin method employing different test and trial spaces. It is novel in that spline
trial functions are used—as in finite element methods—but trigonometric test
functions are used—as in spectral methods.

Let n and d henceforth denote nonnegative integers, with n odd. Let

An={pEZ\\p\<n/2),
a set of representatives for Z modulo n, and let x\ denote n times the characteristic
function of U {[m - 1/2«, m + l/2n]\m E Z}. For d > 0 define x1,+ i as the
convolution

X"n+\x)=(\i(x-y)x\{y)dy.

As trial space we will use the space S,f spanned by all translates of xd„+ ' by integral
multiples of l/n. This space has dimension n and consists of all 1-periodic
smoothest splines of degree d subordinate to the uniform mesh {j/n \ j E Z} if d is
odd, {(j+ l/2)/n\jEZ] if d is even [15], [16], The 5-splines xdn+\' ~j/n),
j E A„, form a basis for S^. It is a local basis as each 5-spline is supported in d + 1
consecutive mesh subintervals and their 1-periodic translates.

As test space we shall use the span, S"n, of the trigonometric monomials 1, sin2iTx,
cos2TTx,sinATTx,...,cos(n — 1)ttx.

The spline-trig method for the equation (2.3) defines (¡p„ G S,f by the conditions

(2.4) rA<pno=rgo,        oE%.

(Since we are concerned with the asymptotic behavior of rpn as n -» oo with d fixed,
we shall not indicate the dependence of <p„ on d in the notation.) The coefficients of
tp„ with respect to the 5-splines or other basis of S,f may be determined as the
solution to an « X « system of linear equations determined by (2.4).

The fact that the space % does not admit a local basis is possibly a disadvantage
of the present method in comparison with ordinary finite element methods. As a
consequence, the matrix elements entering into the linear system corresponding to
(2.4) must be calculated as double integrals in which one integral is over all of [0,1]
rather than just a small number of mesh subintervals. On the other hand the use of
trigonometric trial functions in the method suggests that the matrix columns can be
calculated quickly with aid of the fast Fourier transform. Note that the matrix is not
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sparse, but this would be so even if a test space with a local basis were used, due to
the nonlocal nature of the operator A. A full analysis of the implementation costs of
the spline-trig method and a comparison with other methods must await further
research on suitable techniques of quadrature of the singular integrands (ideas from
[10] may be useful here) and the effects of quadrature errors on the accuracy of the
method, as well as numerical experimentation.

Finite element methods are usually analyzed in the Sobolev spaces. Typically a
method is stable (i.e., the Galerkin projection is bounded independent of the
meshsize) in a Sobolev space of only one particular order or a certain range of
orders. (E.g., standard finite element methods for second order elliptic problems are
stable in the Sobolev space of order one.) This stability implies (in fact is equivalent
to) the quasioptimality of the method, i.e., that the norm of the error in the space or
spaces for which stability holds is bounded by a constant times the distance of the
solution from the trial space measured in the same norm. For a bounded range of
lower order Sobolev spaces it is also generally possible to prove that the asymptotic
rate of convergence is optimal. Now in many situations it can be seen that the least
Sobolev order for which such optimal order convergence holds is tied to the degree
of the splines which are used as test functions [1], [2], [17, Section 2.3]. The greater
the degree of the test functions, the farther down extends the range of spaces in
which optimal order approximation holds. Now in a certain sense the space sSn of
trigonometric polynomials may be viewed as the limit of the spline spaces S^ as
d — oo. In fact using the Fourier characterization of splines (4.6) it is not difficult to
prove that

fEL2\3sdE %„,d E N, such that sd- fas d - oo

f E L2\3dk E N andsk E S,f\ such that dk — oo, sk '-^/as k -» oo \.

These observations motivate the use of trigonometric test functions and suggest that
our method might achieve optimal order approximation in an unbounded range of
Sobolev spaces. In fact we shall show that the spline-trig method even achieves stable
(so quasioptimal) approximation in all Sobolev spaces of negative order. Once such
approximation is demonstrated, it will follow easily that for any z E R2\T the
approximation to u(z) determined by substituting rpn for <p in (2.2) will converge
faster than any power of l/n. We will prove an even stronger result, exponential
convergence to u(z) and its derivatives, by introducing a family of spaces which are
weaker than the Sobolev spaces and establishing stability in these spaces.

3. A Family of Hubert Spaces. Let 5" = U{ÍÍJnEN} denote the space of
trigonometric polynomials. We write an arbitrary element of 5" as

(3.1) /(/)=   2 f(k)e2«'kt,
kez

where the f(k) are arbitrary complex numbers, all but finitely many zero, satisfying
f(k) =f(-k). We henceforth shall use the notation k = max(2Tr\k\, 1) for k E Z.
Now for each e, s E R, e > 0, and/ E fTgiven by (3.1) define

11/2
(3.2) 2\f(k)\2e2ik]k2s

k
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(In this paper summation indices are assumed to vary over all integers unless
otherwise indicated.) The Hubert space Xse is defined as the completion of 5" in this
norm. Clearly we have continuous dense injections (which we may take to be
inclusions),

(3.3) X. . C X. . ,

if either e, > e2 or e, = e2 and sx > s2. The spaces Hs '■= Xs, are the periodic
Sobolev spaces [1], their elements being 1-periodic distributions. We will use the
usual notation || • ||5 in place of || • ||s, for the Hs norm. (The space Hr(T) referred to
in Sections 1 and 2 may now be defined as the set of functions on T whose
composition with the parametrization x lies in Hr, with norm being the Hr norm of
this composition.) The space H° is identical with L2, the space of 1-periodic
measurable functions which are square integrable over a period. If e > 1, the
elements of Xs e are infinitely differentiable functions. However, for e < 1, the
elements of Xse need not be distributions. We remark that the Xse norm may also be
defined by

H^f
where T is the semigroup generated by the positive definite square root of the
operator -d2/dx2. Norms of this form are used very effectively in [7] which inspired
their use in this analysis.

By density there exists for k E Z a unique extension of the linear functional on 5"

f»f(k)=Cf(t)e-2"'k'dt,       kEZ,
Jrt

to a continuous linear functional on Xse, s E R, e > 0. Moreover, these extensions
are compatible for different s and e, i.e., they are each the restriction of a single
linear function on the vectorspace

X:= U {JiJe|j£R)E>0}.
Define

E=+o>,     fex\x.

With these understandings the equation (3.2) is valid for all/ E X, s E R, e > 0.
The L2 innerproduct,

U,g)-= ffg = 2î(k)è(k),
extends to a real-valued bilinear map on Xst X X_s e-i for all s E R, e > 0. These
extensions are all compatible and provide a canonical isomorphism of Xs t with the
dual space of X_s ei.

It is easily checked that a subset S of Xst is precompact if and only if it is
bounded in X,. ands,e

lim  sup   2  \f(k)\2£2^k2s = 0.

It follows that the inclusions indicated in (3.3) are compact.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



388 DOUGLAS N  ARNOLD

4. Stability Analysis. For the remainder of this paper d denotes a nonnegative
integer, n a positive odd integer.

Since the test and trial spaces in the spline-trig method are not simply related, it is
not clear that the Galerkin projection <p i-> <pn defined by (2.4) is stable in any
reasonable space. (If the test and trial spaces are equal, by way of contrast, stability
in H~x/2 follows immediately from the ellipticity of the pseudodifferential operator
A [2], [9], [12], [13], [14].) To establish stability we shall rely on Fourier analysis. We
begin by decomposing the operator A as a sum of an operator which acts very
simply on Fourier coefficients and a compact operator.

Define

(4.1) Vcp(j) =-- C[log\2sintt(t - t)\-TT]rp(t)dt,       cp E L1
TT Jr\7"■V)

Note that since | e2"iT - e2""| = |2sin7r(T - 01 and

(4.2) f log\2sinTr(T - t)\dt = 0,       t E R,
'o

Vcoincides with A in case T is the unit circle and x(t) = e2"'T. We now analyze the
mapping properties of V. Let G denote the convolution kernel in (4.1 ),

G(0) = - - log 12 sin 7TÖ | + 1 = - — log 11 - e2viB\+\,       6» E R.
TT TT

Now, letting Log: C\{/ < 0} -> C denote the holomorphic extension of log: {t > 0}
-» R, we have for r E CO, 1 )

Aç2^=       »   rkcospirikß)

(      } ",ez-     21*1     =   "¿," *
■*       k   2vikB

= "Re  2  -1-= ReLog(l - re2"'9) = log11 — re2"'e\ .
k=\       k

(The asterisk appended to a set of integers indicates the complement of {0} in that
set.) This equality exhibits the Fourier series of 0i-»log|l — re2,"e\. Letting r
increase to 1, we see that G(k) = k], k E Z. Consequently the convolution formula
for Fourier series yields the well-known representation

(4.4) Vp(k) = p(k)k~x,       kEZ,pEL2.

It follows immediately that V has a unique extension to a linear map X -> X which
maps Xs, isometrically onto Xs+, e for every j E R, e > 0. Accordingly

(4.5) |(Kp,«)|<||plUMI-,-i..-i,        p,oEX,sER,e>0.
The next theorem establishes the stability of the spline-trig projection for the
operator V.

Theorem 4.1. Let d0 be a nonnegative integer, s0 E (-oo, d0 + 1/2). Then there
exists a positive constant C, such that

inf      sup   -(IB^I->Cx
o^peS^ o#oe5„ llPllj.il^ll-i-i.e-1

for all d > d0, s E (-oo, s0 ], e E (0,1 ], and n.
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The proof relies on the following bound for the Xst norm of a spline in terms of
its first n Fourier coefficients.

Lemma 4.2. For each nonnegative integer d0 and each s0 E (-00, d0 + 1/2) there
exists a positive constant C2 such that

\\P\\L<C2  2  Ip(/>)|VVs,      pet

for all d > d0, s E (-00, s0], e E (0,1], and n.

Proof of Lemma 4.2. We begin by recalling the Fourier series characterization of
the spline spaces,

(4.6) S¿= [p E L2\p(m)mJ+x = p(m + n)(-m - n)d+\ m E Z}.

In fact, in case p(x) = x1,+ >(x — j/n),j E Z, (where x1,+ ] is the ß-spline defined in
Section 2), then

p(m)md+x = e^'"'j/"x1,+ \m)md+x

= e-2"'mj/"[xx„(m)mY+i = e-2w,mJ/m[án(irm/n)nv-1] "+\

The inclusion of S,f in the space asserted in (4.6) follows easily. Equality holds since
this space has dimension n: the values p(m), m E A„, determine p in the space
uniquely. We remark as an immediate consequence of (4.6),
(4.7) p(»=0,        pE%d,jEZ*.

(Recall that the asterisk denotes the complement of {0} in a set of integers.)
Now let p E >d be arbitrary. It follows from (4.6), (4.7), and the fact that every

integer can be written in a unique way asp + mn withp E An, m E Z, that

(4.8) ||p||2,f=    2     2   \Hp + mn)\2E2*+""*{p + mn)2s

= |p(0)|2+(2t7)2j   2   \P(P)\2P2J+2 2  ^ + mn\p + mn\2s-2d~2
peA; me z

= |p(0)|2+    2   \p(p)\Vp2s\2pn-x\2d+2-2s
/iëa;

X   2  elxn+m"^2w\2pn-x +2m\2s-2d~2.
mez

Now for/? E A„, m E Z, e E (0,1] we have \2pn'x |< 1 and \p + mn\ -|p|>0. By
hypothesis r := 2s — 2d — 2 =s 2s0 — 2d0 — 2 < -1. Thus
(4.9) 2  E2]p+mn^2]f\2pn-x + 2m\r

meZ
c» 00

<|2/w-'r+   2 (2m + 2pn-xY+   2 (2m - 2pn-x)r

00 00

<|2p«-T+   2 (2m)r+   2 (2m-iy=\2pn-xf+i;(-r),
m=1 m=1

where f(-r) = 2*=, mr is Riemann's zeta function. Note that

f(-/-)<f(2rf0 + 2-2i0)<oo.
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By substituting (4.9) in (4.8), we complete the proof of the lemma with C2 = 1 +
$(2d0 + 2 - 2s0).    a

Proof of Theorem 4.1. Given nonzero p E $d set

(4.10) a(x)=    2   ~pTk)e2^k2s+]e2*''kx.
teA.

Then a E 5„ and, in light of Lemma 4.2, p ¥= 0 implies a ¥= 0. By the lemma,
Parseval's identity, and (4.4),

2   |p(*)|2£2'^2* = C2(Fp,a).
AGA„

(4.11) \lipii;., < c2

Moreover, from (4.10) and (3.2),

(4.12) IH?,-i..->=   2   \p(k)\2£2Wk2s = (Vp,o).
*eA.

Combining (4.11) and (4.12), we get the theorem.    D
Remark. There is no question of extending Theorem 4.1 to e > 1 or e = 1 and

s > d + 1/2, since for such 5 and e, c>d t¿ Xse. Restricting to the case e = 1, we have
shown that the spline-trig Galerkin method is stable in every Sobolev space containing
the spline trial space, in the case T = unit circle, x(t) = e2"'7. In fact we shall see
that this holds true in general (as long as x is a C00 parametrization).

We now examine the difference between the operators A and V. We begin with
some preliminary lemmas.

Lemma 4.3. The function K: R2

1

K(T,t)   =
1

log

R defined

x(r)-x(t)

- log

2sinw(T

x'(t)
0

277

T-txtZ,

T -  t E Z,

is real analytic and is I-periodic in each variable. Moreover K extends analytically to
Ss X Ssfor some 8 > 0, where Ss = {z E C| | Im z |< 8}.

Proof. It is clear that the function F: R2 — R2 defined by

F(r,t) =

x(r) -x(t)
2sin?r(T — /)

All
277     '

T-tEZ,

t - t E Z,

is analytic. Since x\[0X)is univalent and x' is nonvanishing on R, F does not vanish.
Since log | • | : R2\(0} -> R is analytic, K is also analytic. Clearly K is l-periodic in
each variable. Finally the last sentence of the lemma follows from the previous.    D

The following lemma, which is proved in [8, Section 2.1], will be used to bound the
Fourier coefficients of K.

Lemma 4.4. If f is analytic on Ss= [z E C| | Im z |=£ 8} and l-periodic, then

1/(^)1 -2?rS|m|
L»(S8)> m
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We are now prepared to bound the Fourier coefficients of K, defined by

K(p,q)= Ç CK(T,t)e-2"i{pT+ql)dTdt,       p,qEZ.

The following lemma follows from Lemmas 4.3 and 4.4.

Lemma 4.5. There exist constants C3 > 0, £, E (0,1) such that

\K(p,q)\<C3é*+x«,       p,q EZ.

Now from (2.3), (4.1), and (4.2),

(4.14) B<p(t) := A<p(r) - V<p(r) = Ck(t, t)[<p(t) - cp(0)] dt.

We shall now use the decay estimates of the preceding lemma to prove that B is a
compact operator Xst -» Xs+Xc.

Theorem 4.6. For e E (ex, 1] (e, as in Lemma 4.5) and t E R, the operator B
extends boundedly to a map X0t ->//, = X,,.

Proof. For <p E 5" we have by Parseval's identity that

5«p(t)=   2   y{q)pK(T,t)e2"""dt,
,ez« ■'o

so

(4.15) Bcp(p)=   2   <p(q)K(p,q),       p E Z.
</GZ*

Applying Lemma 4.5 and the Schwarz inequality, we have

\H{p)\ ^c2|2(e,A)2w
1

^2\4>(g)i^,■/
so

where

ll^ll? = 2l^(p)lV'<QIMIo.e.

Q = C22(ex/e)M2^P_2'<oo.    D
t p

Corollary 4.7. For e E (e,, 1 ], s E R, B maps Xs t compactly into Xs+ \,v

Proof. Choose e' E (e,, e). Then Xse is compactly included in X0e,, B maps X0e,
boundedly into Xs+X_,, and Xs+X, is contained in Xs+X e.    D

Corollary 4.8. For e E (ex, 1], s E R, A maps Xst isomorphically onto Xs+X e.

Proof. Since V is an isomorphism between the spaces in question and, by
Corollary 4.7, A is a compact perturbation of V, A is a Fredholm mapping of index
0. Thus it suffices to show that if Ap = 0 for some p E Xs e, then p = 0. Now for
such p Theorem 4.6 implies Vp = -Bp E H' for all /, whence p is a smooth function.
Set a = p(0) and define a function i// on T of mean value zero by xp(x(t)) =
2[p(t) - co]/\x'(t)\. Since Ap = 0, the integral equation (1.3) is satisfied with
g = 0. By [9], [11], [14], however, this equation is uniquely solvable, so xp = 0 and
co = 0, whence p = 0.    D
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We have shown that A is a compact perturbation of V and that the projection
associated with V is stable in the sense of Theorem 4.1. For the convenience of the
reader we recall the theorem [3, Lemma 4.2] that allows us to conclude stability of
the projection associated with A.

Theorem 4.9. Let Y and Z be Banach spaces, &: Y-> Z a linear isomorphism, %:
Y -> Z a compact linear operator. For each m in some directed set let GJiim and GJim be
given finite-dimensional subspaces of Y and Z' (the dual space to Z), respectively.
Suppose

(1) there exists y > 0 such that for all m and u E 91tm there exists nonzero v E 91
satisfying

(&u,v)^y\\u\\Y\\v\\z,- (%u,v);

(2) for all z E Z', limmdist(z, %m) = 0.
Then there exists ß > 0 such that for all sufficiently large n

inf sup    —^-—    ^ ß
O^egi^o^egrJMMMIz'

From this theorem together with Corollary 4.7, Corollary 4.8, and Theorem 4.1,
we may infer the stability of the spline-trig method. Invoking the standard theory of
variational projections [4], [5, Chapter 5] we have the main theorem of this section.

Theorem 4.10. There exists an integer N depending only on d such that for n s* N
and g E X the discrete equations (2.4) of the spline-trig method have a unique solution
<pn E Sd. For s E (-oo, d + 1/2) and e E (ex, 1 ] there exists a constant Cs depending
on s, e, and d such that, for g E Xs+, E and n > N,

(4.16) ||9 - <p„IL,£ < Q inf ||9 - p||iiC.

Remark 4.11. We used the analyticity of the parametrization x to obtain the
compactness result of Corollary 4.7. If x were merely C°°, we could still establish the
result in case e = 1 by a similar argument, using the fact that the Fourier coefficients
of a C°° function decay faster than any polynomial. The stability result thus would
still hold for the Sobolev spaces (e = 1). If x had only a finite number of derivatives,
this result would hold only for an appropriately restricted range of the index s.

5. Convergence Analysis. For <p E X let Pny E %d be defined by

(VPn<p,cj) = (V<p,o),        oE%,

or, equivalently,

(5.1) P^(k) = cp(k),       kEAn.

From (4.5) and Theorem 4.1 we see that Pn is well defined for each n and that Pncp
provides quasioptimal approximation to <p in all the spaces Xs , s < d + 1/2,
e E (0,1 ]. We now determine the asymptotic rates of convergence, which by Theo-
rem 4.10 will also give bounds on the error <p — <pn in the spline-trig method.

Theorem 5.1. Lets E (-oo, d + 1/2), e E (0,1], and t E [s, d + 1]. Then

|<p - PMs.e < /2f(2<7 + 2-2i)e"/2(™r'|l<P _ ¿(o)||(,       v e H'.
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(Here £ again denotes the Riemann zeta function. Note that if s *s s0 < d + 1/2,
then $(2d + 2 - 2s) < f(2d + 2 - 2s0) < oo, and in particular f(2</ + 2 - 2s) <
7T2/6 for s <d. However lim!Ti/+1/2f(2cj + 2 — 2s) = +oo.)

Proof. From (5.1) and (3.2)

(5.2) ||m-r>||2E<2   2    [\q>(k)\2 + \P^(k)\2]£2^k2\
ASA,,

Now for A: E Z\A„, 2|¿|>«,so

(5.3) 2   \<p(k)\2£Wk2^E"(TTn)2s-2'  2   W(k)fk2'.
ASA,, A«A„

Applying (4.6), we also get

(5.4) 2   |Í>(*)|VI*lp
A«A„

=    2   M/W""   2   \p + mn\-2d~2E2^^(p + mn)2s
feA; mGZ*

= (™)2s~2' 2 i<p(p)iV'|2p//-'i2J+2-2'
pEA*

X    2   |2p«-' + 2m|-2^2 + 2ie2lP+'""l
mez*

<e"(7r«)2i-2'f(2J+2-2s)   2   I«P(P)|V.
pea;

The theorem follows directly from (5.2), (5.3), and (5.4).    D
From Theorems 4.10 and 5.1 we infer immediately the following optimal conver-

gence estimates for the spline-trig method.

Theorem 5.2. Let s E (-oo, d + 1/2), e E (e„ 1], t E[s,d+ 1]. Then there exists
a constant Q such that if the solution <p to (2.3) is in H' (i.e., if g E H'+x) and<pn E %d
is the spline-trig approximation defined by (2.4) for n> N, then

\\<p-%\\,..<c6*'/2"*-'\\<p-Moy\,.
We now analyze the approximation to the solution u of (1.1) which may be

derived from <pn. Define

(5.5) un(z) = -^flog\z-x(t)\[cpn(t)-rVn(0)]dt + q>n(0),       zER2.
IT J0

We may also compute an approximation to dau(z), the partial derivative of u with
respect to z for any nonzero multi-index a E N2, by a quadrature:

daun(z) = -]-Çriog\z - x(t) \[<pn(t) - <p„(0)] dt,       z E R2\r.
7T Jq

Theorem 5.3. Let Ü be a compact subset ofR2\T, a E N2, t E (oo, d + 1], Then
there exist constants C7 E (0, oo) and e2 E (0,1) such that 1/96 H', then for n
sufficiently large

\\da(u-Un)\\^m<Cien2\\cp-rp(0)\\r

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



394 DOUGLAS N.ARNOLD

Proof. It suffices to prove the theorem in the case ß is a closed disc in R2\I\ By
(2.2) and (5.5) we have

(5.6) u(z) - u„(z) = -l Ç log|z - x(t)\[<p(t) - <pn(t) - cp(O) + <p„(0)] dt
TT Jq

+ <p(0)-$„(()),        zER2.

Since z — x(t) does not vanish for (t, z) E R X ß, L(t, z) = log\z — x(t)\ is an
analytic function of three real variables on R X ß. Since L is periodic with respect to
/, it extends to a holomorphic function Ss X ß -> C for some 8 > 0, where Ss =
{w EC\\lmw\< 8). By compactness, sup{|L(/, z)| 11 E Ss, z E ß} < oo. Setting
Lz(t) = L(t, z), we may apply Lemma 4.4 to get

\L2(m)\< Qe^,        m E Z, z E ß,

for constants C8 > 0, e3 E (0,1).
Take 7j E (max(e,, e3), 1), and set e2 = JrJ. We then have

supH-LJI_,,„-! < oo,

whence, by Theorem 5.2,

|/"'log|z -x(r)|[<p(r) -<p„(/)] ^
K0

<||L2||_,,„-,||<p - <pn\\t.n < C9E"2\\<p - <p(0)||„

where C9 depends only on ß and /. Since also

1^(0) - *„(o)|^ ||<p - «jp«!!^,
the theorem is proved in the case a = 0. Since

(5.7) 9««(z) - d°un(z)

= -^ f Vlog|z - x(t)\[cp(t) - q>n(t) - <p(0) + <pn(0)] dt,
TT J0

z e R2\r,
an altogether similar argument suffices to prove the theorem for nonzero a.    □

We have thus shown exponential convergence to the solution of the Dirichlet
problem and all its derivatives away from the boundary. We conclude our conver-
gence analysis by giving polynomial convergence rates which are valid up to the
boundary for un and its derivatives of order up to d + 1 measured in L00 and L2.

Theorem 5.4. Let a EN2 be a multi-index of degree k = ax + a2< d + I, and let
t E (k — 1/2, d + 1 ]. Then there exists a constant Cx0 such that ifrpEH' and n > N,

(5.8) ||3«(« - wJIL«(RV) < Cxonk''-x/2JÍoJn\\<p - $(0)||,.

Proof. From (2.2) and (5.5) we see that both u and un are harmonic functions on
R2\T and that both are harmonic (i.e., bounded) at infinity (the integral terms in
(2.2) and (5.5) both tend to zero as | z | tends to infinity). It follows, as can easily be
verified with help of the Kelvin transform, that for all a, 3a« and daun are also
harmonic on (R2\T) U {oo}. Thus we may apply the maximum principle in both
the interior and exterior domains. Letting e" and e" denote the traces on T of
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da(u — un) from the interior and exterior domains, respectively (for |a|> 0 these
will not coincide), we see that it suffices to bound these two functions in L°°(T) by
the quantity on the right-hand side of (5.8). Let B+ denote the interior domain and
B_ the intersection of the exterior domain with an open ball containing V, and
denote by ± either the symbol + or -. Using a standard trace inequality, we have
for s > 0 that

II«* ° *||f = l|ea±||„.(r) < Cn||3a(« - Oll//-'/2(Si) < CI2||« - "„ll//—/^,.

Using well-known regularity theory for the Laplacian in the interior domain together
with the Kelvin transform in the case of the exterior domain and then applying
Corollary 4.8, we have

(5.9) ||e« o x||, < C13||« - «J|„.+*(r) < C14||<p - %\\,+k_v

Now, from the Fourier expansion (3.1) and the definition (3.2) of the norm in Hs,
we easily establish the Sobolev inequality

(5.10) ll/llt-(R) < C(m)||/||1/2+m,       p>0,fEHx^2+\
where C(p)2 = IkeZk~x'2^ = I + 2(2tt)-x-2^(1 + 2p). Since the zeta function
has a simple pole at 1, it follows that C(p) < CX5p~x/2 for 0 < p < 1. Combining
(5.10), (5.9), and Theorem 5.2, we get

l|eat||t-(r)<C6C14CI5fi-1/2«'t+*-'-1/2||cp- 9(0)||(.

Setting p = (log «)"', the right-hand side becomes

eÇCI4C15«*-'-'/2,/5g~^||9 - 9(0)||,

as desired.    D
Measured in L2 on a bounded subset of R2 the derivatives 3a(« — un) of the error

actually converge with higher order than indicated in Theorem 5.4, as we now prove.
To this end we require in addition to the usual Sobolev spaces Hk(tl+) on the
interior domain ß+ also certain weighted Sobolev spaces Wk(tt_) on the exterior
domain ß_. Following [ 14] we define Wk(il_) for k E N as the set of distributions v
in ß_ for which the following norm is finite:

1/2
Hz)\2 v     \dau(z)\2

\vWwk(a.)

where r =\z\.

L +
(1 + r2)(l 4-log/TTT2")        i<N<*(l+r2) 2\1-W

dz

Theorem 5.5. Let k < d + 1 be a positive integer and t E[k - 3/2, d + 1]. Then
there exists a constant CX6 such that if<p EH' and n> N, then

(5.11)       II« - un\\HHa+) + II« - u„\\wk(a) < CX6nk-'-V2\\<p - 9(0)||,.

Proof. It follows directly from [14, Theorems 1.1 and 1.3] that the left-hand side of
(5.11) is bounded by a multiple of \\tp — <p„\\k-3/2, so Theorem 5.5 is a consequence
of Theorem 5.2.    D

Remark 5.6. Since the stability result of Theorem 4.10 holds in the case e = 1 if
the parametrization x is only C°° (Remark 4.11), the same applies to the convergence
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result of Theorem 5.2. Since the proofs of Theorems 5.4 and 5.5, concerning
convergence up to the boundary, require only the case e = 1 of Theorem 5.2, these
theorems also hold for a C00 parametrization. A modification to the proof of
Theorem 5.3 shows that, in this more general case, u — un and its derivatives tend to
zero uniformly on compact sets disjoint from T faster than any polynomial in l/n,
although we require the analyticity of x to obtain the exponential rate.

6. Conditioning. It is worth pointing out that the stiffness matrix associated with
our method has an l2 condition number that grows only with first order as n
increases. This is the same order as is achieved by an ordinary spline Galerkin
method.

Let

{co,,...,co„} = {xí+l(--j/n)\jEAn}

and

{*,,. ..,»„} = {l,/2sin(27r-),...,y2cos((n- 1)»-)}

be bases of §>d and {ön, respectively. Then the stiffness matrix M E R"x" has (j, k)
entry (Auk, v ). Now let a E R" be arbitrary. We shall show that

(6.1) \Ma\^\n\\A\\£(L2[?)\a\

and

(6.2) l«l<^Xn7r||^-1||e(„U2)|Ma|,
where | • | denotes the usual Euclidean norm on R", C„ denotes the L2 operator norm
of the spline-trig projectior 9i-»9n, and Xn and \n denote the supremum and
infimum, respectively, over R"\{0} of the ratio ||2 a^íL^Ho/l« |. Now A is an
isomorphism of L2 onto Hx (Corollary 4.8), and Cn is bounded independent of n
(Theorem 4.10). Since the ratio X„/A„ is bounded independent of n [15, Lemma 14],
(6.1) and (6.2) indeed show that the l2 condition number of M grows with at most
first order in n.

Let ß = Ma E R", f= 2"=,^ E %, 9 = A '/, and let <pn be the spline-trig
approximation of 9. Then it is easily verified that <pn = 2£=, akuk. Therefore /is the
L2 projection of A<pn on <5n and

\ß\=\\f\\o<Ufn\\0^U\\ta\u)\\Vn\\o-
Noting that I^JIo**^«!0!»tms demonstrates (6.1). For (6.2) we note first that

l«l< k'llftllo < *"XlMlo < ̂ XM-'lle^uM/Ui-
Since 11/11, < «ttII/Ho for/E %, (6.2) is proved.
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