
proceedings of the
american mathematical society
Volume 83, Number 4, December 1981

A SPLIT ACTION ASSOCIATED WITH

A COMPACT TRANSFORMATION GROUP

SOL SCHWARTZMAN

Abstract. We associate with an effective action of a compact connected Lie group

as a path wise connected space X a split action of a quotient group G/K on the

quotient space X/K. One application of the main theorem states that if A" is a

compact oriented manifold whose principal cohomology class is a cup product of

one-dimensional classes then the action of G on A" splits. We prove this in the

differentiable case; the topological case has since been dealt with by Schultz.

The results of this paper are closely related to those in Injective operations of the

toral groups by Conner and Raymond [3]. In what follows G will always be a

compact connected topological group and X will be a pathwise connected Haus-

dorff space on which G acts. We will say that an action of G splits provided it is

equivariantly isomorphic to an action of G on a product space Y X H, where G

acts trivially on the first factor Y and transitively on the second factor H. If G is

commutative then an effective split action of G is simply a principal bundle action

where the bundle is a trivial (i.e., product) bundle.

We are going to associate with our transformation group G a canonically defined

subgroup K such that the induced action of G on X/K splits. It will turn out that K

is normal and G/K is commutative. Once we have proved this we will get new

proofs of the splitting and fibering theorems in [3]. We will also get an application

to the case where G is a Lie group acting differentiably on a compact oriented

manifold X. In this situation, if we assume that the fundamental cohomology class

of A" is a cup product of one-dimensional classes, it will turn out that our subgroup

K consists of the identity element, so the action splits. Other applications will be

given below. After learning of this result Schultz proved a topological version of

this theorem as well as a strengthened version of Theorem 5 (Schultz [6]).

Central to our discussion will be a consideration of continuous functions from a

topological space into the multiplicative group Tx of complex numbers of absolute

value one. If X is a topological space, let C(X) denote the set of all such functions,

made into a group under pointwise multiplication. Let R(X) be the subgroup of

C(A') consisting of all functions fix) in C(X) for which there exists a continuous

real-valued function h(X) such that/(x) = exp 2irih(x). Then R(X) consists of all

functions in C(X) which are homotopic to a constant map. We associate with each

space X the group C(X)/R(X) and in this way get a contravariant functor from
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the category of topological spaces and continuous maps into the category of

commutative groups and homomorphisms. If we restrict this functor to the cate-

gory of arcwise connected spaces of the homotopy type of a CW complex, it is a

well-known fact that the resulting functor is naturally equivalent to the one-dimen-

sional singular cohomology functor. For the purposes of this paper it will be

convenient to denote C(X)/R(X) by H'(X) for all spaces X. This is a torsion-free

group. If G is a compact connected topological group the collection A(G) of

continuous homomorphisms of G into T' is a group under pointwise multiplication.

Each equivalence class in C(G)/R(G) contains exactly one element of A(G), so

A(G) is isomorphic to HX(G).

We return now to our standing assumption that A' is a pathwise connected

Hausdorff space and G is a compact connected group acting on X. Since we are

assuming that X is pathwise connected, if we let /J": G—>X be defined by

/?(#) = gx, the homotopy class of f£ is independent of x. We thus get a uniquely

defined homomorphism of HX(X) into H X(G), and by virtue of the isomorphism of

HX(G) with A(G) we have a homomorphism n of H'(X) into A(G). If either G is a

Lie group or H X(X) is finitely generated, the image of h is a finitely generated free

abelian group, since HX(G) is torsion free.

Now let K be the subgroup of G which is the intersection of all the kernels of the

homomorphisms of G into Tx which lie in the image of n. Obviously K is a normal

subgroup of G, and since the homomorphisms of G/K into the commutative group

Tx distinguish between points of G/K, it follows that G/K is commutative.

If we let X/K be the orbit space of X under the action of K, there is a natural

action of G on X/K, and the projection map of the G-space X onto the G-space

X/K is equivariant.

Theorem 1. If either G is a Lie group or HX(X) is finitely generated, the action of

G on X/K splits and is equivariantly isomorphic to the obvious split action of G on

X/G X G/K. Moreover the map of HX(X/K) into HX(X) induced by projection is

an isomorphism. Finally if G is commutative, any equivariant map of X into a split

action of G can be factored equivariantly through the projection of X onto X/K.

It is perhaps worth noting that if G is a semisimple Lie group it follows from the

fact that G/K is commutative that G = K. Thus in this case we can conclude that

the map of HX(X/G) into HX(X) induced by projection is an isomorphism.

Before proceeding to the proof of our main theorem we will need the following

Definition. An eigenfunction for the action of 6 on I is an element fix) G

C(X) for which there exists a x(g) G A(G) such that for all x G X and g G G,

Ägx) = X(g)fix).
Note that if/ is an eigenfunction, the associated x(g) must be the image under n

of the element of C(X)/R(X) determined by/.

Now let fix) G C(X) and let [/] be the element of HX(X) = C(X)/R(X)

determined by/ Let x(g) be the element of A(G) which is the image of [/] under

h. Since [x(g)]_1 = x(g~')> figx)x(g~}) can be written in the form exp(2îriA(x, g))

where X(x, g) is a real valued function which is continuous in g for each fixed
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x G X. If A,(x, g) and \2(x, g) are two such functions their difference must be an

integer valued function which depends on x alone, since it is continuous in g and G

is connected. Thus if we let p be Haar measure on G and define

f(x) = exp 2m j X(x, g) dp(g),

fix) is independent of the particular \(x, g) we use

Lemma 1.1. fix) G C(X) and f is homotopic to f. Moreover, for all x G X and

geG,f(gx) = x(g)fix).

In other words we are going to show that each equivalence class in C(X)/ R(X)

contains an eigenfunction.

Proof. We first show that/(x) is continuous. Denote the multiplicative group of

complex numbers of absolute value one by Tx. Then, using the usual notation for

function spaces, fix, g)x(g'x) G (F1)GxA', which is homeomorphic to [(TX)GY■

Thus if x0 G X, there is an open set O containing x0 such that for x in O and any

g G G, \figx)x(g-x) - /(gx0)x(g-')| <l This implies that on O X G,f(gx)x(g-X)
is homotopic to f(gxQ)x(g~i) which is independent of x and has a continuous

logarithm (i.e., is homotopic to a constant map). Thus the restriction of f(xg)x(g~l)

to O X G has a continuous logarithm, i.e., X(x, g) can be chosen to be continuous

on O X G. Denoting the additive group of the real line by R ', the restriction of

such a X(x, g) to O X G is an element of (RX)°*G which is homeomorphic to

((R X)G)°. Thus, given any e > 0 we can find an open set O ' such that x0 G Ox Q

O and for x G O and g G G, |X(x, g) — X(x0, g)\ < e. From this it follows that/(x)

is continuous.

To see that/(x) and/(x) are homotopic maps into T1, let pe be the unit measure

on the Borel sets of G which is concentrated at the identity. Define H(x, t) to equal

exp{2mf X(x,g) d(tu(g) + (1 - t)pe(g))\

_
Then H(x, t) is continuous and H(x, 0) = fix) while H(x, 1) = fix).

It remains to prove that/(x) is an eigenfunction. For any fixed g0 G G, let a0 be

a real number such that x( go) = exP 2ma0. Then for any x G X and g G G,

exp 2wiX(gQx, g) = f(gg0x)x(g'1)

= /(ggoJC)x((ggo)~1)x(go) = exP 27ri(«0 + X(x, gg0)).

Thus A(g0x, g) differs from a0 + X(x, gg0) by an integer valued function which by

continuity in g depends only on x (since G is connected). But then

/(go*) = exp 2mJ X(g0x, g) dp(g) = exp 2mf «o + \(x, gg0) dp(g)

= x(g0) exp 2m f X(x, g) dp(g) = x(g0)f(x).
J

This completes the proof of our lemma. To prove the main theorem, we begin by

recalling that the assumption that either G is a Lie group or HX(X) is finitely

generated assures us that the image of HX(X) in A(G) under n is a finitely
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generated free commutative group. Therefore by our lemma we can pick eigenfunc-

tions /„ . . . ,fk such that n[/,], . . ., h[fk] is a basis for this image. Let h[f¡] be

denoted by x¡- Then/(gx) = Xi(g)Mx) for all g G G and x G X.

Let a: G -> Tk be defined by a(g) = (xj(g), . . . , XJt(g))- Then o is a homomor-

phism of G into the multiplicative group Tk of /c-tuplets of complex numbers of

absolute value one. The kernel of a is obviously K.

Lemma 1.2. a is surjective.

Proof. The image of G under a is a closed subgroup of T*. If it is a proper

subgroup, we can get a nontrivial element of A(Tk) which is equal to one on this

image. This can be seen by noting that the quotient of Tk by this proper subgroup

would be a toral group. Recall now that a nontrivial element of A(Tk) is of the

type p(zx, . . . , zk) = z"' • • • zu* where not all the n, are zero. Thus if a is not

surjective there would exist integers nx, . . ., nk not all zero such that xf' • ■ ■ Xt^

= 1. This however would contradict the fact that Xi> ■ • • > X* is a basis for the

image of n. This completes the proof of the lemma.

We make Tk into a G-space by defining g(zx, . . . , zk) = (x\(g)zu • ■ • > Xk(g)zk)-

By our lemma this is a transitive action.

Let T: X -» X/G be the projection and define P: X -» X/G X Tk by P(x) =

(T(x), fx(x), . . . , fk(x)). We make X/G X Tk into a G-space by defining

g(x, zx, . . . , zk) = (x, Xi(g)^i, •. •. X*(g)z*); this is obviously a split action, and P

is equivariant. From the fact that a is surjective and has kernel K it follows that Tk

can be identified with G/K and the split action of G on X/G X Tk is equi-

variantly isomorphic to the obvious split action of G on X/G X G/K. Note also

that P is surjective.

The map P can be factored equivariantly through the projection of X onto the

G-space X/K. From the fact that a is surjective and has kernel K it follows that we

get in this way a one-one equivariant map of the G-space X/K onto the G-space

X/G X Tk. To see that this is a homeomorphism we need only show that P is

open.

To see that P is open, let x0 G X and suppose O is an open set containing x0.

There is an open set O' in X and an open set U in G containing the identity such

that X0 G O' Ç O and for g G U and v G O', gy G O. We can then choose an

open set V in G containing the identity such that V = V~x, VV < U.

Now let X: X -> Tk be defined by A(x) = (fx(x), . . . ,fk(x)). Then we can pick

O" < X such that O" is open, x0 G O" < O' < O and for any v in O",

X(y)/X(x0) belongs to the image of V under a. Then for any y G O " we can pick

gy G V such that X(gyy) = X(x0). From this it follows that P(O) contains

(T(y), zx, . . ., zk) for any.y G O" and any (z„ . . ., zk) in the translate of a(x0) by

tj( V). Thus P(x0) is an interior point of P(O), so P is open.

We have thus shown that the action of G on X/K splits and is equivariantly

isomorphic to the obvious action of G on X/G X G/K, both of these being

equivariantly isomorphic to the action we have defined on X/G X Tk. We wish

next to show that the map of HX(X/K) into HX(X) induced by projection is
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surjective. By virtue of our equivariant isomorphism of X/K with X/G X Tk we

need only show that H X(P) is surjective. Let / G C(X). If x = «([/]) there is an

eigenfunction / G C(X) such that [/] = [/] and /( gx) = x( g)/(x). But there exist

integers n„ . . . , nk such that x = Xi"1* • • • » X**- If we let F = ///"'» •••>/**> dien

F(gx) = F(x) identically so F arises from a function on X/G. Thus/arises from a

function on X/G X Tk, so [/] = [/] lies in the image of HX(P). Thus HX(P) is

surjective. Note that this argument shows that any eigenfunction on X arises from

one on X/ G X Tk.

To see that the map of HX(X/K) into HX(X) is injective we use an indirect

proof. If the map is not injective there exists a function a G R(X) such that

exp 2ma(kx) = exp 2wia(x) for all k G K and x G X while the element of

C(X/K) determined by exp 2ma(x) does not yield the identity element of

HX(X/K). But for any k0 G K, a(/Cnx) — a(x) is a continuous integer valued

function on the connected space X and is therefore equal to a constant n0. But then

a(k£x) — a(x) clearly equals rn0. Since the orbit of any x G X under the action of

K is compact, a must be bounded on this orbit so n0 = 0. Thus for all A: G AT and

x G A', a(kx) = a(x) which contradicts our assumptions about a.

Finally suppose that G is commutative and suppose that Q is an equivariant map

of X onto Y X G/Kx where G acts trivially on Y and in the obvious way on

G/Kx. If qx and <72 are the projections of y X G/Kx on Y and G/Kx respectively,

it is clear that qx ° Q can be factored through the projection of X on X/K. The

duality theory for locally compact commutative groups tells us that the functions in

A(G/KX) distinguish between points of G/Kx. To show that qx ° Q can be

factored through the projection of X on X/K it is therefore only necessary to show

that for each x1 G A(G/Kx), x' ° q2 ° Q can be factored through the projection of

X on X/K. However

/     1 y~>\/ \ \tí\f     WÍ n\t    W
(x ° ?2 ° Q)(gx) = x((Mg))(?2 ° ÔX*))

= x1(Mg))((x1 ° & ? Q)(x))

where X is the projection of G on G/Kx. Since x' ° X is a homomorphism of G into

Tx, x' ° a2 ° Q is an eigenfunction on A\ To complete the proof of our theorem

then we need only see that every eigenfunction on X can be factored through the

projection of X on X/K. By virtue of the equivariant isomorphism of X/K with

X/ G X Tk it is enough to see that every eigenfunction can be factored through the

projection P we defined of X on X/G X Tk. However in our proof that HX(P) is

surjective we establish this.

Now if G is effective and commutative, by what we have shown the action of G

splits if and only if K consists of the identity element. By the duality theory for

locally compact groups this happens if and only if the image of the homomorphism

n of HX(X) into A(G) is all of A(G). Thus we get the following

Theorem 2. // G is effective and commutative and either G is a Lie group or

HX(X) is finitely generated, the action of G on X splits if and only if the obvious map

of HX(X) into HX(G) is surjective.
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Now suppose X has the homotopy type of a CW complex, so that we can

identify H X(X) with the one-dimensional singular cohomology group of X. Assume

further in the case that G is not a toral group that G is arcwise connected. Then we

obtain the following result. (The maps of groups referred to are those induced by a

map fx: G-» X defined by fx(g) = gx. The homotopy class of fx is of course

independent of x.)

Corollary. Assume either G is a toral group or H X(X) is finitely generated and G

is commutative, and that G acts effectively. Then the following are equivalent:

(a) The action of G on X splits.

(b) w,(G, e) is mapped injectively onto a direct summand in ttx(X, x0).

(c) HX(G) is mapped injectively onto a direct summand in HX(X).

(d) HX(X) is mapped surjectively onto HX(G).

The fact that (a) -*■ (b), (b) -» (c), and (c) -* (d) is trivial and we have already

shown that (d) ¿» (a).

The equivalence of (a) and (b) is implicit in the splitting theorem proved in [3].

To complete the connection between our discussion and that in [3], assume X is

semilocally simply connected. Then with any subgroup H of trx(X, x0) we associate

a covering space of X. It is well known that the action of C on Z can be lifted to

this covering space if and only if the image of ttx(G, e) in ttx(X, x0) is contained in

H. Then by our corollary this lifted action splits if and only if itx(G, e) is mapped

injectively onto a direct summand in H.

For simplicity now, assume that G is a toral group acting effectively. For any

closed subgroup L of G, there is an obvious action of G on G/L. Trivially this is a

split action.

Definition. The G-space X fibres equivariantly over G/L provided there is an

equivariant map of X onto G/L. (Note that such a map must factor through the

projection of X on X/K.)

It can be seen that such an equivariant map is in fact a locally trivial fibration

with structure group L. It is now obvious that X fibres equivariantly over G/L if

and only if L D K. Now the dimension of K equals the dimension of G minus the

rank of the image in A(G) of our homomorphism n of HX(X) into A(G). Thus we

get

Theorem 3. X fibres equivariantly over some G/L with L finite if and only if the

rank of the image of the usual map of HX(X) in HX(G) equals the dimension of G.

More generally X fibres equivariantly over some G/L with the dimension of L = k if

and only if the image of the usual map of HX(X) into HX(G) has ran K > n — k.

These results are implicit in [4].

It follows from what we have done that if X does not fibre over a circle then

K = G and therefore the obvious map of HX(X/G) into HX(X) is an isomorphism.

Next we consider the situation in which G is a compact connected Lie group

acting differentiably and effectively on a compact oriented differentiable manifold

X. We will again denote by K the subgroup of G which arises in our main theorem.
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Theorem 4. If the fundamental cohomology class is a cup product of one-dimen-

sional classes (integer coefficients) then K consists of just the identity element, so G is

a toral group and the action of G on X splits.

If instead some nonzero multiple of the fundamental cohomology class is a cup

product of one-dimensional classes then it will be clear from our proof that K is

finite, so in this case we can conclude that G is a toral group. This latter fact was

already known. We should also note that in the case in which X is a torus the fact

that the action splits was already known [1].

To prove the theorem we use the fact that HX(X/K) maps surjectively onto

HX(X). Let A,, . . . , A, be elements of HX(X) whose cup product is the fundamen-

tal cohomology class of X, and let px, . . . , p, be elements of H'(X/K) which map

into A„ . . ., \. Then obviously px u • • • U u>. maps into the fundamental

cohomology class of X. Since Hr(X/K) is nontrivial the dimension of X/K must

equal r, the dimension of X. Therefore K must be finite. For some prime p we can

pick an injection i of Zp into K, if K is nontrivial. Because G is arcwise connected

the elements of i(Z) determine homeomorphisms on X which are isotopic to the

identity map. Therefore the induced action of i(Zp) on X is orientation preserving.

If K is nontrivial then it is clear that we get an effective differentiable orientation

preserving action of Zp on X such that Hr(X/Zp) maps surjectively on Hr(X),

where r is the dimension of X. I am indebted to Professor R. Z. Goldstein of

SUNY at Albany for the proof that this cannot occur. His proof follows.

Let F be the fixed point set of Zp. Then F is a manifold of dimsension less than

or equal to r — 2. Let U be an invariant open tubular neighborhood of F and let B

be its boundary. Consider the following commutative diagram.

Hr(X)     «-        Hr(X, F)        «-        Hr(X, Ü)        *-        Hr(X - U, B)

t t t T
H'(X/ZJ «- H\X/Zp, F/Zp) <- Hr(X/Zp, U/Zp) <- H'(X - U/Zp, B/Zp)

Clearly the horizontal maps are all isomorphisms. However the map of X — U

onto X — U/Zp is a p to one covering map. Since X — U/Zp is a differentiable

manifold we can triangulate it. This triangulation lifts to X — U. If we use oriented

simplicial cohomology it is clear that the generator of Hr(X — U/Zp, B/Zp) is

sent onto/7 times the generator of Hr(X — U, B), and therefore the same is true of

the map of Hr(X/Zp) into Hr(X). This completes the proof.

Finally let us again assume that we have a compact oriented differentiable

manifold X such that the fundamental cohomology class is a cup product of

one-dimensional classes. Suppose further that <b is a differentiable homeomorphism

of X onto itself of period exactly n.

Theorem 5.1f<t> is isotopic to the identity map, <£ acts freely, i.e., <J> generates a free

action of Zn on X.

Proof. We form X X z Tx using our Z„ action on X and consider the usual

action of Tx on X Xz Tx. Because <b is isotopic to the identity, X xz Tx is
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824 SOL SCHWARTZMAN

homeomorphic to A" X Tx. Since the fundamental cohomology class of X X Tx is

the cup product of the liftings via the projection maps of the fundamental

cohomology classes of X and Tx, the assumptions of the previous theorem hold

and the action of Tx on X X? Tx splits.

Thus in particular the action of Tx on X Xz Tx is a principal bundle action.

However this implies that Zn acts freely on X.
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