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procedures
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Mulligan and Kieser (1996) (ICES Journal of Marine Science, 53: 403–406) proposed
a split-beam echo counting model that addressed the problem of non-uniform
detection probability combined with non-uniform fish density over the beam cross-
section. To apply the model to real data, statistical procedures to estimate three-
dimensional density functions, to estimate kernel density smoothing parameters from
the data, and to estimate a data-based smoothing parameter for kernel regression have
been developed. In addition, a method to select echoes from individual fish that have
been accurately tracked by the automatic tracking algorithm is described. The
performance of the model was tested using data from a simulation program and from
an experiment that compared acoustic estimates with visual counts of migrating
salmon.
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Introduction

A split-beam acoustic system is being used on the Fraser
River in British Columbia, Canada to estimate the
number of salmon that migrate upstream past the
acoustic monitoring site. The system is configured to
look sideways from the bank towards the middle of the
river. Upstream migrating adult salmon prefer to swim
close to the bottom, where the current is lower. This
results in a variable fish density over the acoustic beam
cross-section. An empirical, stochastic echo counting
model was developed by Mulligan and Kieser (1996) to
examine this issue. The model exploits the unique ability
of a split-beam system to measure the three-dimensional
location of targets and to track the trajectories of
individual fish. It addresses the problem of non-uniform
detection probability combined with non-uniform fish
density over the beam cross-section. The model esti-
mates the number of migrating salmon by combining
information from the observed echo distribution of both
tracked and untracked fish, the trajectories of tracked
fish, and the measured fish detection probability. In this
paper we discuss the development and implementation

of the mathematical and statistical procedures for this
model.

Non-parametric estimation methods were used in the
model as this allowed greater flexibility in describing
data from a wide variety of distributions. Kernel density
estimation was used to describe the functional depen-
dence of echo density on location and kernel regression
was used to describe the fish detection probability.
Published references for these statistical procedures were
inadequate to meet the needs of the model. Therefore,
we have extended one-dimensional kernel density esti-
mation techniques to three dimensions and have derived
independent smoothing parameter selection for this
case. We describe how these smoothing parameters can
be estimated from the data for both kernel density
estimation and kernel regression.

The model performance was tested using both
simulated and real data. Performance testing helped in
the selection and development of reliable statistical
procedures and gave a measure of the bias and variance
of the model estimates. The simulated data follow the
model equations and satisfy the model’s assumptions.
The real data come from an experiment conducted at a
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site on the Thompson River near Spences Bridge, British
Columbia. This experiment compared acoustic estimates
with a simultaneous visual count of the number of
migrating fish (Enzenhofer et al., 1998). Reliable esti-
mates from the Spences Bridge data required the devel-
opment of a method to remove echoes from sources
other than migrating fish and a method to select only
well-tracked individual fish echoes from the set of all
tracked fish echoes.

Split-beam echo counting model

When salmon swim through the acoustic beam, there are
three possibilities for generating echoes: (1) the fish may
pass through the beam and no echo is detected; (2) the
fish may be detected by generating one or more echoes,
but not be tracked by the target tracking algorithm; and
(3) the fish may generate several echoes and be tracked.
(Our fish tracking software is typically configured to
require a minimum of four echoes from each tracked
target.) Thus, there are echoes from both tracked and
untracked fish recorded by the acoustic system. There
are also fish that pass through the beam and are not
detected. The echo counting model described below is
designed to account for these three possibilities.

We will use the same coordinate systems as Mulligan
and Kieser (1996) – see the Appendix for details. The
Cartesian coordinates used in the equations below can
be briefly described as follows: The z-axis is located
along the acoustic beam axis with the origin at the front
face of the transducer. The x-axis represents the
upstream/downstream direction with positive x-values in
the downstream direction. The y-axis represents the river
surface/bottom direction with positive y values in the
surface direction. The model defines a ‘‘fish flux’’ as
the product of fish density times migration speed. The
estimate of the number of fish migrating through the
acoustic beam is obtained from the integration of this
flux over the vertical longitudinal cross-section of the
beam and over the elapsed time. This is based on the
assumption that the fish density function, detection
probability function, and echo density function are
approximately time-independent for the duration of the
data collection. A detailed derivation of the model and a
description of the data required for its implementation is
given in Mulligan and Kieser (1996). A brief summary is
given below.

The process begins by relating the fish density to the
observed echoes. The observed cumulative echo density
is given by:

e(x,y,z)=ñ(x,y,z)p(x,y,z)I (1)

where e(x,y,z) is the cumulative echo density in units
of echoes#m"3, ñ(x,y,z) is the fish density in units of

fish#m"3, p(x,y,z) is the echo detection probability in
units of echoes#fish"1#ping"1, and I is the number
of acoustic transmission in units of pings.

Equation (1) describes a stochastic process where the
terms e(x,y,z), ñ(x,y,z), and p(x,y,z) are random variables
with ñ(x,y,z) and p(x,y,z), assumed to be independent.
Therefore the expectation for e(x,y,z) is:

E[e(x,y,z)]=E[ñ(x,y,z)]#E[p(x,y,z)]#I,

which leads to:

Equation (2) can then be expressed in terms of esti-
mated functions based on the data as:

where ê(x,y,z) is estimated from all fish echoes and
p̂(x,y,z) is estimated from a separate set of measurements
using a single fish suspended from a target frame (see
the section describing the estimation of the detection
probability function).

Next, the fish migration speed, S(x,y,z), and the
fraction of fish migrating upstream, fu(x,y,z), are esti-
mated using the subset of the original observations that
come from tracked fish. The speed is combined with the
estimated density and fraction of upstream migrants to
obtain an estimate of the fish flux, á, given by:

á̂(y,z)=ñ̂(0,y,z)#S|(0,y,z)#f|u(0,y,z), (4)

where á is estimated over the (y,z) plane at x=0. Finally,
the number of fish migrating past the site, N, is esti-
mated by:

N| =(T2"T1)#88 á̂(y,z)dydz, (5)

where T1 and T2 are the start and end times, respect-
ively, for the data collection.

Simulation program

To test the performance of the model, a simulation
computer program was written that obeyed Equation
(1), while allowing stochastic variation in several of the
variables. Simulated fish pass through the beam one at a
time. Each fish has a random starting location, direction
of movement, and migration speed (Fig. 1). The simu-
lated data are not meant to mimic the true fish migration
with respect to their time dependence; however, they do
mimic the spatial dependence. We use the simulated data
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to study the effects of spatial distribution and the total
number of echoes on the estimation accuracy. We shall
describe the process of generating the locations along a
fish’s trajectory.

We begin with the description of the simulation
process for the 4)#10) transducer. First, the initial
location, migration velocity, migration direction angles,
and direction angle increments are obtained. Table 1
shows the input parameters used for simulated data for
a 4)#10) transducer.

The initial location for the ith fish is given by:

xi,1= "1.5zmaxtan ëmax"U(0, ì+ó),

yi,1=U("1.5zmaxtan ímax, 1.5zmaxtan ímax), (6)

zi,1=U("zmin, zmax).

where U(a,b) is the notation for a uniformly distributed
random variable on the interval [a,b]. In Equation (6),
we use the notation xi, j with j=1 to indicate the initial
location of the ith fish.

Every 1/r seconds, the (x,y,z) location of the fish is
updated, for a total of kl pings. The updating process
starts by generating an initial migration velocity magni-
tude, V, and migration direction angles, è, ö, for each
fish. These normally distributed random variables are
given by:

V2N(ìí, ó2
í),

è2N(ìè, ó2
è), (7)

ö2N(ìö, ó2
ö).

To allow for a curved trajectory, we increment the initial
velocity direction angles è and ö, with the incremental
parameters ä1 and ä2. The incrementing process
generates vectors èi, j and öi, j of length kl for each of the
i=1, . . ., n fish being simulated. For the ith fish, the jth
element of these vectors is given by

èi, j=ä1+èi, j"1,

öi, j=ä2+öi, j"1,

for j=2, . . ., kl. The initial elements come from the ith
value of the random variables described in Equation (7).
Next, migration velocity vectors can be calculated for
each fish. These are defined for each of the Cartesian
coordinates as:

Vx,i, j=Vi sinèi, j cosöi, j,

Vy,i, j=Vi sinèi, j sinöi, j,

Vz,i, j=Vi cosöi, j, (8)

where Vi is given by Equation (7). Finally, the
coordinates of the ith fish trajectory are:
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Figure 1. A selection of fish trajectories for simulated data. (a)
The (x,y) cross-section of the 4)#10) beam is shown at a
z-distance of 10 m by the ellipse. To the left of the beam cross-
section, the rectangular box indicates the area in which the
initial locations for all trajectories originate. The trajectories
are indicated by the lines beginning in this box and travelling in
the positive x-direction. Trajectories that pass through the
beam cross-section may generate detected echoes in the simu-
lated data. (b) The (x,z) cross-section of the beam at the y=0
plane is indicated by the dashed lines. The rectangular box
indicates the region where trajectories originate. The same
trajectories as shown in panel (a) are indicated by the lines
beginning in this box and travelling in the positive x-direction.
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for j=2, . . ., kl, with the initial locations given by
Equation (6).

Examples of simulated trajectories illustrate how
realistic fish traces can be generated by this process
(Fig. 1). These trajectories all begin in an area of space
with x-coordinates outside the beam and proceed in
the positive x-direction. Note that the initial (x,y,z)
coordinates, the initial slope, and the degree of curvature
vary among trajectories. The trajectory lengths also
differ, since the migration velocities are different and
each trajectory is calculated for the same number of
pings.

Once the trajectories have been generated by the
process described above, the program uses a stochastic
method to determine if a fish at each location in a
trajectory will generate a detected echo. The detection
process follows Equation (1), where p(x,y,z) is estimated
using the procedures described in the section describ-
ing the estimation of the detection probability function.
For individual fish, the detection probability sequence,
pl, l=1, . . ., kl, is obtained. To simulate random detec-
tion, a fish echo is classified as detected if ô<pl, where
ô2U(0,1); otherwise, the fish is not detected at this
location.

The trajectory simulation process is carried out for all
n fish, i.e. i=1, . . ., n. The simulated trajectories are
classified as originating from either: tracked fish, if four

or more detected echoes have been generated; untracked
fish, for trajectories with less than four detected echoes;
and undetected, for fish that pass through the beam but
do not generate a detected echo. The number of each of
these three types of events is tallied by the program. The
total number of fish passing through the beam is the sum
of these three components. Because of the random
nature of the simulated trajectories, some trajectories
do not pass through the beam. Therefore, the number
of fish that pass through the beam is calculated as
described above; it is not n.

The simulation program generates a data file that
contains the locations and corresponding times for all of
the detected echoes, plus a sequential fish number to
group those echoes that come from each tracked fish. In
a separate output file, the program records the mean
upstream migration speed for the simulated fish in the
data file and the total number of fish passing through the
beam. The data file can then be used in the echo
counting model to test the performance of the estimation
procedures.

In the simulation process for our 8) transducer, the
initial location settings for yi,1 in Equation (6) is changed
to:

yi,1=U("1.5zmax tan ímax, 0)

to emulate the fish behaviour at Spences Bridge, where
the fish density was confined to the bottom half of the
beam. Also the initial input parameters ímax and ëmax in
Table 1 are both set to 6) for this transducer.

A total of 100 data sets were generated by the
simulation program using the input parameters listed in
Table 1. The condition that the number of fish generated
was distributed as n2U(50, 2500) was imposed. This

Table 1. Input parameters.

Parameter Value Description Measurement units

ìí 0.4 Mean migration speed m#s"1

óí 0.03 s.d. migration speed m#s"1

ìè 0 Mean first spherical coordinate Degrees
óè 1 s.d. first spherical coordinate Degrees
ìö 90 Mean second spherical coordinate Degrees
óö 0.5 s.d. second spherical coordinate Degrees
ìä1

0 Mean first incremental value Degrees
óä1

0.1 s.d. first incremental value Degrees
ìä2

0 Mean second incremental value Degrees
óä2

0.5 s.d. second incremental value Degrees
zmin 4 Minimum z-coordinate m
zmax 10 Maximum z-coordinate m
ímax 2.4 Maximum up/down angle Degrees
ëmax 6.4 Maximum left/right angle Degrees
r 10 Ping frequency Pings#s"1

n 50–2500 Number of fish Fish
kl 100 Number of pings per trajectory Pings
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resulted in the number of fish migrating through the
beam ranging from 44 to 1511 for the 4)#10) trans-
ducer (Fig. 2a) and from 21 to 869 for the 8) transducer
(Fig. 2b).

Experimental comparison to visual
estimate

An experiment was conducted on the Thompson River
near Spences Bridge, British Columbia to compare
acoustic estimates from the split-beam system with
visual counts (Enzenhofer et al., 1998). This site was
chosen because it had a river cross-section that allowed
acoustic measurements to be made readily and because
the water clarity was sufficient to permit visual count-
ing. The experiment was designed to allow simul-
taneous acoustic and visual observations as the fish
passed through the beam. Visual counts were done in
real-time and the fish were recorded on videotape.
Real-time acoustic estimates were obtained from the
automatic fish tracking software. Both a 4)#10) ellip-
tical beam and an 8) circular beam transducer were
used (Fig. 3).

Fish migration rates ranged from 2400 to 28000 fish
h"1. The acoustic system is unable to distinguish echoes
from single-target sources when the target density
becomes too high, which results in an increasing pro-
portion of the echoes being removed by the single-target
selection software as fish density increases. To avoid
having this effect confounded with effects due to the
echo counting model, only those observations with a
visual count rate less than 1500 fish h"1 have been used.

Development of statistical procedures

The echo counting model estimates functions describing
the spatial dependence of echo density, fish density, fish
migration speed, fraction of fish migrating upstream,
fish flux, and detection probability. All of these func-
tions must be estimated from discrete observations. To
do this, we used kernel density estimation and kernel
regression, since these non-parametric techniques are
well studied and can be used to describe a wide variety of
distributions. The usual one-dimensional kernel density
techniques were extended to three dimensions. The
accuracy of the estimates was found to be highly depen-
dent on the smoothing parameter, or bandwidth. (The
term bandwidth is used here in the statistical sense of
smoothing parameter. It is not to be confused with
frequency bandwidth as used in acoustics and other
wave propagation phenomena.) Therefore, for both
kernel density and kernel regression, we have derived
data-based smoothing parameters.

In practice, we have yet to use the feature of the echo
counting model that specifies the fraction of fish migrat-
ing upstream, f|u(x,y,z). The data from the Spences
Bridge experiment did not contain any fish migrating
downstream. Typically at our site on the Fraser River
we observe approximately 1–2% of the tracked fish
identified as moving downstream. Consequently, there
are too few observations to derive a meaningful spatial
dependence for f|u. The simulated data also did not
contain any downstream migrants. In the sections
below, we will ignore the estimation of this factor and
assume that f|u=1 for all calculations.

Estimation of the cumulative echo density
function

Detailed discussions of univariate kernel density estima-
tion can be found in Silverman (1986); however, we
require a three-dimensional kernel, with separate
smoothing parameters for each dimension. Our decision
to use separate smoothing parameters, rather than a
global smoothing parameter for all dimensions, arises
from our experience measuring acoustic targets held at
fixed positions in the beam (Enzenhofer and Olsen,
1996). Data from these tests yield similar variances for
the x- and y-dimensions, but a significantly smaller
variance for the z-dimension. Independent smoothing
parameter selection gives us a flexible way to account for
this property.

The data from which e(x,y,z) is estimated consists of a
set of coordinates (xj,yj,zj), where j=1, . . ., ne indexes the
locations at which an echo has been observed. The
estimated three-dimensional kernel density function with
different smoothing parameters is defined by:

where ne is the number of total observed echoes, K(·) is
the kernel function described in detail in Silverman
(1986), and hx, hy, hz are the smoothing parameters in
each direction. The choice of smoothing parameters is
crucial when applying non-parametric density estima-
tors. Detailed discussions for the univariate case can be
found in Park and Marron (1990), Sheather and Jones
(1991) and Jones et al. (1996). Silverman (1986) discusses
multivariate kernel density estimation and gives an
estimate for a global smoothing parameter, i.e. assuming
that the smoothing parameters in each direction are
equal.

The data-based independent smoothing parameters
for the density estimator Equation (9) can be derived
(details can be requested from the authors) by minimiz-
ing the mean integrated square error (MISE) of f|(x,y,z),
since the MISE is a commonly used criterion for evalu-
ating the goodness-of-fit for this estimator. It can be
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shown that the smoothing parameter estimates can be
expressed as

hx=C#min(ó̂x, Rx/1.34) ne
"1/7,

hy=C#min(ó̂y, Ry/1.34) ne
"1/7,

hz=C#min(ó̂z, Rz/1.34) ne
"1/7, (10)

where Rx, Ry, and Rz are the interquartile ranges from
xj, yj, and zj, and ó̂x, ó̂y and ó̂z are the estimated
standard deviation from xj, yj and zj, respectively. The
constant C is from table 3.1 in Silverman (1986) and
min(a1, a2) denotes the minimum value of a1, a2.

Kernel density estimation generates a probability
density function, which must integrate to one over the
entire volume occupied by the observations. In our case
the cumulative echo function should integrate to the
total number of observed echoes; therefore, we require
that:

888 ê(x,y,z)dxdydz=ne,

so that the estimate for the cumulative echo density is
given by:

ê(x,y,z)=ne#f|(x,y,z). (11)

Estimation of the detection probability function

Estimation of detection probability, p(x,y,z), used data
from an experiment with a dead sockeye salmon as the
acoustic target. A set of discrete measurements,
pi(xi,yi,zi), i=1, . . ., dp, was obtained by placing the fish
at dp separate locations (xi,yi,zi) in the beam, each
location indexed by i. The number of pings transmitted,
Ii, and the number of echoes detected, ni, were recorded
for each location. The discrete detection probabilities
can then be defined as:

We describe the dependence of the detection probability
as a function of the beam pattern factor (bpf) rather
than as a function of the coordinates. This allows the
reduction of a three-dimensional problem to one dimen-
sion. The (x,y,z) values from each of the i locations, were

Figure 2(a). Comparison of the echo counting model estimates 4)#10), the tracked fish counts and the true fish numbers for 100
sets of simulated data. Simulated data sets were generated that covered a range of 44–1511 fish. (i) Model estimates vs. simulated
fish numbers are shown by the points. The line represents equal values of estimate vs. simulated value. (ii) The ratio of estimated
to simulated is shown vs. simulated fish number. The line shows the mean value of this ratio. (iii) Simulated fish number vs. tracked
count is shown by the points. The line represents equal values of simulated vs. tracked. (iv) The ratio of tracked to simulated is
shown by the points. The line shows the mean value of this ratio.

Figure 2(b). The same comparison for 8) transducer.
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Figure 3. Data from the experiment at Spences Bridge. (a) The
echo counting model estimates for the 4)#10) transducer are
plotted with solid dots, while the estimates from the real-time
tracking program are plotted as open circles. The line repre-
sents equal values of estimated count vs. visual count. Only
those data sets with hourly migration rates less than 1500 fish
h"1 are shown. (b) The same plot as in panel (a) is shown
for the 8) transducer. Again, only migration rates less than
1500 fish h"1 are shown. For this case, the tracked estimates are
much lower than the visual count, while the counting model
estimates are significantly less biased.
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used to calculate the corresponding up/down angle, í,
and left/right angle, ë, from the acoustic coordinate
system described in the Appendix. Then the two-
way beam pattern factor (in units of decibells) was
approximated by:

bpf~bpfv+bpfh (12)

where:

bpfv=cv0
+cv1

í+cv2
í2+cv3

í3+cv4
í4,

bpfh=ch0
+ch1

ë+ch2
ë2+ch3

ë3+ch4
ë4.

Values for the coefficients cv and ch were obtained
from calibration of the transducers. For example, the
coefficients for the 4)#10) transducer are:

cv=(0,"0.002998,"1.323180,0.078200,"0.029784),

ch=(0,0.000275,"0.317320,0.002170,"0.001179)

This process yields a data structure (bpfi, pi), i=1, . . .,
dp with the detection probability p being a dependent
function of the beam pattern factor, bpf, as:

pi=f(bpfi)+åi, (13)

where åi are i.i.d with mean 0 and variance ó2
p, i.e.

åi2(0,ó2
p). Then p(bpf) can be estimated by a one-

dimensional kernel regression technique. The estimate
for Equation (13) is defined as:

where K(·) is the kernel function and h is the smoothing
parameter or bandwidth. The selection of smoothing
parameter is pivotal for accurate estimation. This issue
has been extensively discussed in the literature; see, for
example, Nychka (1991) and Gasser et al. (1991). A
data-dependent smoothing parameter for this regression
(details can be requested from the authors) using the
mean integrated square error (MISE) for f|(bpf) can be
expressed as:

where ó̂2
p is the estimated variance of the pi, e is the base

of the natural system of logarithms (e~2.718), and â
and b| are obtained from a logistic regression between pi

and bpfi.

To estimate the detection probability function,
p(x,y,z), for a fish, first the bpf for that location is
calculated using the procedures described above. If the
calculated bpf falls within the range of the observed bpfi,
linear interpolation is used to calculate detection prob-
ability. Since we do not have an analytic representation
for p as a function of bpf; rather, we have dp discrete
values of p(bpfi), we have to interpolate these values. If
bpf is greater than the maximum of the observed bpfi,
linear extrapolation is used. If bpf is less than some
minimum value we have chosen, p(x,y,z) is defined to be
0.25 (Fig. 4). Thus, we truncated the lower limit of p to
be 0.25. This truncation was required to give reliable
estimates for the fish density function, ñ(x,y,z) and is a
result of sampling small numbers of echoes to estimate
both e and p. Equation (3) shows how, when both ê and
p̂ become smaller as we get near the edge of the beam, ñ̂
can begin to vary widely. This truncation process helped
stabilize our estimates for ñ while maintaining a small
relative bias.

Estimation of the fish speed function

The acoustic system includes fish tracking software. The
tracking algorithm works well when a single fish is in the
beam. However, if several fish are in the beam and are
separated by a small difference in range, the algorithm
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Figure 4. The fish echo detection probability is plotted as a
function of beam pattern factor (measured in dB). These data
are for a 8) transducer with a sockeye salmon used as the target.
The solid line represents the kernel regression fit to the data.
The dashed line represents extrapolation (for values near beam
pattern factor of 0) or truncation (for values of beam pattern
factor less than "5.5). The detection probability has been
truncated to 0.25 for use in the echo counting model, while for
the simulation program, this truncation is not used.
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can confuse the trajectory of one fish with that of
another. The resulting trajectories do not give accurate
information about the movement of fish through the
beam. We apply a selection criterion to choose only
well-tracked fish from the group of all tracked fish. Only
the locations (xu,yu,zu), u=1, . . ., nu, nu<ne from these
well-tracked single fish, and the corresponding time for
each observed echo, are used to estimate the fish migra-
tion speed, S. Suppose that the ith fish, where i=1, . . .,
kf, is detected ni times and its jth tracked position and
time are written as (xi, j,yi, j,zi, j,ti, j) where j=1, . . ., ni,
with Ókf

i=1 ni=nu. Our experience has led us to use the
correlation coefficient of xi, j vs. ti, j as an indicator to
select a subset of well-tracked fish. The criterion is to
choose fish trajectories with a correlation coefficient
greater than 0.75.

We are only concerned with the fish migration speed
in the x-direction to obtain the upstream fish flux.
Therefore, for each of the selected fish, the xi, j vs. ti, j

trajectory is fit using a robust regression procedure
introduced by Huber (1973). This procedure estimates
the parameters ôi and si from the regression equation:

xi, j=ôi+siti, j, j=1, . . ., ni. (16)

The associated fish speed is predicted from this regres-
sion by ŝi, since:

where x̂i, j and x̂i, j"1 are the predicted values from the
regression Equation (16).

The echo counting model described in Mulligan and
Kieser (1996) used an estimated functional form S|(x,y,z),
to describe the systematic spatial variation in fish migra-
tion speed. We discovered that, after selecting only
well-tracked fish, there were too few observations of ŝi to
make reliable estimates of S. Therefore, we have simpli-
fied this procedure to calculation of a weighted mean
speed, given by:

Results

Simulated data

Simulated data was used to determine the variance and
bias of the estimated number of fish migrating through
the beam, N| , and to refine our estimation procedures.
The 4)#10) transducer data gave very similar results for
the ratio of counting model estimate to simulated count
and the ratio of tracked estimate (obtained from the
simulation program as described earlier) to simulated

count (Table 2). However, the 8) transducer results are
quite different for counting model estimates vs. tracking
estimates. This difference is due to the decreased track-
ing efficiency near the edge of the beam and is exacer-
bated by the circular cross-section of the 8) beam. The
counting model estimate has almost the same relative
bias for both transducers.

The model performance with simulated data is depen-
dent on the choice of input parameters and the initial
fish distribution generated by Equation (6). The values
used in these simulations generate fish trajectories that
are uniformly distributed in the y and z dimensions and
span the entire beam cross-section for the simulated
4)#10) data. If the range of y were to be limited to
produce trajectories in only the lower portion of the
beam to simulate high fish density near the river bottom,
as was done for the simulated 8) data, then the percent-
age of untracked and undetected fish increase, since p is
low near the edge of the beam. This in turn, affects the
bias and standard deviation of N| . Thus, the bias and
variance of the echo counting model estimates depend
on the distribution of ñ(x,y,z).

We anticipated that the accuracy of the estimated
number of fish would be dependent on the total number
of fish in the simulation. When the number of obser-
vations is low, it should be more difficult to estimate the
spatial dependence of e(x,y,z) and ñ(x,y,z). However, the
ratio of the model estimate to the simulated number of
fish is quite stable, even when the total number of fish is
as low as 150 (Fig. 2aii, 2bii). Perhaps this is because the
kernel density estimation uses smoothing parameters
that vary as ne

"1/7, where ne is the number of echoes.
Changing the size of the smoothing parameter increases
the size of the local neighborhood used to estimate the
density, as the number of echoes decreases. Thus, for
smaller numbers of echoes, the smoothing parameters
are larger and the resulting relative bias remains stable.

Experimental data

The experiment conducted at Spences Bridge on the
Thompson River compared model estimates to visual
estimates. A total of 14 data sets, seven from the 4)#10)
transducer and seven from the 8) transducer, with visual
counts less than 1500 fish h"1, were selected from this
experiment to test the model. Table 3 lists the visual

Table 2. Mean and standard deviation (s.d.) for the ratio from
100 simulated data.

Transducer
Ratio

4)#10) 8)

Mean s.d. Mean s.d.

Estimated to simulated 0.9731 0.0175 0.9408 0.0221
Tracked to simulated 0.9600 0.0098 0.8361 0.0256
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counts (Visual), the tracked fish number (Tracked) from
the real-time fish tracking algorithm, and the estimated
counts (Estimated) from the echo counting model.

All of the estimates in Table 3 are subject to error.
Following the procedures from Schnute et al. (1990), the
maximum likelihood point and interval estimate for the
relative bias of the ratios between the model estimates to
visual counts and tracking estimates to visual counts, are
summarized in Table 4.

For the 4)#10) transducer, both the model estimate
and the tracking estimate are not statistically signifi-
cantly different from the visual count. However, the
echo counting model estimates have smaller standard
deviation than the real-time tracked estimates. This
indicates that the echo counting model estimates are
more precise than the real-time tracking estimates. This
property can be also seen from Figure 3(a). For the 8)
transducer, the model estimate is not statistically signifi-
cantly different from the visual count, but the real-time
tracking estimate is significantly different (Fig. 3b).
Comparison of Table 4 and Table 2 demonstrate that
the standard deviations of the relative bias are larger for
the Spences Bridge data than for simulated data.

Discussion

In this paper we describe the development of statistical
procedures that are required to apply the echo counting
model of Mulligan and Kieser (1996) to real or simu-
lated data. We found that three-dimensional kernel
density estimation of the cumulative echo distribution,
e(x,y,z), was successful when it included independent,

data-based smoothing parameters for each dimension.
In addition, kernel regression worked well to estimate
the dependence of fish detection probability, p, on
position in the beam. Here again, a data-based smooth-
ing parameter proved necessary to obtain accurate esti-
mates. In this latter instance, we have not included any
dependence of detection probability on distance from
the transducer, R; rather we limited our description to
the angular variables í and ë. The reason for excluding
R-dependence was due to the fact that, at our site on the
Fraser River, all of the upstream fish movement occurs
between 3–15 m from the transducer. At this close range,
R-dependence is not significant; whereas, if we observed
fish movement out to a larger range, for example 100 m,
we would expect p to show some R-dependence.

For the 4)#10) transducer, both the model estimates
and the real-time tracking estimates for the Spences
Bridge data were found not to be statistically signifi-
cantly different; whereas, the real-time tracking esti-
mates for the 8) transducer were statistically significantly
different from the model estimates. If the fish tracking
algorithm accurately estimates the number of fish pass-
ing through the beam that generate four or more echoes
(recall that four echoes are a prerequisite for the track-
ing algorithm), a larger bias is to be expected for tracked
fish estimates than for echo counting estimates. This is
because some fish will have passed through the beam
and generated three or less echoes, while some will
generate no echoes at all. This phenomenon can lead to
a substantial underestimate of the number of migrating
fish, as demonstrated by the tracking estimates for the 8)
transducer. The echo counting model accounts for these
two possibilities and, therefore, should give a smaller

Table 3. Summary of data from Spences Bridge experiment.

For 4)#10) transducer For 8) transducer

Visual Tracked Estimated Visual Tracked Estimated

470 458 464 465 286 472
504 579 545 721 475 713
678 646 654 500 203 443
507 547 502 664 490 663
710 609 615 844 539 794
663 623 637 710 451 710
705 721 715 490 314 491

Table 4. Bias point and interval estimate (C.I.) for Spences Bridge experiment.

Transducer
Bias

4)#10) 8)

Point C.I. s.d. Point C.I. s.d.

Estimated to visual 0.9788 (0.9200, 1.0413) 0.0647 0.9749 (0.9320, 1.0198) 0.0462
Tracked to visual 0.9925 (0.9079, 1.0848) 0.0962 0.6104 (0.5125, 0.7269) 0.1019
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bias. This improvement is particularly evident for the 8)
transducer data.

The real-time tracking estimates are reasonably accu-
rate for the 4)#10) transducer. This result is dependent
on the ping rate used. If too low a ping rate is used,
many fish will pass through the beam without being
detected the minimum number of times required by the
tracking algorithm. The Spences Bridge data were
obtained with the acoustic system configured to record
echo data between the ranges of 3.5–8.5 m. At these
short ranges, the relatively high frequency of 10
pings#s"1 is a good choice. If fish at long ranges are to
be observed, a slower ping rate might be necessary. Data
obtained over a wide interval, from short to long range,
might have to be acquired in two or more stages, each
stage having a different ping rate, if accurate tracked-fish
estimates are to be obtained.

One difference between the simulated and real data
is that, in the simulation program, tracking works
perfectly. That is, all fish that produce four or more
echoes are accurately counted. The real-time tracking of
real data does not achieve this perfect goal. It is much
more difficult to track many fish simultaneously,
especially when they differ in range by a small amount.
In practice, our real-time algorithm over- and under-
estimates the number of fish for different trajectories.
This phenomenon is difficult to reproduce with
simulated data.

The fish flux rates observed in the Spences Bridge
experiment ranged from 2400 to 28000 fish h"1. While
these are not unusual for the Fraser River system, they
are much higher than most salmon bearing rivers experi-
ence. A more typical river system might be expected to
have less than 2000 fish h"1. In our comparison with the
data from Spences Bridge, we examined only those
observations with fluxes ¦1500 to avoid problems
imposed by the acoustic detection and tracking software,
not because of limitations of the echo counting model.
Therefore, we believe that this model should be used for
providing estimates to help with the management and
understanding of many salmon fisheries.

We assume that the fish distributions and behaviour
reflected in the Spences Bridge data are representative of
typical data from the Fraser River, where we intend to
apply the echo counting model to help with the manage-
ment of the sockeye salmon fishery. Therefore, the
real-time tracking and echo counting model estimates
for Fraser River data should be similar to those
obtained here.

While working with simulated data, we noticed that
our estimated migration speed, S|, was negatively biased.
This is due to the fact that migration speed is estimated
using only well-tracked fish, which do not comprise a
random sample. Fish that swim quickly through the
beam are more likely to generate fewer echoes than fish
that swim more slowly. Once again, the requirement of

four or more echoes per tracked fish will tend to yield a
sample that is biased towards the slower swimming
individuals. An examination of the magnitude of this
bias for the Spences Bridge data (mean fish speed of
0.4 ms"1 and coefficient of variation of 0.075)
demonstrates that the bias should be less than 2%
(Fig. 5).

A criticism of the model that followed the publication
of Mulligan and Kieser (1996), was that ñ and S
should be correlated, so that Equation (4) is incorrect.
Specifically, this equation assumes that:

`

ñS~ñ̂S|. (19)

This approximation will only be valid if the correlation
between ñ and S is negligibly small. Consider the echo
data, (xi, j,yi, j,zi, j) where i indexes fish and j indexes the
echoes within a trajectory from an individual fish. If
we choose a specific value of i, the distance between
coordinates xi,1, xi,2, . . . must be correlated to Sx,i, the
x-component of the migration speed of fish i. The same
is true for the y- and z-coordinates with their respective
speed components. Therefore, ñ must also be correlated
to S for this case. By contrast, a set of the x-coordinates
among fish, for example xi,1 where i=1, 2, . . . are
uncorrelated as required by Equation (6) for simulated
data and as assumed for real data. The same holds true
for the migration speeds among fish as required by
Equation (7) for simulated data and as assumed for real
data. When evaluating Equation (3), ñ(0,y,z) has been
estimated within a small region of space defined by the
magnitude of the kernel density smoothing parameters.
Consider two scenarios for this region. First, the number
of individual fish is small and the mean number of
echoes within each fish’s trajectory is large. For this case,
we would expect the coordinates to be correlated and
Equation (19) would not be valid. The second scenario
is for the case where the region contains echoes from
a large number of fish with only a single echo from
each fish. In this latter case, Equation (19) should be a
good approximation. We believe the second scenario is
closer to the real situation than the first. The accuracy
of the echo counting model estimates for both the
simulated and the Spences Bridge data support this
assumption.

Echo counting is more susceptible to random echoes
from non-fish sources than echo tracking. This is
because tracking uses additional signal processing to
require systematic behaviour among the related echoes
within a fish trajectory. This additional processing acts
like a filter to block random echoes and pass systemati-
cally related echoes. Many of these random echoes can
be removed from the data by an experienced person.
Several noise sources, such as boat wakes or down-
stream floating debris, are easily identified from an
echogram and can be removed. This data editing process
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has been applied to all of the data from the Spences
Bridge experiment.

We are encouraged by the performance of the echo
counting model and believe that it will provide estimates
that are useful for managing salmon fisheries. The level
of accuracy of the results presented here is the result
of careful acoustic measurements and the successful
development of appropriate statistical procedures to
estimate fish density and migration speed. We hope that
these acoustic techniques will be adopted by agencies
responsible for the management of salmon fisheries.
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Appendix

The Cartesian (x,y,z) and split-beam (R,í,ë) coordinates
are related by the following transformations (Fig. 6):

R2=x2+y2+z2,

x=ztan ë,

y=ztan í,

z=Rcos Ö,

Ö=tan"1√tan2(í)+tan2(ë),

where:

í is the up/down angle,
ë is the left/right angle,
Ö is the off-axis angle,
x is the distance in the upstream/downstream direc-
tion,
y is the distance in the river surface/bottom direction,
z is the distance in the acoustic beam axis direction,
R is the distance of the fish from the acoustic trans-
ducer face.

Transformations between Cartesian (x,y,z) and
spherical coordinates (R,è,ö) are (Fig. 7):

x=Rsinè cosö,

y=Rsinè sinö,

z=Rcosö.

R

Φ
ν

λ z

x

y

Figure 6. The Catesian (x,y,z) and split-beam (R,í,ë) coordi-
nate system.
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Figure 7. The Catesian (x,y,z) and spherical (R,è,ö) coordinate
system.
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