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ABSTR4CT- We present a split Hopkinson pressure bar technique to obtain compressive stress-

strain data for rock materials. This technique modifies the conventional split Hopkinson bar

apparatus by placing a thin copper disk on the impact surface of the incident bar. When the

copper disk is impacted by the striker bar, a nondispersive ramp pulse propagates in the incident

bar and produces a nearly constant strain rate in a rock sample. Data from experiments with

limestone show that the samples are in dynamic stress equilibrium and have constant strain rates

over most of the duration of the tests. We also present analytical models that predict the time

durations for sample equilibrium and constant strain rate. Model predictions are in good

agreement with measurements.
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Introduction

The split Hopkinson pressure bar (SHPB) technique originally developed by Kolsky’>2has

been used by many investigators to obtain dynamic compression propefiies ofsolid materials.

This technique has mostly been used to study the plastic flow stress of metals that undergo large

strains at strain rates between 102 – 104 s:’. ‘The evolution of this experimental method and

recent advances are discussed by Nicholas3, Follansbee4, Nemat-Nasser, Isaacs, and Starrett5,

Ramesh and Narasimha6, Gray7, and Gray and Blumenthal.s As discussed by Yadav, Chichili,

and Ramesh9, data for the compressive flow stress of metals are typically obtained for strains

larger than a few percent because the technique is not capable of measuring the elastic and early

yield behavior. By contrast, most of the material behavior of interest for relatively brittle

materials such as ceramics and rocks occurs at strains less than about 1.0 percent.

In this study, we modified the conventional split Hopkinson pressure bar or Kolsky bar

technique to obtain dynamic compressive, stress-strain data for rock materials and conducted

experiments with limestone samples that have failure strains less than 1.0 percent. The analytical

and experimental work presented in this study for rock materials uses and extends recently

published work for ceramic materials. We particularly cite the experimental and analytical work

by Nemat-Nasser, Isaacs, and Starrett5 for pulse shaping and the sample equilibrium model

published by Ravichandran and Subhash.’O

For an ideal Kolsky compression bar experiment, the sample should be in equilibrium and

should deform at a constant strain rate over most the duration of the test. To closely approximate

these ideal conditions for experiments with brittle ceramic and rock materials, a properly

designed, thin copper disk is placed on the impact surface of the incident bar so that a

nondispersive ramp pulse propagates in the incident bar. Data from experiments presented in

this study show that limestone samples were in equilibrium and at constant strain rates over most
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of the duration of the tests. Thus, a pulse shaping technique is an essential modification in order

to closely approximate these ideal test conditions. Experiments that attempt to obtain stress-

strain data for ceramic materials at constant strain rates are reported by Rogers and Nemat-

Nasser” and Chen and Ravichandran.’2 While we were able to use many of the contributions

from the published papers on ceramic materials, several new modifications were required for our

Kolsky pressure bar experiments with rock materials. For example, compressive strengths for

ceramics are more than a factor of ten larger than compressive strengths for limestone, so the

limestone sample diameters were the same as the bar diameters. More importantly, in order to

obtain sample equilibrium, a pulse shaper must be designed to produce a much smaller slope on

the ramp pulse propagating in the incident bar because the wave

four times smaller than typical wave speeds for ceramics.

modifications are discussed in the following sections.

speed for limestone is three to

Other critical experimental

Split Hopkinson Pressure Bar (SHPB) or Kolsky Bar

As shown in Fig. 1, a conventional

striker bar, an incident bar, a transmission

split Hopkinson pressure bar (SHPB) consists of a

bar, and a sample placed between the incident and

transmission bars. A gas gun launches the striker bar at the incident bar and that impact causes

an elastic compression wave to travel in the incident bar towards the sample. When the

impedance of the sample is less than that of the bars, an elastic tensile wave is reflected into the

incident bar and an elastic compression wave is transmitted into the transmission bar. If the

elastic stress pulses in the bars are nondispersive, the elementary theory for wave propagation in

bars can be used to calculate the sample response

mounted on the incident and transmission bars.

3
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measure the incident &i and reflected Sr strain pulses, and strain gages mounted on the

transmission bar

present equations

measure the transmitted El strain pulse. Nicholas3, Follansbee4, and Gray’

that describe the sample response in terms of the measured strain signals.

For this study the incident and transmission bars were made from the same material with

equal cross-sectional areas. As shown in Fig. 1, the bars have density p, Young’s modulus E, bar

wave speed c, and cross-sectional area A. Since we only focus on limestone samples that have

failure strains less than 1.0 percent, we need only use engineering stress, strain, and strain-rate

measures. In addition, we take stress positive in compression, strain positive in contraction, and

particle velocity positive to the right in Fig. 1. Figure 1 also shows the sample has cross-

sectional area ASand length 10. We take subscripts 1 and 2 to represent the locations of the ends

of the sample.

Strain rate of the sample is given by

dg~ V, – V~
—=

dt 10 ‘
(1)

where VI and vz are the particle velocities at the sample and bar interfaces. In terms of the

measured strain pulses

dz~ _ C

‘-~(&i-&r -&/).
dt ~

Forces at the ends of the sample are

4-

p)

-.-—
,..=-7.



P, = &4(&~+e, )

P2 = EAq

and the average force is

Pa -‘A–—(&i +&r+&t).
2

Similarly, stresses at the ends of the sample are

EA
CT]= —(s~+sr)

As

EA~2. —
As ‘t

and the average sample stress is

(3a)

(3b)

(3C)

(4a)

(4b)

(4C)

If PI=P2, the forces on both ends of the ;ample are equal, and from eqs (3a) and (3b) &i+ E,= St.

So if the sample is in dynamic stress equilibrium, the stress, strain rate, and strain are given by

EA
o~=—

As ‘t

5
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d&s –2CE——
dt= lo’

(6)

(7)

As discussed in detail by Ravichandran and SubashlO,Gray7, and Gray and B1Umentha18,

eqs (5), (6), and (7) assume that the sample is in dynamic stress equilibrium. Equilibrium should

first be examined by comparing the stresses al and cr2at the ends of the sample given by eqs (4a)

and (4b). If al and 02 are in reasonable agreement, only then it is reasonable to use eqs (5), (6),

and (7) to calculate sample stress, strain rate, and strain.

A Conventional SHPB or Kolsky Bar Experiment

We present results from a conventional SHPB experiment with an Indiana limestone

sample (Elliot Stone Company, Bedford, IN). Pettijohnt3, and Podnieks, Chamberlain, and

Thin’~ describe this limestone as a carbonate rock that contains over 90 percent calcite and less

than 10 percent quartz, has a porosity of about 15 percent, and a grain size ranging between 0.15

and 1.0 mm. For this study, the limestone samples had density p~ = 2300 kg/m3, Young’s

modulus E$= 24 GPa, and bar wave velocity CS= 3200 mk. Young’s modulus was estimated

from quasi-static compression data shown later. In addition, the sample had a length and

diameter of 12.7 mm, and the sample and bar diameters were equal.

The striker, incident, and transmission bars shown in Fig. 1 had lengths of 152 mm,2130

mm, and 915 mm, respectively. The bars were made from high strength, maraging VM350 steel

(Vasco Pacific, Montebello, CA) and have density p = 8100 kg/m3, Young’s modulus E = 200

6



GPa, and bar wave velocity c = 4970 m/s. The strain gages shown in Fig.1 are located at 1060

mm from the impact surface on the incident bar and 229 mm from the sample/ bar interface on

the transmission bar.

Figure 2 shows incident, reflected, and transmitted strain-time signals for a striking

velocity of 8.05 mls. The incident pulse has a fast rise time of about 10 ps and a pulse width of

about 60 ps

versus time

that corresponds to two wave transit times in the striker bar. Figure 3 shows stress

at the ends of the sample calculated from eqs (4a) and (4b) and the average strain .

rate calculated from eq (2). For an ideal SHPB experiment, the sample should be in equilibrium

and should deform at a constant strain rate over most of the duration of the test. However, Fig.3

shows that crl and oz are not in close agreement and that the strain rate is not constant over the

duration of the test.

In the next sections, we present models and experimental results that show a ramp

incident pulse is required to obtain sample equilibrium and constant strain rate over most of the

test duration. The ramp incident pulse is produced by placing a thin copper disk on the impact

surface of the incident bar. We describe the details of this pulse shaping

study. 15

Models for Sample Equilibrium and Constant Strain Rate

In this section, we develop models that show the evolutionary

technique in another

process for sample

equilibrium and constant strain rate for brittle materials that have a linear stress-strain response

until failure. These models and subsequent experiments show that a ramp stress pulse in the

incident bar is required in order to obtain sample equilibrium and constant strain rate over most

of the duration of the experiment. The first model assumes that the sample is in stress

7
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equilibrium and predicts strain and strain rate versus time. For the second model, we perform a

wave propagation analysis on the interaction of the sample with the incident and transmission

bars. This second model predicts the stress-time histories on either side of the sample.

A ramp pulse propagates in the incident bar given by

Gi (X, t) = M(t -:). H(t-:)
.

(8)

where H is the Heaviside unit function and M is the stress loading rate. We take x = O at the

interface between the incident bar and the sample labeled

in equilibrium, 01 = C2, and we neglect wave propagation

to have a linear stress-strain response to failure given by

as station 1 in Fig. 1. If the sample is

in the sample. The sample is assumed

(9)

where Es is the Young’s modulus for the sample.

When the incident stress pulse reaches the sample, stress pulses are reflected back into

the incident bar and transmitted into the transmission bar. As before, we take stress positive in

compression, strain positive in contraction, and particle velocity positive to the right in Fig.

From the equations of elementary bar theorylG, strain rate in the sample given by eq (1) can

written in terms of the incident ~i, reflected or, and transmitted crtstress pulses in the bars as

1.

be

ds~ _ 1
—-—(oj -0/. -ao.
dt pclo

(lo)

8

—-.—..
. - -r ------ - --- ,.- - - , “

~.— -—



For a sample in equilibrium, ~i + cr,= at, and

The incident and transmitted stresses in the bars are

Oi = M

From eqs(11) and (12),

dz~ + 2A~E~ 2Mt
T

&~=—
p CAIO pclo

which has solutions

..=~{+l-e+:)ll

(11)

(12a)

(l~b)

(13)

(14a)

(14b)
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,

Apc~=+, y= 10 J%
s As Ps Cs ‘ Cs

(14C)

Equations (14a) and (14b) give closed-form solutions for the strain rate and strain in the sample.

However, this model assumes that the sample is in equilibrium.

For the second model, we perform a wave propagation analysis on the interaction of the

sample with the incident and transmission bars. Ravichandran and Subash*Opresent a method of

characteristics solution for this problem and show results for ceramic materials. Our analysis of

this same problem

applications.

provides closed-form equations that we find more convenient for numerical

We use the elementary theory of wave propagation in bars to calculate the stress-time

histories at the ends of the sample. Ravichandran and Subash10and GrafflGpresent equations for

the reflected and transmitted stresses at the interfaces shown in Fig. 1. At the incident bar/

sample interface (location 1 in Fig. 1), the stresses transmitted to the specimen Otand reflected in

the incident bar cr~are

(15a)

(15b)

in which r is given by eq (14c) and ~i is the incident pulse given by eq (8). We take x = O at

station 1 in Fig. 1, and the stress in the sample at station 1 is

10
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i’

2yM(
cr]=—

r+l’
0<1<21.. (16)

At t = tO,the stress wave in the sample reaches the sample/ transmission bar interface (location 2

in Fig. 1). When the

transmission bar, the

sample are

stress wave in the sample travels toward station 2 and interacts with the

stresses transmitted into the transmission bar q and reflected into the

2r~*~t =
y(r + 1) ‘

(1

r–1
crr=— q,

r+l

where crl is given by eq (16). The stress in the sample at station 2 consists of the incident and

reflected stress waves and is given by

2yM
C2 (t) =

(1
---(t-to)+ ~‘-* ~(t–to)> to <f<~to. (18)

We repeat this interaction process several times and obtain

2yMtcY, .—
r+l ‘

o <t< 2to (19a)



t

~,=%[+[(fi)+(fiy](f-2fo)+[(:J
410 St< 6/0 (19c)

and

a2=*{[l+(=Jt-to)}> to </< ~fo po~)

The nth term foreqs(19) and (20) is

--- .,-- ... ., ,,-7-—-
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for the time interval n t. < t < (n+2) L. Therefore, 01 and GZcan easily be calculated for times

greater than those given by eqs (19) and (20). j

Figures 4 and 5 show model predictions for sample stresses and strain rate versus time.
.

These predictions correspond to experiments with steel bars and limestone samples (r = 5.5) and

with equal sample and bar diameters (y= 1). For Fig. 4, the stress loading rate in the incident bar

(eq (8)) is M = 3.3 MPa/ps and corresponds to the loading rate for experiments discussed in the

.next section. In addition, the sample fails or starts to

Figure 4 shows that the stresses at the incident bar/

transmission bar interface 02 are nearly equal for t/tO>2.

fail at a sample stress a,

sample interface c1 and

> 120 MPa.

the sample/

In addition, the sample stress predicted

by the model that assumes sample equilibrium given by eqs (9) and (14b) lies between crl and crl.

The strain rate rapidly increases from 0< t/tO<4 and is nearly constant for 4< t/tO<12, so the

strain rate is nearly constant for a sample stress between about 20 and 120 MPa. Figure 5 shows

model predictions for stresses and strain rate versus time for a stress loading rate of M = 9.9

MPa/ps. A comparison of the results in Figs. 4 and 5 show that as the loading rate increases

from 3.3 to 9.9 MPa/ps, the interface stresses al and crzbegin to differ from each other and the

strain rate varies significantly over most of the duration of the test.

Modified SHPB or Kolsky Compression

Models developed in the previous section

Bar Experiments

predict that a nondispersive ramp pulse in the

incident bar is required for testing brittle materials that have a linear stress-strain responses to

failure. To obtain the ramp pulse in the incident bar, we modify the conventional SHPB

technique by placing a thin copper disk on the impact surface of the incident bar. Nemat-Nasser,

Isaacs, and Starrett5 present a pulse shaping model and data for oxygen-free, high purity copper

13.
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(C10200)17. In another study 15,we extend the model of Nemat-Nasser, Isaacs, and Starrett5 and

present data for both annealed and hardened Cl 1000 copperi7 pulse shapers.

In this section, we present results from two experiments that demonstrate our modified

SHPB technique. Data from experiments with limestone show that the samples are in dynamic

stress equilibrium and have nearly constant strain rates over most of the duration of the tests. In

addition, we carefilly bracket sample failure with one test where the sample fails with

catastrophic damage and a second test where the sample is recovered intact. These experiments

used the same limestone samples described in the previous section, A Conventional SHPB or

Kolsky Bar Experiment. The sample had a length and diameter of 12.7 mm, and the sample

and bar diameters were equal. The high strength steel incident and transmission bars had lengths

of 2130 and 915 mm, respectively. Strain gages shown in Fig. 1 are located at 1065 mm from

the impact surface of the incident bar and 229 mm from the sample/ bar interface on the

transmission bar. To obtain a nearly linear ramp pulse in the incident bar, a 3.97-mm-diameter,

0.79-mm-thick, annealed (Cl 1000)15$‘7 copper disk was placed on the impact surface of the

incident bar. All the above mentioned parameters remained fixed for the two experiments

presented in this section. However, the first experiment used a 154-mm-long, steel striker bar,

and the second experiment used a 51-mm-long, steel striker bar. Both striker bars were launched

to a striking velocity of 13.9 rnh.

Figure 6 shows the measured incident stress pulse and a prediction from our model 15for a

154-mm-long, steel striker bar with a striking velocity of 13.9 rds. Note that the incident stress

pulse is nearly a linear ramp for about 75 ps and has a stress loading rate of about M = 3.3

MPa/ps. Incident, reflected, and transmitted strain pulses presented in Fig. 7 show that the high

frequency oscillations that appear in Fig. 2 are eliminated with pulse shaping. Thus, data

14
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analyses that use the elementary bar theory should be more accurate for pulse shaped

experiments. Figure 8 presents stresses in the sample at the incident bar/ sample interface al and

the sample/ transmission bar interface 02 calculated from eqs (4a) and (4b) that use the measured

strain signals. We also show that the model prediction from eqs (9) and (14b) are in good

agreement with the measured stresses and that c1 and oz are in close agreement. Thus, the

sample is nearly in a state of dynamic stress equilibrium. Figure 8 also shows the predicted and

measured strain rates versus time. Strain rate is nearly constant for 15ps < t <50 ps. At about

50 ps, the limestone sample begins to fail. When failure starts, the sample is no longer in a state

of homogeneous deformation and the valid range of the experiment is over. Post-test

observations showed that the sample eventually experienced catastrophic damage.

Figures 6 and 8 show that the limestone sample started to fail at about 50 ps and the

incident ramp pulse was loading for about 75 ps.

after the start of failure and the sample eventually

Therefore, the sample continued to be loaded

experienced catastrophic damage. To recover

an intact limestone sample after a test, we conducted another experiment with a ramp pulse in the

incident bar with a shorter duration than the pulse shown in Fig. 6. Figure 9 shows the measured

incident stress pulse and a prediction from our model 15for a 51-mm-long, steel striker bar with a

striking velocity of 13.9 rrds. Note that the incident stress pulse is nearly a linear ramp for about

50 ps and has a stress loading rate of about M = 3.1 MPa/ps. Thus the incident pulses shown in

Figs. 6 and 9 are almost identical except for the loading durations of 75 ps and 50 ps,

respectively. Results for the 50 ps ramp incident pulse are shown in Fig. 10 and are very similar

to those presented in Fig. 8. However, the strain rate in Fig. 8 shows an exponential growth after

about 50 ps, and the strain rate in Fig. 10 remains nearly constant. Thus the sample is loaded

after failure began in the first experiment, and the loading ended at about the time the sample

15
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started to fail in the second experiment. In the first experiment the limestone sample eventually

failed with catastrophic damage; whereas, in the second experiment the sample was recovered

intact. From Figs. 8 and 10 we conclude that the limestone sample has a failure stress of about

120 MPa for a strain rate between 100 S-land 120 s-l.

In Fig. 11, we show stress-strain curves from the dynamic experiments discussed in this

section and a quasi-static stress-strain curve. We note that the failure stress at a strain rate

between 100 s-’ and 120 S-lis about doubIe that obtained from a quasi-static experiment.

Conclusions

We presented a modified split Hopkinson pressure bar or Kolsky bar technique to obtain

compressive stress-strain data for rock materiaIs. A nondispersive ramp pulse was produced in

the incident bar by placing a thin copper disk on the impact surface of the incident bar. Data

from experiments with limestone samples showed the samples were

equilibrium and had constant strain rates over most of the test durations.

analytical models that predicted the time durations for sample equilibrium

rate.

in dynamic stress

We also presented

and constant strain
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Figure Titles

Fig. 1-Schematic of a conventional split Hopkinson pressure bar (SHPB) or Kolsky bar

Fig, 2-Strain-time signals for a conventional SHPB experiment with a limestone sample

Fig. 3-Interface stresses and strain rate from a conventional SHPB experiment with a limestone

sample

Fig. 4-Stress and strain rate model predictions for a limestone sample loaded by a ramp incident

pulse with a stress loading rate of 3.3 MPa/ps

Fig. 5-Stress and strain rate model predictions for a limestone sample loaded by a ramp incident

pulse with a stress loading rate of 9.9 MPa/ps

Fig. 6-Data and model prediction for an incident pulse with an annealed copper pulse shaper

Fig. 7-Strain-time signals for a pulse shaped SHPB experiment with a limestone sample

Fig. 8-Interface stresses and strain rate from a pulse shaped SHPB experiment with a limestone

sample

Fig. 9-Data and model prediction for an incident puIse with an annealed copper pulse shaper

Fig. 10-Interface stresses andstrain rate fromapulse shaped SHPBexperiment witha limestone

sample

Fig. 11-Quasi-static and dynamic stress-strain data
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