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Abstract. In this article, we analyze the evolution of prices in deregulated electricity

markets. We present a general model that simultaneously takes into account the

following features: seasonal patterns, price spikes, mean reversion, price dependent

volatilities and long-term non-stationarity. We estimate the parameters of the model

using historical data from the European Energy Exchange. Finally, it is demonstrated

how it can be used for pricing derivatives via Monte Carlo simulation.
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1. Introduction

Contracts between electric utilities typically offer a substantial amount of flexibility

in the form of complex embedded options. Demand for such optionalities arises

naturally from the unpredictability of power consumption and from the optionalities

inherent in power plants. In the past, there rarely was the necessity to precisely

evaluate the value of these optional parts, because electricity was not a commodity

which could easily be traded, and because supply of electric power was assured by

utility companies under regulatory control. In fact, most counterparts did not use the

flexibility of the delivery contracts in a market-orientated way. In recent years, these

matters have changed dramatically. In many countries electric power markets have

been liberalized and exchanges and online trading platforms for electricity contracts

have been founded. Market participants now take advantage of the optionality in their

contracts by optimizing against market prices and looking for arbitrage opportunities.

Therefore, it has become an important task for utilities to develop new pricing models

for the contracts they buy and sell and to quantify and manage the involved risks.
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As an example, assume that an electric utility needs additional power at times

of high demand for the first 6 months of a year. Since the utility does not know

exactly when the load will be high (as it depends on uncertain factors, such as weather

conditions), it signs an optional contract. One possibility is, that the utility simply buys

a portfolio of call options giving the right, but not the obligation, to buy electricity each

hour within the delivery period with a capacity of up to 100 MW at a fixed price

of 30 EUR/MWh. This option can be viewed as a cap on an hourly power price.

Another, less expensive, possibility is the purchase of a swing option. This is a contract

with delivery of a certain amount of commodity on dates in the future at a stipulated

constant price. The delivery dates can be nominated at short notice by the buyer within

a given delivery period. In our example we assume that the utility buys a swing option,

which gives the right and the obligation, to buy electricity with a maximum capacity of

100 MW, and an energy amount of 100 GWh at a fixed price, whereby the delivery may

be spread over the contract period of the first half of one year. For swing options the

fixed price is often specified in a way that no up front fee for the option is necessary.

To determine the fair premium for the hourly cap in the first example, or the fair

fixed price for the swing option in the second example, it is necessary to analyze the

traded products in the electricity markets. Commonly traded products in the electric

power markets are baseload, peakload and hourly contracts. Baseload means supply

with a constant capacity during the delivery period. Peakload means supply with a

constant capacity during those fixed hours of a week when load usually is high. At

the European Energy Exchange (EEX) for example the delivery times for peakload are

defined as weekdays between 8.00 a.m. and 8.00 p.m. In the futures market contracts

on both baseload and peakload are traded. The usual delivery periods are one month,

one quarter and one year. In the spot market of the EEX baseload, peakload and hourly

contracts up to the next weekday are traded. The underlying of the swing option and

the hourly cap in our example is the hourly spot market price.

To understand the behavior of electricity prices, we have to note that electricity

is scarcely storable. In most countries there are only a few reservoir power plants, and

using pumps results in a loss of approximately 30% of the energy. The consequences of

this non-storability can hardly be overestimated. One implication is that the relation

between spot prices and futures prices cannot be described with cost of carry. The most

evident result however are the enormous price fluctuations that can be observed in all

electricity markets.

As shown in figure 1, those price fluctuations have a strong daily, weekly and yearly

periodicity. This can be explained from a microeconomic viewpoint by looking at the

market price of electricity as an equilibrium price based on supply and demand curves.

Since the demand is very inelastic, the marginal costs of the supply side (described

in the so called merit order curve) determine the price to a large extend. If the total

load is low, the plants with the lowest variable production costs are used, if the total

load is high, gas or oil fired plants with high fuel costs are additionally running. The

periodicity of the total load is responsible for the periodicity of the electricity prices.
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Figure 1. EEX spot prices and 24 h moving average, January 1 - February 25, 2002

The total load has a random component, depending on short term weather conditions

and other uncertain parameters, but it also has a clear predictable part, and so do

the prices for electricity. Most utilities have extensive data and expert knowledge to

estimate the total load and therefore a good understanding for the predictable part of

power prices.

It is the aim of this paper to build on these traditional methods and to combine

them with modern approaches from financial mathematics. We develop a stochastic

model for spot market prices of electricity that is successfully used by EnBW, Germany’s

third largest energy company, to price complex options such as those described in the

examples above. Since we think that it is not possible to find a realistic model that

allows for explicit formulas for the value of e.g. swing options, pricing algorithms have

to be based on numerical methods and Monte Carlo simulation. Thus, an important

requirement for the model is the availability of fast simulation schemes.

The model we describe in the subsequent sections will capture the following features

observed in all known electricity markets (see e.g. [20] for a comparative study of several

markets):

• Seasonal patterns and periodicities. All markets show seasonal patterns of

electricity demand over the course of the day, week and year. These seasonal

patterns are carried over to the electricity prices via the merit order curve and can

therefore be fundamentally explained.

• Price spikes. Electricity spot prices typically exhibit extreme spikes, which are

not consistent with the usual modelling via diffusion processes with normal or log-

normal marginal distributions.

• Mean reversion. Prices have the tendency to revert rapidly from price spikes to

a mean level. Characteristic times of mean reversion have a magnitude of days or

at most weeks and can be explained with changes of weather conditions or recovery

from power plant outages.
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• Price dependent volatilities. It turns out that in all markets there is a strong

correlation between price levels and levels of volatility.

• Long-term nonstationarity. Due to the increasing uncertainty about factors

such as supply and demand or fuel costs in the long-term future, a nonstationary

model seems more appropriate. Nonstationarity is also needed for a model to be

consistent with the observed dynamics of futures prices.

The paper is organized as follows. In section 2 we give a short review of literature

on models for electricity prices and compare some of the existing models with our

approach. A detailed description of our model is given in section 3. The following

section 4 is devoted to the statistical analysis of the data to justify our model selection.

Especially, the so called price load curve is estimated and seasonal time series models

are fitted to the market process and to the load process, and it is demonstrated that

these models are adequate for our purposes. In section 5 we show how the long term

dynamics of the price process can be estimated from futures prices using Kalman filter

techniques. Finally, in section 6 some simulation results are described and it is shown

how our model can be used for the pricing of derivatives.

2. A review of models for electricity prices

In the last few years there has been a rapidly increasing literature on stochastic models

for prices of electricity and other commodities. Many researchers have observed that the

models typically used in financial markets are inappropriate due to the special features

of commodity prices and especially of electricity prices as described in the introduction.

In this section we will give a short review of some of the models considered so far in the

literature and compare them with our approach.

The choice of stochastic model for electricity prices depends on the time granularity

that needs to be reflected in the model. Liquidly traded futures and forward contracts

typically have full months, quarters or years as delivery periods, either as baseload or

peakload. Price quotes for single hour deliveries are in most cases only available as

day-ahead prices from the spot market. However, many structured OTC products, such

as swing options, are strongly influenced by the hourly price behavior. Since due to

the non-storability of electricity, spot products cannot be used for hedging purposes,

the electricity market is a highly incomplete market and pure arbitrage option pricing

methods fail for most structured products. Previous work has been focused mainly on

either of the two following approaches:

(i) Market models for futures prices: Instead of modelling the spot price and deriving

futures prices, the futures prices themselves are modelled. This approach goes back

to Black’s model [3], where a single futures contract is considered. Ideas from the

Heath-Jarrow-Morton theory for interest rates ([17]) are used in [6], [7], [23] and

[27] to model the dynamics of the whole futures price curve. Such models have

the advantage that the market can be considered as being complete and standard
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risk-neutral pricing may be used. Risk-neutral parameters can often be implied

from traded options on futures prices. The disadvantage of such approaches is that

futures prices do not reveal information about price behavior on an hourly or even

daily time scale.

(ii) Spot price models: This class of models aim at capturing the hourly price behavior

by fitting their model to historical spot price data. Since there is no arbitrage

relation between spot prices and futures prices, additional assumptions have to

be made to use this model for pricing derivatives. Usually this is done either by

assuming the rational expectation hypothesis

Ft,T = E[ST | Ft],

as done e. g. in [32] to price generation assets, or by calibrating a market price of

risk for each risk factor and then changing to an equivalent martingale measure P ∗

under which the relation Ft,T = E
∗[ST | Ft] holds.

Most models for the spot market employ at least two risk factors: one factor capturing

the short-term hourly price dynamics characterized by mean reversion and very high

volatility, and the other factor representing long-term price behavior observed in the

futures market. Since there are no liquidly traded derivatives on a daily or hourly time

scale that have a strong dependence on the short-term risk factor, it is very difficult to

estimate the short-term market price of risk. In [14] the authors analyze the differences

between day-ahead and real-time prices at the PJM western hub and conclude that a

short-term risk premium can be observed. Similar results were obtained in [25]. Most

derivatives, however, refer to the liquid day-ahead market as underlying and not to the

often less liquid real-time market. Furthermore, in most European markets the real-time

market is a pure OTC market, for which no regular price information exist.

The difficulties to estimate risk premia for two-factor models from historical

commodity price data are well known (see e. g. [26] and [29]). Therefore, most models

make certain additional assumptions. Common approaches are to assume a zero market

price of risk for certain (non-hedgeable) short-term risk factors, such as jumps ([8], [9])

or to calibrate first with respect to the statistical measure using spot price data and

then to imply a risk premium or risk-neutral drift from the futures market ([8], [26]).

An economic reason why the statistical measure may be used for derivatives valuation

in certain cases is given in [19], chap. 29 and [31]. In this paper we take a similar

approach as [8] by first calibrating the statistical process parameters to the spot market

and afterwards implying the risk-neutral drift and the volatility for the hedgeable long-

term process from the futures market. For the non-hedgeable short-term risk factor we

assume a zero market price of risk. In this way we have chosen a measure under which

all liquidly traded products, which are just the futures contracts and some options

on futures, are martingales and model prices for those products are consistent with

market prices. When applied to non liquid options on an hourly or daily time scale,

the model yields prices that are arbitrage free but not unique with respect to the choice
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of martingale measure. In practice, an additional risk premium will be charged for the

residual risks that cannot be hedged.

Throughout the paper we will denote by St the spot market price at time t. Since we

are working in a deterministic interest rate framework, we will not distinguish between

forward and futures prices. Therefore, single hour futures prices at time t for delivery

at time T are conditional expectations under the equivalent martingale measure

Ft,T = E
∗[ST | Ft],

where Ft = σ(Ss : s ≤ t) is the natural filtration generated by the price process.

Future prices for power delivery over a period [T1, T2] are given by

Ft,T1,T2
= E

∗

[

1

T2 − T1

∫ T2

T1

ST dT

∣

∣

∣

∣

Ft

]

=
1

T2 − T1

∫ T2

T1

Ft,T dT, (1)

or, in a discrete time setting, by

Ft,T1,T2
= E

∗

[

1

T2 − T1

T2−1
∑

T=T1

ST

∣

∣

∣

∣

∣

Ft

]

=
1

T2 − T1

T2−1
∑

T=T1

Ft,T . (2)

The simplest model taking into account mean-reverting behavior is given by an

Ornstein-Uhlenbeck process. Here the price process St is a diffusion process satisfying

the stochastic differential equation

dSt = −λ(St − a)dt + σdWt, (3)

where (Wt) is a standard Brownian motion, σ the volatility of the process, and λ the

velocity with which the process reverts to its long term mean a.

In electricity markets prices show strongly mean reverting behavior so that

estimates for λ are quite large. Typical characteristic times for mean reversion are

within a few days. Therefore this model has the major drawback that futures prices are

nearly constant over time, since under the assumption of (3) the futures price is given

by

Ft,T = a(1 − e−λ(T−t)) + Ste
−λ(T−t).

For this reason several authors suggest a two factor model, see e.g. [15], [28] and

[29]. In [28] a model of the form

dSt = −λ(St − Yt)dt + σdWt (4)

is suggested, where Yt is a Brownian motion. A similar model is given in [29], where

commodity prices are described in the form

St = exp(Xt + Yt), (5)

where (Xt) is an Ornstein-Uhlenbeck process responsible for the short-term variation

and (Yt) is a Brownian motion describing the long-term dynamics. The model we will

introduce in (6) can be considered as an extension of the ideas of [29].

All models considered so far did not take into account seasonalities. Some authors

simply neglect this serious difficulty. Others propose to use deterministic seasonalities
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described by sinusoidal functions, see [1], [10], [13] and [28]. In [22] it is suggested to

use equation (3) with a long run mean at describing the seasonal patterns. A general

deterministic seasonality is proposed in [11] and [26]. Here, the spot price is modelled

as

St = f(t) + Xt or St = exp(f(t) + Xt)

with an arbitrary deterministic function f(t) and a mean-reverting stochastic process

Xt. In our approach, the deterministic component f(t) is specified by the load forecast

ℓt and additional stochastic behavior is introduced by the use of SARIMA models for

the time series of load and prices.

There are also different attempts to account for price spikes. One possibility to

cope with spikes is the introduction of jump terms, see [7], [11] and [20]. The main

criticism for these models is that under the typical assumption of a jump-diffusion model

a large upward jump is not necessarily followed by a large downward jump. Therefore

some authors suggest hidden Markov models, also known as Markovian regime-switching

models, where it is guaranteed that upward jumps are followed by downward jumps.

Such models have been considered e.g. in [8], [9], [10], [18] and [21]. Regime-switching

models are very intuitive candidates for electricity price models, since there are some

clear physical reasons for switches of regimes such as forced outages of important power

plants. On the other hand, it seems to be difficult to combine regime-switching with

seasonalities.

Another approach is motivated by the economic background for price spikes. Prices

are determined mainly by supply and demand (load). Therefore the non-linear relation

between load and price should be taken into account in the model. This non-linear

transformation is called the ’power stack function’ in [12] and [30]. They suggest an

exponential function for that purpose. A similar model for spot prices has recently been

considered in [1], where the relation

St = f(Xt)

is suggested with Xt being an Ornstein-Uhlenbeck process, and f a power function.

We also prefer an approach based on the power stack function, since there is a natural

interpretation of this non-linear transform in terms of the merit order curve.

3. Description of the SMaPS model

This section is devoted to the description of our model for Spot Market Price Simulation

(abbreviated as SMaPS-model). It is a general model for an electricity spot market that

captures the typical features mentioned in the introduction. In this paper we calibrate

it to data of the European Energy Exchange EEX and to the Spanish energy exchange

Omel, but this can easily be adapted to any other market.

The spot market of the EEX is a so called ’day ahead market’ where as finest

granularity hourly power contracts for the 24 hours of the following day are traded. In
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a closed auction a single price for the whole of Germany is determined. One possible

approach used in [30] is a process with days as a time unit and with 24-dimensional data.

To eliminate the weekly seasonality [30] only consider weekdays and use a principal

component analysis to reduce the dimensionality. The alternative that we suppose here

is the use of seasonal time series with hours as time units but with a seasonality of 24

hours as a compromise to keep the model simple but still realistic.

Therefore we describe the spot market price by a discrete time stochastic process

{St, t = 0, 1, ...} with hours as time units. The full model can be considered as a three

factor model, based on the stochastic processes

• load process (Lt)t≥0,

• short term process (Xt)t≥0,

• long term process (Yt)t≥0,

and the following additional quantities

• (logarithmic) price load curves f(t, ·), t ≥ 0,

• the average relative availability of power plants (vt)t≥0.

The fundamental equation of our SMaPS-model can be written as

St = exp(f(t, Lt/vt) + Xt + Yt), t = 0, 1, 2, . . . . (6)

In the following we will describe the meaning of the quantities in this equation, and

give reasons why we have chosen this approach.

The two factors (Lt) and (Xt) produce the short term variation of the price behavior,

whereas the factor (Yt) is responsible for the long term variation. All three stochastic

factors are assumed to be stochastically independent.

The process (Lt) describes the electricity load. Most participants of the market

can observe the load (which is equivalent to the demand) directly at least for a certain

region, and therefore it can be assumed that they have good estimates for the load of the

whole market. Consequently, the parameters of this stochastic process can be estimated

directly from load data, independent of the spot market prices. We will use an approach

Lt = ℓt + L′
t,

where ℓt is a deterministic load forecast and (L′
t) is a SARIMA time series model with

a 24 hours seasonality.

The deterministic function vt, t ≥ 0, specifies the expected relative availability of

power plants. In Germany, for example, maintenance of power plants is mainly done

in summer, when the average load is much lower than in winter. Hence the availability

of the power plants is higher in winter compared to summer. The highest availability

(which is in January in Germany) is set to one. The expression Lt/vt will be called the

adjusted load. The statistical analysis in section 4 shows that the use of this adjusted

load leads to a more realistic model.
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The function f : Z+ × [0,∞) → R depends on the actual time t and on the

adjusted load Lt/vt. It describes the non-linear relation between price and load. In

technical terms, this relation is described by the so called merit order curve. However,

the merit order curve at a future point of time t depends on many uncertain parameters

like fuel costs, economic situation etc. Therefore we do not use a physical merit order

curve in our model. Instead, we use an empirical function estimated from hourly price

and load data. We will call this empirical function the price load curve, abbreviated

as PLC. As will be shown in section 4, this PLC depends to some extent on weekday

and daytime. Therefore the first argument of f is the time t, which enables us to use

different empirical PLC’s at different weekdays and daytimes. In practice, one will only

use a few different PLC’s differing, for example, between workdays and holidays and

between peak hours and off-peak hours. This will be discussed in detail in section 4.

Summing up, the expression f(t, Lt/vt) can be considered as the component of

the price which is determined by the load and the technicalities of producing electricity.

However, in addition to these technical aspects there are other determinants of the price

like psychological aspects of the behavior of speculators and other influences. These

aspects are specified by the processes (Xt) and (Yt).

The process (Xt) describes the residual short term market fluctuations. They are

mainly due to the ’psychology of the market’, as it occurs in any financial market. We

mention, however, that this process also includes other risks like outages of power plants

etc., for which it is too difficult to get reliable data. By definition of f as an empirically

estimated price load curve, the residual process (Xt) and the load process (Lt) are

uncorrelated. Therefore it is natural to assume (Xt) and (Lt) to be stochastically

independent. This assumption is supported by the statistical analysis at the end of

section 4. This analysis also shows that (Xt) still exhibits a 24 hours seasonality. One

reason for that could be the fact that the 24 prices of the following day are settled

simultaneously in one auction. Therefore, we use for (Xt) also a SARIMA time series

model with a 24 hours lag.

As the futures are of a stochastic nature, too, we introduce a stochastic process (Yt)

responsible for the variation of the futures prices. The process (Yt) will follow a random

walk with drift. The term exp(Yt) describes the long-term variation of the prices, which

can not be estimated from the historical data of the spot market (the EEX, for example,

only exists for about 2 years). The parameters of this process have to be estimated from

data on futures, see section 5 for a detailed discussion of that topic.

4. Statistical analysis: Model selection and model fit

In this section, we discuss in more detail the statistical analysis of that parts of the

SMaPS model that are related to the short term behavior. Seasonal time series models

are fitted to the short term process as well as to the consumption or load process.

Further, we show some results of model diagnostics indicating that the chosen models

are adequate for our purposes.
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Figure 2. Logarithm of EEX spot price (red) and electric power consumption in

Germany (green), April 1-28, 2002

We assume that the historical spot market process St satisfies equation (6) with

Yt ≡ 0. A justification for this assumption will be given in section 5. Hence, after

specifying f in subsection 4.1, the short term process is given by

Xt = ln St − f(t, Lt/vt).

Model selection and parameter estimation for Xt are described in subsection 4.2. Since

it is shown at the end of section 5 that Xt and the long term process Yt can be

fitted separately, these parameter estimates can also be used in the simulation model.

Subsection 4.3 deals with the load process.

Figure 2 shows the time series (in red) of the logarithm of the hourly EEX spot

prices over a period of four weeks starting April 1, 2002. The green curve is the time

series of the electric power consumption in Germany (unit MWh, divided by 20000, to

obtain a comparable order of magnitude).

Obviously, there is a very strong correlation between spot price and electric power

consumption, and any serious model should take advantage of this fact. The low price

and load on April 1, 2002, are due to the fact that Easter Monday is a public holiday

in Germany.

For all statistical analyzes in the following two sections, we used EEX prices from

July 1, 2001 until June 30, 2002. However, we should point out that using other time

periods yields qualitatively similar results.

4.1. The empirical price load curve

This section treats the estimation of the (historical) price load curve (PLC) f(t, x) which

is a basic part of our spot price model. Figure 3 (left) shows a scatter plot of EEX spot

prices St subject to the electric load Lt at time t. In red, a cubic spline is fitted to the

data. We will term this curve as empirical PLC to draw a distinction to the physical

merit order curve (also called marginal costs, plotted in green). The latter curve lies

well below the empirical PLC.
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Figure 3. Left: Empirical price load curve (red), together with merit order curve

(green). Right: Empirical PLC adjusted by average availability

In figure 3 (right), we used the adjusted load Lt/vt instead of Lt (see section 3),

giving better agreement with the empirical PLC. Since a dependence of spot prices on

average availability is quite natural, we always use the adjusted load in our SMaPS

model.

Furthermore, the shape of the PLC is influenced to some extend by the time of

the day and the season. Hence, our model allows for the dependence of f(t, x) on t.

In practice, we distinguish simply between on-peak and off-peak hours. The price load

curves for these two periods are shown in figure 4.

In our model, we fitted the PLC f to the logarithm of EEX prices. Then, f(t, x)

can be seen as expected value of the logarithm of spot prices at a given load x and time

t, and the empirical mean of the short term process Xt should be approximately zero.

We observed a mean value of 2 · 10−8 and a sample standard deviation of around 0.34;

hence, when modelling the short term process in the next section, it is assumed that Xt

is a centered process.

Figure 5 shows the price load curve of the Spanish power market (Omel) (data from

July 1 to December 31, 2001) which shows similar features as the corresponding curve

of the German market.

4.2. Analysis of the short term process

After having specified f , we can look for suitable models describing the short term

process Xt = ln St − f(t, Lt/vt). Figure 6 shows the time series of Xt for a period of

eight weeks starting April 1, 2002.

Compared with the original price process, Xt looks quite irregular; daily or weekly
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Figure 4. Empirical PLC at on-peak times (left) and off-peak times (right)
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Figure 5. Empirical PLC of the Spanish power market

periods are hardly to detect. However, looking at the empirical autocorrelation function,

we can still see an increased dependence at lag 24 hours (figure 7).

Figure 8 contrasts the base price (daily average price) of the short term process (in

red) with the mean adjusted logarithm of the EEX base price (green) from 1/1/2002

until 6/30/2002. Figure 9 shows the seven day moving averages of the same processes.

This comparison makes clear the advantages of modelling the short term process

using the PLC: price fluctuations are strongly reduced; daily or weekly periods are no

more observable (even the yearly period should be eliminated). There remain only price
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Figure 10. Hourly time series 6 and 11 of short term process

movements due to the general economic conditions and market psychology.

Due to the correlations at lag 24 described above, we have chosen to model Xt as

a seasonal ARIMA model with a 24 hour ‘season’ (see [5], p. 310, or [4], p. 300).

Since the short term process and the corresponding SARIMA model represent the

core of our model, we analyze both in more detail.

To model the whole time series as SARIMA model, a certain similarity of the

individual seasonal partial time series is necessary. Specifically for the short term

process, this means that the hourly time series (Series 1: Hour between 0 and 1, Series

2: Hour between 1 and 2,. . . ) can be modelled as ARIMA models with comparable

parameter values.

Figure 10 shows the time series 6 and 11. Visually, one cannot see any fundamental

differences, for instance in volatility. The same holds for the other hourly series.

The pertaining empirical autocorrelation functions decay fast and do not show

additional distinctive features so that modelling the hourly time series as ARMA(p, q)
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Figure 11. Partial autocorrelation function of hourly time series 6 (left) and 11 (right)

models (with low orders p, q) seems appropriate. The empirical partial autocorrelation

functions (shown in figure 11 for series 6 and 11) suggest that p = 1, q = 1 or p = 2, q = 0

should suffice.

A thorough analysis shows that an ARMA(2, 0) or ARMA(1, 1) process is actually

very satisfactory. With a view to the SARIMA model, we choose an ARMA(1, 1)

process as model for the hourly time series. The estimated values of the autoregressive

and moving average coefficient and of the residual standard deviation are mostly in the

same order of magnitude.

In the following, we shortly discuss the fitting of a SARIMA-model for the entire

short term process.

A first model which yields a satisfactory fit is a SARIMA(1, 0, 1) × (1, 0, 1)24-

model. The use of an additional nonseasonal parameter provides some further

improvements. Figure 12 (top left) shows the autocorrelation function of the residuals

of a SARIMA(2, 0, 1)×(1, 0, 1)24-model for Xt with lag 0 to 100 hours. The use of higher

nonseasonal parameters does not improve the fit.

Hence, we have the following model for the short term process. Let φ(z) =

1− φ1z − φ2z
2, Φ(z) = 1−Φ1z, θ(z) = 1− θ1z, Θ(z) = 1−Θ1z. Then the definition of

a SARIMA(2, 0, 1) × (1, 0, 1)24 models is

φ(B)Φ(B24)Xt = θ(B)Θ(B24)εt,

where (εt) is a Gaussian white noise process and B denotes the backshift operator.

Written explicitly, we have

Xt = φ1Xt−1 + φ2Xt−2 + Φ1Xt−24 − Φ1 (φ1Xt−25 + φ2Xt−26)

+ εt − θ1εt−1 − Θ1εt−24 + Θ1θ1εt−25.

Finally, figure 13 shows a plot of the standardized residuals of the SARIMA model

for a period of eight weeks. At least visually, this time series looks similar to white

noise.
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of a SARIMA(2, 0, 1) × (1, 0, 1)24 model for the short term process Xt and a

SARIMA(1, 0, 1) × (1, 0, 1)24 model for the load process L′
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Figure 13. Standardized residuals of SARIMA model of the short term process
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Figure 15. Load process over 16 weeks, starting July 1, 2001

4.3. Analysis of the load process

In the previous section, we have seen that the actual load Lt at time t goes into the

definition of the short term process. In order to make this model useful for the purpose

of simulations, we need the values of Lt in the future. Since the consumption behavior

does not change very much over time (up to a linear trend), this is possible to a certain

extend. But there remain fluctuations due to (in the longer term) unpredictable effects

such as extreme meteorological conditions.

Figure 14 shows a scatter plot of the load forecast ℓt based on former experience

for Germany against the actual load in this area for the period from 1/1/2001 until

12/31/2001. Thereby, the effective load was adjusted by the yearly increase in power

consumption. The very strong correlation between load and load forecast is evident.

The time series of the load process L′
t = Lt − ℓt over 16 weeks, starting July 1,

2001, is shown in figure 15.

Looking at the autocorrelation function of the load process, one can observe again
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a strong correlation at lag 24 (hours). Therefore, a SARIMA model with a ‘season’

of 24 hours should again be taken into consideration. Since the load forecast can

be interpreted as the expected value of the load, we assume that the process L′
t is

centered. Actually, the arithmetic mean of the actual data for the period from 1/1/2001

to 12/31/2001 was very small compared to the empirical variance. Since the model

building for the load process parallels the development of the short term process, we

will not discuss it further.

The autocorrelation function of the residuals of a SARIMA(1, 0, 1) × (1, 0, 1)24-

model for L′
t is plotted in figure 12 (bottom right). The top right and the bottom left

part of figure 12 show the cross-correlation function between the residuals of Xt and L′
t

(lag -100 to 100 hours). The majority of the empirical cross-correlations is within the

95% confidence bands. This supports our assumption that Xt and the residual load L′
t

can be modelled as independent processes.

5. Nonstationarity and the long term process

5.1. Forward price dynamics and market price of risk

In the SMaPS model (6) the long term process Yt follows a random walk with drift given

by

Yt+1 = Yt + (µt −
1
2
σ2

Y ) + σY εY
t (7)

where εY
t are serially uncorrelated normally distributed random variables. Even though

model (6) is a discrete time model it will be convenient to consider the continuous

time extension to (7), since it corresponds better with the usual notation for financial

modelling and will reveal the close relation to Black’s log-normal model [3] for options on

futures contracts. The continuous time extension for Yt is given by a Brownian motion

with drift

dYt = (µt −
1
2
σ2

Y ) dt + σY dWt (8)

We now switch to an equivalent martingale measure P∗ assuming a zero market

price of risk for the non hedgeable short-term process Xt and the load process Lt. More

explanation to justify this assumption was given at the beginning of section 2. The

equation for the long-term process under P∗ becomes

dYt = (µ∗
t −

1
2
σ2

Y ) dt + σY dWt (9)

where µ∗
t = µt − λt is the new drift including the market price of risk λt for Yt. Under

this new measure single hour futures prices at time t for delivery at time T are given by

conditional expectations

Ft,T = E
∗[ST | Ft]. (10)

For the futures price formulas for power delivery over a period we refer to equations (1)

and (2).
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We now derive approximations to (10) for futures contracts that have their delivery

period sufficiently far in the future. If T − t is large enough, one can approximate

the conditional distributions of the SARIMA process variables L′
T and XT by their

stationary distributions. We then have

E
∗ [exp(f(T, LT /vT )) | Ft] ≈ E [exp(f(T, LT /vT ))] ,

E
∗ [exp(XT ) | Ft] ≈ E [exp(XT )] = eVar[XT ]/2.

Note that by our assumption of zero market prices of risk for Lt and Xt we could

set the expectations under P∗ equal to the statistical expectations. Neglecting the

approximation error, the futures prices Ft,T can be written as

Ft,T = ŜT E
∗ [exp(YT ) | Ft] = ŜT eYt+

∫
T

t
µ∗

s ds, (11)

where ŜT is a deterministic “technical price”

ŜT = eVar[XT ]/2
E [exp(f(T, LT /vT ))] (12)

that can easily be calculated numerically by integrating over a Gaussian kernel if the

process LT is known. From equation (11) it can be seen that Ft,T , as a function of t,

follows a geometric Brownian motion with SDE

dFt,T

Ft,T

= σY dWt.

Thus, the model reproduces Black’s log-normal model for futures prices with volatility

σY . In the discrete time setting the integral
∫ T

t
µ∗

s ds in (11) just has to be replaced by

a sum
∑T−1

s=t µ∗
s and Ft,T follows a geometric random walk

log Ft+1,T = log Ft,T − 1
2
σ2

Y + σY εY
t .

The futures price dynamics for contracts with arbitrary delivery periods can be derived

immediately from (11) and we get

Ft,T1,T2
= ŜT1,T2

eYt+
∫ T1

t
µ∗

s ds (13)

where

ŜT1,T2
=

1

T2 − T1

T2−1
∑

T=T1

ŜT e
∫

T

T1
µ∗

s ds
.

Again, Ft,T1,T2
satisfies Black’s model with volatility σY ,

dFt,T1,T2

Ft,T1,T2

= σY dWt. (14)

The discrete versions of (13) and (14) are obtained as before.
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5.2. Calibration of model parameters

To completely specify model (6), the SARIMA parameters for the processes Lt and Xt

as well as the parameters for the long term process Yt have to be calibrated. Since

the process Lt is, by definition, independent from Xt and Yt it can independently be

calibrated to historical load data as shown in section 4. The processes Xt and Yt do not

immediately correspond to observable market prices even though the long term process

Yt should roughly explain the futures price dynamics whereas the short term process Xt

should roughly explain the spot market. In general, futures and spot prices are functions

of both Xt and Yt. We use the following historical market data for calibration:

• Spot prices St as hourly time series;

• Futures settlement prices Fk,Ti,T ′

i
for a number of delivery periods [Ti, T

′
i ], 1 ≤ i ≤ N

and trading days 1 ≤ k ≤ n.

The calibration is done in two steps:

(i) Calibration of the long term process Yt;

(ii) Calibration of the short term process Xt.

Since we want to use the model for pricing derivatives we are mainly interested

in estimating the model parameters under the pricing measure P∗. For the long-term

process those parameters can be implied from futures price data. For the short-term

processes Lt and Xt we do not make a distinction between the statistical measure and

the pricing measure by assumption. Those processes are thus calibrated to historical

data.

5.2.1. Calibration of the long term process under P∗ For step 1 we assume that we

calibrate to futures prices having delivery periods sufficiently far in the future, so that

approximation (13) is justified. In practice, one can take futures contracts with delivery

period starting more than six months ahead. The assumed one-factor dynamics of Yt

has enough degrees of freedom to explain the log-normal dynamics (14) under P∗ of

one futures contract Ft,Ti,T ′

i
and, via the choice of the drift function µ∗

t , today’s forward

curve.

Since the futures price dynamics (14) is not affected by the choice of µ∗
t , the volatility

σY can be calibrated directly to futures prices either as historical volatility of a certain

futures contract or as an implied volatility of a traded option on a futures contract.

On the other hand, by equation (11), today’s forward curve is independent of the

choice of σY . Rearranging (11) and solving for µ∗
t , we get an explicit expression for µ∗

t

in terms of today’s forward curve:

µ∗
T =

∂

∂T

(

log
Ft,T

ŜT

)

. (15)
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In practice we can assume that µ∗
t is constant on intervals Ti ≤ t < Ti+1. Its value µ∗

Ti

on this interval can then be calculated by a discrete version of (15) as

µ∗
Ti

=
1

Ti+1 − Ti

(

log

(

Ft,Ti+1

ŜTi+1

)

− log

(

Ft,Ti

ŜTi

))

. (16)

This formula can also be used in a discrete time setting.

5.2.2. Calibration of the short term process To calibrate the remaining parameters for

the short term process we have to use spot market data. As mentioned above, we face

the problem that the spot price is a function of both Xt and Yt. A mathematical tool

that can be applied in such cases is the Kalman filter (cf. [16]). It can of course be

conjectured that the influence of the long term process on the hourly spot price dy-

namics is small compared to the short term process, so that the calibration results from

the Kalman filtering method does not differ substantially from the calibration results

of section 4 where only the short term process was considered. This conjecture will be

confirmed later in this section. We also note that, by using historical spot market data,

we now calibrate the parameters with respect to the statistical measure. When changing

to the pricing measure later, the parameters for the short term processes Xt and Lt do

not change by assumption and the drift µt of the long term process Yt is replaced by µ∗
t

as calculated in (15).

To apply the Kalman filtering technique the process equations have to be written

in state space form

bt = Ztat + dt + εt (Measurement Equation) (17)

at = Ttat−1 + ct + Rtηt (Transition Equation) (18)

where bt ∈ R
N are the observable variables and at ∈ R

m are the unobservable state

variables. The random variables εt and ηt are vectors of serially uncorrelated normally

distributed disturbances with

E[εt] = 0, E[ηt] = 0, Cov[εt] = Ht and Cov[ηt] = Qt.

For details about the Kalman filtering algorithm, see [16].

In our case the observable bt, derived from the spot price, is

bt = log (St) − f(t, Lt/vt).

For the transition equation we make use of the fact that every ARIMA process can be

written in state space form by defining additional state variables that keep track of the

recent history of the time series. The state space representation is not unique and here

we will follow the approach of Kohn and Ansley [24]. The short term process Xt is given

by some ARMA model

φ̃(B)Xt = θ̃(B)εX
t
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where B is the shift operator and φ̃, θ̃ are polynomials. In case of a SARIMA(1, 0, 1)×

(1, 0, 1)24 model φ̃ and θ̃ are of order 25. The state variables needed for the SARIMA

process are

aj
t =

p
∑

i=j

φ̃iXt−1+j−i +

q
∑

i=j−1

θ̃iε
X
t−1+j−i, j = 1, . . . , r = max(p, q + 1).

Additionally, one state variable for the long term process ar+1
t = Yt is needed. Using the

state space form for the ARIMA process and equation (7), the full transition equation

is given by (18) with

Tt =















φ̃1 1 0 · · · 0

φ̃2 0 1 · · · 0
...

...
. . . . . .

φ̃r 0 0 1

0 0 · · · 0 1















, ct =











0
...

0

µt −
1
2
σ2

Y











Rt =











−θ̃1 0
...

...

−θ̃r 0

0 σY











, Qt = I

The measurement equation simply is

bt =
[

1 0 · · · 0 1
]

at

The optimal parameters that maximize the likelihood function L now can be found

using numerical optimization.

5.2.3. Calibration Results We carry out the calibration using a two year history of spot

market prices between July 1, 2000 and July 1, 2002. After the load process Lt and the

curve f(t, Lt/vt) have been calibrated as shown in section 4 we can calculate the time

series for the market deviations

rt = log (St) − f(t, Lt/vt).

From the model assumption (6) we find

rt = Xt + Yt.

We assume for the short term process Xt a SARIMA(1, 0, 1) × (1, 0, 1)24 model

φ(B)Φ(B24)Xt = θ(B)Θ(B24)εX
t ,

where εX
t is a white noise process with variance Var[εX

t ] = σ2
X .

The parameters for the long term process are determined as follows. The value for

σY is derived from the annualized implied volatility for an option on baseload delivery

during the year 2003, which is 0.1. The drift parameter µ∗
t is obtained from futures

prices (see (16)). If µ∗
t is assumed constant we get an annualized drift rate of 0.02,

which means e. g. that the futures contract for year 2004 trades at a 2% spread above
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Φ1 Θ1 φ1 θ1 σ2
X

Kalman filtering 0.971 0.876 0.801 -0.01 0.024

Simplified model Yt ≡ 0 0.975 0.877 0.825 0.027 0.021

Table 1. Calibration Results

the 2003 contract. Taking into account additional futures prices, we get a more accurate

time dependent representation of µ∗
t .

Now we determine the SARIMA parameters using the Kalman filtering method.

The results are shown in table 1. Within the numerical accuracy the parameters

of the SARIMA process are close to the parameters found for a simplified model

log (St) = f(t, Lt/vt)+Xt where the long term process Yt is set to zero and the SARIMA

parameters can thus be calibrated by standard methods without having to use Kalman

filtering techniques. For most practical purposes, the two processes Xt and Yt can

separately be calibrated to spot market data and futures market data, respectively.

6. Results

In financial markets liquidly traded options are used to calibrate the pricing models.

There is often no necessity to analyze historical data extensively. This is a significant

difference to electric power markets. Since complex options on electricity, such as

those described in the introduction, are embedded in delivery contracts and are not

standardized, their prices are often not directly observable. Hence, inaccuracies of the

pricing model can not be adjusted by calibrating the model to market data for options.

The need for a simulation model to represent the market in a realistic way is therefore

much higher.

Besides statistical tests, we believe that a good measure of quality of a simulation

model is the view of a senior trader. Hence we give an impression of the simulation paths

derived from SMaPS by comparing them with real prices from the European Energy

Exchange (EEX). Figure 16 shows a simulated sample path against the real price path

from the EEX during January 2002. The simulated path exhibits the typical daily and

weekly seasonalities and price spikes. Of course, the days at which the most extreme

price spikes occur in the simulation path are different from the ones of the real path. To

explore the occurrence of price spikes over a longer time period, figure 17 shows a sample

of 20 simulated paths over the period January 2002 to July 2002. These simulated paths

can be compared to the real EEX prices in figure 18. It can be seen that price spikes

occur quite frequently.

We now apply the simulation results to price the options described in the

introduction. First we calculate the option premium of the portfolio of hourly calls.

The call option gives the right to buy electricity in the first half of the year with a

capacity of up to 100 MW at a fixed price K. For simplicity we assume that the value

of the option is given by the expectation under the pricing measure P ∗. The option
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Figure 16. Hourly EEX prices vs. Simulation path (Jan. 01, 2002 - Feb. 01,2002)
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Figure 17. 20 Simulation paths (Jan. 01, 2002 - Jul. 01, 2002)
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Figure 18. Hourly EEX prices (Jan. 01, 2002 - Jul. 01, 2002)

value is then given by

VCap =
N
∑

i=1

E
∗
[

e−r(ti−t0) max(Sti − K, 0)
]

,

where t1, . . . , tN denote the hours at which the option can be exercised. In our example

we have a portfolio of N = 4344 call options. The expected value is calculated via

Monte-Carlo simulations, where each price path consists of the 4344 hours of the first

half of the year. If the risk manager wants to charge more by adding some risk premium
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Figure 19. Sample paths for the first half of the year in descending price order
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Figure 20. Call premium MWh vs. strike price

(e.g. based on the Value at Risk, the expected shortfall or based on the use of some

concave utility function) then this can be easily included in the Monte Carlo simulation.

Figure 19 shows the simulation paths sorted by the hourly price in descending order

and it can be seen how often exercising the option is reasonable. The option premium

as a function of the strike price is shown in figure 20.

The calculation of the fixed delivery (strike) price K0 of the swing option in such

a way, that no up front fee is necessary, is much more complicated. This option gives

the right to spread the fixed energy amount A = 100 GWh at short notice over the

contract period of the first half of the year. The capacity in this example is limited to

C = 100 MW. Again assuming for simplicity that the risk manager is just interested in

the expected value under P ∗, the fair value of such a swing option with general strike

price K is given by the solution of the following optimization problem

VSwing = max
φ

{

N
∑

i=1

E
∗
[

e−r(ti−t0)φ(ti) (Sti − K)
]

}

(19)

s.t.
N
∑

i=1

φ(ti) = A, 0 ≤ φ(ti) ≤ C (i = 1, . . . , N),

where φ(t) is the exercising strategy representing the capacity selected at time t. The
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Figure 21. Fixed price of a Swing option vs. energy. Average energy price of the

most expensive hours of the forward curve (Forward price) vs. energy

price K0 now is exactly the strike price at which VSwing = 0. From equation (19) it can be

seen that a simple Monte-Carlo simulation of the price paths is not sufficient, since the

optimal exercising strategy is needed as well. The problem of how to determine optimal

exercising strategies for swing options will be considered in a forthcoming paper. To

get an upper bound of the delivery price we can use the results from figure 19 assuming

that the holder of the swing option has exercised the option at the (in our case 1000)

highest prices. A lower bound can be found assuming that the holder nominates the

delivery hours today according to the highest hourly forward prices. Figure 21 shows

the upper and lower prices K0 for the example swing option as a function of the total

energy amount A. Between the upper and lower price is the price calculated using a

more sophisticated exercising strategy based on adaptive thresholds.
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