
 
 

 

  
Abstract—The purpose of a variable step-size normalized 

LMS filter is to solve the dilemma of fast convergence or low 
steady-state error associated with the fixed regularized NLMS.  
By employing the inverse of weighted square-error as the 
time-varying regularization parameter, we introduce a new 
regularization for NLMS algorithms. Extensive simulation 
results demonstrate that our proposed algorithm outperforms 
existing schemes in speed of convergence, tracking ability, and 
low misadjustment. 
 

Index Terms—Adaptive filters, normalized least mean square 
(NLMS), variable step-size NLMS, regularization parameter. 
 

I. INTRODUCTION 
Adaptive filtering algorithms have been widely employed 

in many signal processing applications. Among these 
algorithms, the normalized least mean square (NLMS) 
adaptive filter is most commonly used due to its simplicity 
and robustness. It is well know that the stability of NLMS is 
controlled by a step-size parameter. This parameter also 
determines the speed of convergence, tracking ability and 
steady-state misadjustment of the filter. In practice, the 
NLMS is implemented by dividing the step-size parameter by 
the squared norm of the input vector plus a small positive 
constant ε  called the regularization parameter. The 
inclusion of ε  is to overcome the problem that the squared 
norm gets too close to zero. Since the overall step-size affects 
the performance of the NLMS, this regularization parameter 
has an effect on the convergence properties and 
misadjustment as well.  

For the regularization parameter ε  being fixed, there are 
conflicting objectives between fast convergence and low 
misadjustment. The purpose of a variable step-size NLMS 
(VSS-NMS) algorithm is to solve the tradeoff in the fixed 
regularized NLMS. Many VSS-NLMS schemes have been 
presented in the past two decades [1, 2, 6, 7]. In particular, 
quite a few time-varying regularization methods have been 
proposed in the past several years [3-5]. Mandic [5] 
presented a generalized normalized gradient descent (GNGD) 
algorithm which used a time-varying regularization 
parameter ( )nε . Mandic claimed that the GNGD adapts its 
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learning rate according to the dynamics of the input signals, 
and its performance is bounded from below by the 
performance of the NLM. Combining the concepts of GNGD 
and NLMS, Mandic introduced another scheme which 
employed hybrid filters structure to further improve the 
steady-state misadjustment of the GNGD [4].  

Choi, Shin, and Song [3] proposed a modified GNGD to 
resolve the limited steady-state performance of GNGD. The 
idea is to introduce the normalized gradient in the update 
process for the regularization parameter, and used simulation 
to demonstrate its robustness.  

While most VSS-NLMS algorithms need to tune several 
parameters for better performance, we propose a tuning-free, 
simple, and robust VSS-NLMS algorithm in this paper. The 
idea is to introduce the inverse of weighted square-error as 
the regularization parameter. Our new regularized NLMS 
algorithm outperforms existing schemes in convergence, 
tracking, and misadjustment. 

II. SQUARE-ERROR-BASED REGULARIZATION FOR NLMS 
ALGORITHM 

In this section, we summarize several algorithms including 
NLMS, GNGD algorithm [5], the robust regularization for 
NLMS (RR-NLMS) [3], and presents the proposed 
square-error-based regularization for NLMS (SER-NLMS).  

Consider the following desired signal that arise from the 
system identification model 

( ) ( ) ( ) ( )x hTd n n n v n= + , (1) 
where ( )h n denotes the coefficient vector of the unknown 
system with length N  ,  

0 1 1( ) [ ( ), ( ), , ( )]TNn h n h n h nh −= … . (2) 
( )x n  is the input vector 

( ) [ ( ), ( 1), , ( 1)]Tn x n x n x n N= − − +x … , (3) 
and ( )v n  is the additive noise that is independent of ( )x n . 

A. Conventional Regularization for NLMS (ε-NLMS) 
Assume the adaptive filter has the same structure and same 

order as that of the unknown system. Let ( )w n  denote the 
coefficient vector of the adaptive filter at iteration n. The a 
priori estimation error is  

( ) ( ) ( ) ( )Te n d n n n= − x w . (4) 
The ε-NLMS algorithm updates ( )w n  as follows 

2
2

( 1) ( ) ( ) ( )
( )

n n e n n
n

μ

ε
w w x

x
+ = +

+
, (5) 

where μ  is the fixed step-size, ε  is a fixed small positive 
constant called regularization parameter. Depends on the 
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value of ε , the overall effective step-size might become 
relatively large or relatively small, and this affects the 
convergence and racking performance. 

B. GNGD algorithm [5] 
The GNGD algorithm uses a time-varying regularization 

parameter ( )nε  calculated by 

2 2
2

( ) ( 1) ( ) ( 1)( ) ( 1)
( ( 1) ( 1))

x x
x

Te n e n n nn n
n n

ε ε ρμ
ε

− −
= − −

− + −
, (6) 

where ρ  is an adaptation parameter needs tuning, and the 
initial value (0)ε  has to be set also.  

C. RR-NLMS Algorithm [3] 
The RR-NLMS algorithm calculates the time-varying 

regularization parameter as  

min

min min

'( ) ( 1) sgn ( ) ( 1) ( ) ( 1)

'( ), '( )
( )

, '( )

Tn n e n e n n n

n if n
n

if n
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ε ε ε
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ε ε ε

x x

    
 

      

⎡ ⎤= − − − −⎣ ⎦
≥⎧

= ⎨ <⎩

, (7) 

where sgn( )x  represents the sign function, and minε , a 
minimum allowable value of ( )nε , is a parameter needs 
tuning. 

D. Proposed square-error-based regularization for NLMS 
algorithm 

For the conventional ε-NLMS algorithm, the role of ε is to 
avoid the associated denominator gets too close to zero, so as 
to keep the filter from divergence. However, it changes the 
effective step-size and has an effect on convergence 
performance. In this paper, we propose a new regularization 
which uses the inverse of weighted square-error as the 
time-varying regularization parameter. Error signal power is 
obtained as 

2 2 2( ) ( 1) (1 ) ( )e en n e nσ λσ λ= − + − . (8) 
And our proposed algorithm calculates the regularization 
parameter as 

2( ) 1 ( )en nε σ= . (9) 
We do not have to tune ( )nε  because, in practice, it never 

gets too close to zero. When 2 ( )e nσ is bigger, i.e., we need to 
make bigger adaptation, the regularization parameter ( )nε  
becomes smaller, so the effective step-size is relatively large. 
On the other hand, the adaptive filter needs only small 
adjustment when the estimation error is small. In this 
situation, our ( )nε  gets larger as 2 ( )e nσ  becomes smaller, 
and it results a relatively small value in effective step-size.  

III. SIMULATION RESULTS 
In this section, we present the results of several 

experiments that compare the performance of ε-NLMS, 
GNGD, RR-NLMS, and our proposed regularized NLMS. 
The adaptive filter was used to identify a 512-tap acoustic 
echo impulse response. We have used the normalized 
squared coefficient error (NSCE) to evaluate the 
performance of the algorithms. The NSCE is defined as 

2

10 2

( ) ( )
( ) 10 log

( )

h w

h

n n
NSCE n

n

−
=  (10) 

where  ( )w n  is the filter coefficient vector. We have run 
quite a few simulations. The results are pretty consistent. In 
this section, we show simulation results with the following 
setup: min 0.001ε = , 0.15ρ = , and 1μ = . 

A. AR processes 
We have used AR(1) and AR(2) processes as the reference 

input signals. The power of each AR process is 
approximately 1. The acoustic echo impulse response was set 
to be time-varying from seconds 1.9 to 5.1. The evolution of 
coefficients is described by 

( ) ( )h hon g n= + , (11) 

where ( )g n  is a white Gaussian noise with variance 210− . 
The additive noise is a white Gaussian process with zero 
mean and variance 310− . The NSCE curves shown here are 
results of ensemble averages over 20 independent runs. 
Figures 1 and 2 demonstrate the results of AR(1) and AR(2), 
respectively. The RR-NLMS has better misadjustment than 
that of the ε-NLMS and GNGD. Our filter exhibits even 
better steady-state performance than RR-NLMS does. 

B. Speech Signals 
In this experiment, the excitations are 8-second-long 

Chinese speech signals. We consider two scenarios: (a), a 
time-invariant system, and (b), a time-varying impulse 
response described in (11). The additive noise is a white 
Gaussian process with zero mean and variance 310− . Speech 
I was given in Figure 3, and results of time-invariant and 
time-varying system were illustrated Figures 4 and 5, 
respectively. The RR-NLMS has much better misadjustment 
than that of the ε-NLMS and GNGD. It is obvious to see that 
our filter converges faster than RR-NLMS. 

We also used Speech II, which has more unvoiced duration. 
Results of Speech II were demonstrated in Figures 6, 7 and 8. 
Due to the unvoiced duration, ε-NLMS and GNGD 
performed badly. The performance of RR-NLMS degraded 
notably. It is clear that our filter outperformed other 
competing algorithms in speed of convergence, tracking 
ability, and steady-state misadjustment. 

IV. CONCLUSIONS 
This paper proposed a square-error-based regularization 

for NLMS algorithms. While most VSS-NLMS algorithms 
need to tune several parameters for better performance, our 
regularization algorithm is tuning-free, simple, and robust. 
Extensive simulation results demonstrate that our proposed 
algorithm outperformed other competing schemes, especially 
in the scenario of speech signals. 
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Fig. 1, NSCE curves of ε-NLMS, GNGD [5], RR-NLMS [3], and our 

algorithm. Input signal is AR(1). 
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Fig. 2, NSCE curves of ε-NLMS, GNGD [5], RR-NLMS [3], and our 

algorithm. Input signal is AR(2). 
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Fig. 3, Speech I wave. 
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Fig. 4, NSCE curves of ε-NLMS, GNGD [5], RR-NLMS [3], and our 

algorithm. Time-invariant system. Input signal is Speech I. 
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Fig. 5, NSCE curves of ε-NLMS, GNGD [5], RR-NLMS [3], and our 

algorithm. Time-varying system. Input signal is Speech I. 
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Fig. 6, Speech II wave. 
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Fig. 7, NSCE curves of ε-NLMS, GNGD [5], RR-NLMS [3], and our 

algorithm. Time-invariant system. Input signal is Speech II. 
 
 
 

0 1 2 3 4 5 6 7 8
-30

-25

-20

-15

-10

-5

0

5

10

15

20

Time(sec)

N
or

m
al

iz
ed

 S
qu

ar
ed

 c
oe

ffi
en

t E
rr

or
(d

B)

 

 

GNGD
NLMS

RR-NLMS

We proposed

 
Fig. 8, NSCE curves of ε-NLMS, GNGD [5], RR-NLMS [3], and our 

algorithm. Time-varying system. Input signal is Speech II. 
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