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ABSTRACT

Finite-volume schemes developed in the meteorological community that permit long time steps are

considered. These include Eulerian flux-form schemes as well as fully two-dimensional and cascade cell-

integrated semi-Lagrangian (CISL) schemes. A one- and two-dimensional Von Neumann stability analysis

of these finite-volume advection schemes is given. Contrary to previous analysis, no simplifications in terms

of reducing the formal order of the schemes, which makes the analysis mathematically less complex, have

been applied. An interscheme comparison of both dissipation and dispersion properties is given. The main

finding is that the dissipation and dispersion properties of Eulerian flux-form schemes are sensitive to the

choice of inner and outer operators applied in the scheme that can lead to increased numerical damping for

large Courant numbers. This spurious dependence on the integer value of the Courant number disappears

if the inner and outer operators are identical, in which case, under the assumptions used in the stability

analysis, the Eulerian flux-form scheme becomes identical to the cascade scheme. To explain these prop-

erties a conceptual interpretation of the flux-based Eulerian schemes is provided. Of the two CISL schemes,

the cascade scheme has superior stability properties.

1. Introduction

Finite-volume methods for numerical solutions to

conservation laws, in particular the continuity equation

stating the conservation of mass, have received in-

creased attention in the meteorological literature dur-

ing the last two decades. For a recent review of finite-

volume methods in meteorology, see, for instance, Ma-

chenhauer et al. (2007). In fact, finite-volume schemes

for the continuity equation of atmospheric constituents

have become standard in transport modules in atmo-

spheric models since they do not have spurious numeri-

cal sources or sinks of mass. This intrinsic conservation

property is due to the discretized schemes being based

on the equations of motion in differential form inte-

grated over control volumes. Hence, finite-volume

schemes are also referred to as cell-integrated schemes.

To avoid the inconsistencies resulting from using wind

and pressure data from dynamical cores using a numeri-

cal method for the mass continuity equation that is dif-

ferent from the one applied to the continuity equations

for atmospheric constituents in the transport module

(Jöckel et al. 2001), dynamical cores that also solve the

continuity equation for air as a whole with cell-

integrated methods have recently been developed (e.g.,

Lin 2004; Lauritzen et al. 2006b,c, manuscripts submit-

ted to Quart. J. Roy. Meteor. Soc.).

Cell-integrated advection schemes can be divided

into two categories: first, Eulerian-type schemes in

which the flux of mass through regular (Eulerian) cell

walls is tracked (e.g., Bott 1989; Hólm 1995; Lin and

Rood 1996; Leonard et al. 1996), and second, semi-

Lagrangian-type schemes in which the mass in cells

moving with the flow is tracked (e.g., Rančić 1992; La-

prise and Plante 1995; Machenhauer and Olk 1998; Nair

and Machenhauer 2002; Nair et al. 2002; Zerroukat et

al. 2002). To compute the fluxes through the cell walls

in Eulerian schemes or the integral over deformed cells

transported with the flow in semi-Lagrangian methods,

some type of subgrid-scale reconstruction is needed. By

far the most widely used method is the piecewise para-

bolic method (PPM) introduced by Colella and Wood-

ward (1984). Despite the popularity of PPM, the dis-
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persion and dissipation properties of schemes based on

this method have (as far as the author is aware) only

been assessed indirectly through idealized advection

tests and not analytically in terms of a Von Neumann

stability analysis. Lin and Rood (1996, hereafter re-

ferred to as LR96) have performed a simplified stability

analysis in terms of a low order version of their scheme

(see the appendix for comments on the LR96 stability

analysis) and Zerroukat et al. (2006) have performed a

detailed analytical error and convergence analysis of

PPM. This article provides some theoretical insight into

the stability properties of both lower- and higher-order

versions of both one- and two-dimensional cell-

integrated schemes used in meteorology.

Here we consider schemes formulated for the sphere

that permit long time steps, that is, the Eulerian flux-

form scheme of LR96 and the cell-integrated semi-

Lagrangian (CISL) schemes of Nair and Machenhauer

(2002, hereafter referred to as NM02) and Nair et al.

(2002, hereafter referred to as NSS02). Also, the CISL

scheme of Zerroukat et al. (2002) belongs to the above

category, but under the assumptions made in the sta-

bility analysis, it becomes identical to the scheme of

NSS02, of course, if the same one-dimensional opera-

tors are applied. Hence the Von Neumann stability

analysis of the NSS02 scheme also applies to the

scheme of Zerroukat et al. (2002). Note first that the

LR96 scheme is often referred to as semi-Lagrangian in

the literature since it permits long time steps although it

is based on a Eulerian flux-form discretization, and sec-

ond that the Conservative Operator Splitting for Mul-

tidimensions with Inherent Constancy (COSMIC)

scheme in Leonard et al. (1996) and the LR96 scheme

are practically identical.

The paper is organized as follows. In one dimension

there is little ambiguity in the derivation of finite-

volume schemes, and hence the stability analysis for the

one-dimensional versions of the LR96, NM02, and

NSS02 schemes becomes identical (section 2). The one-

dimensional analysis is extended to two dimensions in

sections 3a–c. Section 3d provides brief comments on

the general application of these advection schemes such

as the effect of limiters/filters and errors generated in

complex flows. A summary of the Von Neumann sta-

bility analysis is given in section 4.

2. One-dimensional cell-integrated schemes

Consider the one-dimensional cell-integrated conti-

nuity equations for air as a whole and an atmospheric

constituent:

d

dt
!

!x

"!x" dx # 0, !1"

where $ # % and $ # %Q, respectively. Here % is the

density of air, Q is the mixing ratio for the constituent

in question, and &x is a length interval moving with the

flow. For notational convenience, define the operator I:

IA
x '"!x"( )

1

A
!

A

"!x" dx # ", !2"

where A is the length interval over which $(x) is inte-

grated and the superscript x refers to the coordinate

direction in which the integral is taken, and $ is the

average value of $(x) over A. The upstream CISL as

well as the Eulerian flux-form discretization of (1) can

be written as

"
n*1

#x # I
!x

n

*

x
'"n!x"(!xn

*
!3"

(e.g., Laprise and Plante 1995), where n is the time-

level index, +x is the regular grid interval, $
n*1

is the

average of $n*1(x) over +x, and &xn

*
the length interval

whose boundaries end up at the boundaries of +x after

being transported by the wind over one time step. In

the discretization $n(x) is not known and must be con-

structed from the known grid cell averages $
n
. This

process is referred to as subgrid cell reconstruction. To

have mass conservation the subgrid cell reconstruction

must satisfy

I#x
x '"n!x"( # "

n
, !4"

and the cell walls of any particular departure cell must

also be the left and right cell walls of the two neighbor-

ing cells, respectively. Contrary to cell-integrated

schemes, an advective-form discretization is based on

gridpoint values rather than cell averages. Hence the

velocity components can be interpreted as unique to a

particular control volume rather than individual cell

faces (Leonard et al. 1996). Hence each cell moves as a

solid body, and as a result neighboring cells in divergent

flows may overlap and/or have cracks between them,

causing a violation of mass conservation.

a. Subgrid cell reconstruction

Piecewise constant (Godunov 1959) and piecewise

linear (van Leer 1977) subgrid cell reconstructions do,

in general, lead to excessively diffusive schemes that

make them unsuitable for atmospheric modeling. In

general, to reduce the numerical damping to an accept-

able level, higher-order polynomial reconstruction

must be applied. On the other hand the computational

cost of the subgrid cell reconstruction increases with the

complexity of the reconstruction method, which partly
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explains why parabolas are the predominant choice for

subgrid-scale reconstructions. The most widespread

method is the PPM, but alternatives exist such as the

parabolic reconstruction method used in Laprise and

Plante (1995), the piecewise cubic method defined by

Zerroukat et al. (2002), the parabolic spline method

(Zerroukat et al. 2006), and fifth- and higher- (odd)

order methods used by Leonard et al. (1996). Note that

although low-order schemes require less computational

work per grid cell, it takes a large increase in resolution

to obtain a given accuracy compared to higher-order

unlimited schemes (e.g., Leonard et al. 1996). Up to a

certain order (which varies with scheme), the gain in

accuracy with higher-order methods that do not apply

limiters/filters more than offsets the larger cost per grid

cell update compared to low-order schemes. However,

if the monotonic limiter of Colella and Woodward

(1984) is employed, for example, the gain in accuracy

for higher-order schemes mentioned above may be re-

duced or even eliminated because of the increased nu-

merical diffusion induced by the filter (see also section

3d). In this analysis subgrid cell reconstructions based

on the first-order piecewise constant method (PCM),

second-order piecewise linear method (PLM), and

third-order PPM are considered.

For simplicity assume an equidistant grid with grid

spacing +x, and let the ith (Eulerian) grid cell extend

from xi # i+x to xi*1 # (i * 1)+x. This Eulerian grid

cell is referred to as the arrival cell. The corresponding

upstream (Lagrangian) departure cell walls are located

at (xi)*
and (xi*1)

*
, respectively. The width of the de-

parture cell is (&xi)
n

*
# (xi*1)n

*
, (xi)

n

*
. The departure

points are usually computed using iterative methods in

semi-Lagrangian schemes (see, e.g., Staniforth and

Côté 1991) whereas Eulerian schemes, in general, use

Euler’s method:

!xi"
n

*
# xi , un!xi"#t, !5"

where u is the velocity field and +t the time step.

When using the PCM, PLM (scheme I of van Leer

1977), and PPM, the subgrid-scale reconstruction in cell

i is given by

"i!$" # "i , !6"

"i!$" # "i *
1

2
!"i*1 , "i,1""$ ,

1

2#, !7"

and

"i!$" # " i
L * $ '#"i * "̃i!1 , $"(, !8"

respectively, where - is a normalized coordinate in the

ith cell such that - ∈ [0, 1]:

$ #
x , xi

#x
, x ∈ 'xi , xi*1(, !9"

and for the PPM the “slope” and “curvature” of the

polynomial are given by

#"i # " i
R , " i

L !10"

and

"̃i # 6"i , 3!" i
L * " i

R", !11"

respectively, where $L
i # $i(0) and $R

i # $i(1) are the

values of $i(-) at the left and right cell walls, respec-

tively, and are computed by interpolation (for details

see Colella and Woodward 1984). Performing the sub-

grid-scale reconstruction from cell averages in all cells

defines a global piecewise-continuous function. The re-

constructions based on the PLM and PPM can be ren-

dered positive definite and monotonic by applying a

posteriori filters (e.g., LR96; Zerroukat et al. 2005).

Limiting is a nonlinear process, and hence it is not ob-

vious how to incorporate it into a linear stability analy-

sis. A brief discussion of the implications of using filters

on the stability of the schemes is given in section 3d.

The subgrid cell reconstruction based on PCM is, of

course, shape preserving without the application of fil-

ters.

b. Von Neumann stability analysis

Assume a constant wind field u # u0 . 0. Conse-

quently, the exact departure cell is simply the transla-

tion of the arrival cell +tu0 units upstream. Let p be the

integer value of u0+t/+x, which assures that the depar-

ture point corresponding to the arrival point xi is lo-

cated in between xi,p,1 and xi,p (see Fig. 1). Here p

also stands for the integer Courant number. Since the

wind field is nondivergent, the prognostic Eq. (3) be-

comes

" i

n*1
# !

1,%

1

" i,p,1
n !$" d$ * !

0

1,%

" i,p
n !$" d$,

!12"

FIG. 1. A space–time representation of the departure and ar-

rival position of the ith left cell wall and the accompanied nota-

tion.
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where $i(-) is the subgrid-scale reconstruction polyno-

mial in the cell bounded by xi and xi*1, and / is the

nondimensionalized displacement parameter along the

x axis given by

% #
u0#t

#x
, p !13"

(Fig. 1). When using the PCM for subgrid-scale recon-

structions (12) becomes

!"i"PCM
n*1 # %"i,p,1 * !1 , /""i,p. !14"

Assuming that gridpoint values represent cell averages,

this formula is formally equivalent to the traditional

two-time-level semi-Lagrangian method using linear in-

terpolation or, equivalently, the standard upwind

method. When using the PLM and PPM for the sub-

grid-scale reconstruction, that is, substituting, respec-

tively, (7) and (8) into (12) and evaluating the analytic

integrals, (12) can be written as a weighted sum of cell

averages

!"i"PLM
n*1 #

1

4
',%!1 , %""i,p,2 * %!5 , %""i,p,1

* !4 * %"!1 , %""i,p , %!1 , %""i,p*1( and

!15"

!"i"PPM
n*1 #

1

12
0%2!1 , %""i,p,3 , %!1 * 7%"

1 !1 , %""i,p,2 , 4%!4%2 , 5% , 2""i,p,1

, 4!1 , %"!4%2 , 3% , 3""i,p * %!1 , %"

1 !7% , 8""i,p*1 * %!1 , %"2"i,p*22, !16"

respectively. Note that (15) and (16) are not formally

equivalent to a traditional semi-Lagrangian scheme us-

ing cubic and quintic Lagrange interpolation, respec-

tively, although they require the same stencil. Had the

piecewise parabolic method of Laprise and Plante

(1995) been applied, (16) would, for constant flows,

have been formally equivalent to a traditional semi-

Lagrangian scheme based on cubic Lagrange interpo-

lation (Plante 1993).

Following a standard Von Neumann stability analysis

(e.g., Haltiner and Williams 1980), assume a solution in

the form

" i

n
# !

i#x

!i*1"#x

"0&n exp!ı̂kx" dx, !17"

where ı̂ is the imaginary unit, $0 the initial amplitude,

and k # 23/L is the wavenumber (L is the wavelength).

The stability and phase properties of the schemes are

assessed by substituting the solution (17) into the re-

spective forecast Eqs. (14), (15), and (16), and subse-

quently analyzing the complex amplification factor 4.

The stability of a numerical method is governed by the

modulus of the complex amplification factor; that is, a

particular wave with wavenumber k is stable if |4 | ' 1.

Following Bates and McDonald (1982), the dispersion

properties of the schemes are assessed by writing the

complex amplification factor as

& # |& | exp!,ı̂(*#t", !18"

where 5* is the numerical frequency. Define the rela-

tive frequency as R # 5*/5 where 5 is the exact fre-

quency given by ku0 # (p * /)k+x. If R . 1 the nu-

merical scheme is accelerating and if R 6 1 the scheme

is decelerating compared to the exact solution.

By substituting (17) into (14) and multiplying the re-

sulting complex number with its complex conjugate, the

squared modulus of the amplification factor for the cell-

integrated scheme based on PCM results is

|& |PCM
2 # 1 , 2%!1 , %"c, !19"

where c # 1 , cos(k+x). It is clearly verified that this

scheme is unconditionally stable. Similarly, for the

scheme based on PLM we get

|& |PLM
2 # 1 ,

1

2
c2%!1 , %"'2 , %!1 , %"!2 , c"(.

!20"

When using the PPM for the subgrid cell reconstruction

|4 |2 can be written as

|& |PPM
2 # 1 ,

1

9
%2!1 , %"2c2'3 , 2!%2 , % , 5"c

, !4%2 , 4% , 1"c2 * 2%!1 , %"c3(. !21"

For the cell-integrated scheme based on PCM, PLM,

and PPM, the numerical frequency 5* is given in

terms of

(*PCM#t # pk#x * tan,1$% sin!k#x"

1 , %c
%, !22"

(*PLM#t # pk#x

* tan,1&% sin!k#x"$1 *
c

2
!1 , %"%

1 , %c$% *
c

2
!1 , %"% ' ,

!23"

and
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(*PPM#t # pk#x , tan,1&% sin!k#x"$1 *
c

3
!1 , %2" *

c2%

3
!1 , %"%

1 , c%2$1 *
c

3
!1 * c"!1 , %"% ' , !24"

respectively. The squared modulus of the amplification

factor and the relative phase speed for the one-

dimensional finite-volume scheme based on PLM and

PPM is shown in Figs. 2a,b as a function of displace-

ment parameter / and wavelength L. For comparison,

|4 |2 and R for the traditional semi-Lagrangian scheme

based on cubic Lagrange interpolation is shown as well.

The cell-integrated scheme based on PPM is less damp-

ing than the traditional semi-Lagrangian scheme and

cell-integrated scheme based on PLM, and the damping

is much more scale selective; that is, the 2+x wave that

is often associated with noise and/or ripples is heavily

damped while the longer wavelengths are much less

diffused. Regarding dispersion properties, the cell-

integrated scheme based on PPM and the traditional

semi-Lagrangian scheme are very similar. The relative

phase speed error for the cell-integrated scheme using

PLM is smaller and different in structure compared to

the other schemes.

3. Two-dimensional finite-volume schemes

As mentioned in the introduction, two-dimensional

finite-volume schemes can be divided into two catego-

ries: first, CISL schemes in which the integral over the

departure area is approximated explicitly, and second,

flux-form Eulerian schemes in which the fluxes through

the arrival cell walls are estimated. These two types of

schemes are discussed as follows.

a. Cell-integrated semi-Lagrangian schemes

The first step in a semi-Lagrangian scheme is the

estimation of the fluid parcel trajectories. Usually itera-

tive methods are applied, such as the midpoint method

that, however, does not include the acceleration, or al-

gorithms such as the schemes of Hortal (2002) and Lau-

ritzen et al. (2006a) that do include estimates of the

acceleration. Given the trajectories, the departure cell

can be defined and the integral over the departure cell

can be approximated. The method for upstream inte-

gration can be divided into two categories. Fully two-

dimensional approaches (Rančić 1992; Machenhauer

and Olk 1998; NM02) that require two-dimensional

subgrid cell reconstructions, and cascade methods in

which the upstream integral is split into two one-

dimensional problems (Rančić 1995; NSS02; Zerroukat

et al. 2002). See Machenhauer et al. (2007) for an over-

view.

For the two-dimensional subgrid cell reconstruction,

the following notation is used: let +x and +y be the

equidistant grid spacing in the x- and y-coordinate di-

rections, with the ijth cell vertices located at (x, y) # (xi,

FIG. 2. The stability properties of the one-dimensional finite-volume scheme based on PLM (blue

dashed lines) and PPM (red solid lines), respectively, and the traditional semi-Lagrangian scheme using

cubic Lagrange interpolation (cyan dashed–dotted line). (a) The squared modulus of the amplification

factor as a function of the displacement parameter / and the wavelength L. The contours start at 0.3 and

increase monotonically with an increment of 0.3. (b) The relative phase speed of the three schemes.

Contours are from 0.2 to 1.4 with an increment of 0.2.
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yj), (xi, yj*1), (xi*1, yj), and (xi*1, yj*1), respectively,

where xi # i+x and yj # j+y. As in the one-dimensional

case, normalized spatial position variables inside the

ijth cell are defined by

!$, )" # "x , xi

#x
,
y , yj

#y
#,

!x, y" ∈ 'xi , xi*1( 1 'yj , yj*1(, !25"

such that -, 7 ∈ [0, 1]. The quasi-biparabolic subgrid cell

reconstruction used in NM02 is based on the directional

fitting of two parabolas based on PPM. The slope and

curvature of the parabola in the x- and y-coordinate

directions are denoted +-$ij and $̃ -
ij , and +7$ij and $̃7

ij,

respectively. Using standard compass point notations

the quasi-biparabolic subgrid cell reconstruction can be

written as

"ij!$, )" # " ij

n
* " ij

W * $ '#$"ij * "̃ ij
$!1 , $"(

* " ij
S * )'#)"ij * "̃ ij

)!1 , )"(, !26"

where the right and left boundary values of the x-

coordinate piecewise parabolic fit have been replaced

with east (E) and west (W), respectively (similar for the

y-coordinate direction; see Fig. 3). Note that lower- and

higher-order versions of the NM02 scheme could easily

be constructed by using higher- or lower-order subgrid

cell reconstructions in each coordinate direction. Also,

this subgrid cell reconstruction does not include the

variation along the diagonals but only variation along

the coordinate directions. Fully two-dimensional sub-

grid cell reconstruction, such as applied by Rančić

(1992), requires the computation of nine coefficients,

making the method computationally expensive. Some

of the diagonal variation can be included more eco-

nomically by only adding two “cross” terms (Jablonow-

ski et al. 2006).

For the stability analysis only constant flows [(u, 8) #

(u0, 80)] are considered, in which case the departure cell

approximations are identical for all schemes, that is, the

exact departure cell [the departure cell approximations

for the respective schemes under general flow condi-

tions are discussed in Machenhauer et al. (2007)]. So

the NM02 forecast is simply the integral of the piece-

wise quasi-biparabolic distribution defined in terms of

$n
ij(-, 7) over the exact departure area. In the cascade

scheme of NSS02 the upstream integral is split into two

one-dimensional problems where the PPM is applied in

each cascade sweep (see below). As for the NM02

scheme any order of subgrid cell reconstruction can be

applied in the cascade scheme.

b. Eulerian flux-form scheme

The flux-form scheme of LR96 is based on a Eulerian

approach that considers fluxes through the arrival cell

walls rather than explicit integration over the departure

area as the NM02 and NSS02 schemes do. The LR96

scheme can be written as

" ij

n*1
# " ij

n
* Fx$1

2
!"

n
* SLy"%* Fy$1

2
!"

n
* SLx"%,

!27"

where Fx is the difference between the flux through the

west and east wall of the arrival cell (similar for Fy).

Hence, in terms of the integral operators I, Fx and Fy

can be written as

Fx!"" # I
!!xi"

n

*

x
!"" , " ij

n
!28"

and

Fy!"" # I
!!yi"

n

*

y
!"" , " ij

n
, !29"

respectively. Here SLx and SLy refer to the traditional

one-dimensional semi-Lagrangian forecast in the x- and

y-coordinate direction, respectively. The “one-

dimensional” departure area (&xij)
n

*
(letters M, N, O,

and P in Fig. 4b) refers to the cell with the west wall

located at

x # xi , uij#t, !30"

where uij is the zonal wind at the center of the west wall

of the arrival cell. The south and north walls of the

one-dimensional departure cell are at the same lati-

FIG. 3. Graphical illustration of variables used in the

quasi-biparabolic subgrid cell reconstruction of the NM02 scheme.
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tudes as the south and north walls of the arrival cell,

respectively. Hence the upstream integral is a one-

dimensional problem [similar for (&yij)
n

*
(letters E, F, G,

and H in Fig. 4b)]. For any scalar s, if the flux-form

operators Fx and Fy satisfy

F !" * s" # F !"" * F !s" and

F !s"" # sF !"", !31"

then (27) can be written as

" ij

n*1
#

1

2
'I

!!xij"
n

*

x
!SLy" * I

!!yij"
n

*

y
!SLx"(

*
1

2
'I

!!xij"
n

*

x
, SLx * I

!!yij"
n

*

y
, SLy(, !32"

by utilizing (28) and (29). The operators based on the

PCM and unlimited PLM and PPM satisfy (31) (LR96).

Following Leonard et al. (1996), (32) can be explained

conceptually by assuming a constant flow field, linear

interpolations for the SL operators, and PCM for the I

operators. Under these assumptions the SL and I op-

erators are identical. Let (ABCD) represent the aver-

age of $ over the cell with vertices A, B, C, and D.

Using Fig. 4b, terms involved in the forecast are

given by

I
!!xij"

n

*

x
!SLy" # I

!!yij"
n

*

y
!SLx" # !IJKL", !33"

I
!!xij"

n

*

x
# SLx # !MNOP", !34"

and

I
!!yij"

n

*

y
# SLy # !EFGH". !35"

The terms in the first square brackets on the right-hand

side of (32) represent local contributions to the forecast

in the sense that the information originates from the

exact departure cell (letters I, J, K, and L in Fig. 4b). If

one or both of the directional Courant numbers are

larger than one then the terms in the second square

brackets on the right-hand side of (32) are nonlocal

contributions to the forecast because they are evaluated

outside the exact departure cell. However, if SLx #

Ix
(&xij)

n

*
and SLy # Iy

(&yij)
n

*
, then the nonlocal contributions

cancel and (32) becomes $
n*1

ij # (IJKL), that is, for-

mally equivalent to the upstream CISL scheme. That is,

for example, the case when the PCM is used for the I

operators and linear interpolations in the SL operators,

and (32) becomes formally equivalent to a traditional

semi-Lagrangian scheme using bilinear interpolation

(see below). However, if for example the traditional

semi-Lagrangian scheme based on linear, quadratic, or

cubic interpolation is used for the SL operators and

PLM or PPM is used for the I operators, then SLz and

Iz
(&zij)

n

*
, where z # x, y, do not cancel. Hence with that

particular choice of operators and large Courant num-

bers there are nonlocal contributions to the forecast

that are proportional to the difference between the SL

and I forecasts over the nonlocal areas.

Lin (2004) replaced the SL operators in the LR96

version of the advection scheme with a flux-form op-

erator and subsequently subtracted the divergence;

that is,

SLz # Ĩ
!!zij"

n

*

z
, D

!!zij"
n

*

z
" ij

n
, !36"

where z # x, y, Dz
(&zij)

n

*
is the one-dimensional divergence

over (&zij)
n

*
, and Ĩ is an integral operator referred to as the

FIG. 4. (a) Same as in Fig. 1 but in two dimensions. The cell bounded by solid lines in the

upper right corner is the arrival cell. The departure point corresponding to the southwest

vertex of the arrival cell and the arrival point are connected with an arrow. (b) The arrival and

departure cell for a constant flow field (shaded areas connected with arrows). The capital

letters refer to the points located next to the letter in question and are used to conceptually

explain the Eulerian flux-form scheme of LR96.
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inner integral operator. The integral operator I in (32)

is referred to as the outer integral operator. Again if the

inner and outer operators are the same (Ĩ # I), the

“nonlocal” integral operators in the square brackets in

(32) cancel. The divergence terms, however, are nonlo-

cal if Courant numbers are large since the divergence is

multiplied with the cell average of $ over the arrival cell

and not the departure cell. In the various implementa-

tions of the LR96 advection schemes in models, such as

the finite-volume version of the National Center for

Atmospheric Research (NCAR) Community Atmo-

sphere Model version 3.0, the choice of inner and outer

operators varies with Courant number and location on

the spherical domain, and is limited to meridional Cou-

rant numbers less than one (S.-J. Lin 2006, personal

communication).

c. Von Neumann stability analysis

For the two-dimensional stability analysis assume a

constant flow (u, 8) # (u0, 80), where u0 and 80 are

positive constants. The x-coordinate displacement pa-

rameters / and p are defined in (13), and the y-

coordinate displacement parameters 9 and q are de-

fined similarly (see Fig. 4a). For this purely transla-

tional flow the forecast for the different schemes is

given in the following subsections.

1) FORECAST FORMULAS

If a constant subgrid cell reconstruction is used in the

LR96 scheme then the integral operator is identical to

the SL operator using linear interpolation

I
!!xij"

n

*

x
!"" # SLx # %" i,p,1, j

n
* !1 , %"" i,p,j

n

!37"

and

I
!!yij"

n

*

y
!"" # SLy # *" i, j,q,1

n
* !1 , *"" i, j,q

n
, !38"

and (32) becomes

" ij

n*1
# !1 , %"!1 , *"" i,p, j,q

n
* %!1 , *"" i,p,1, j,q

n

* *!1 , %"" i,p, j,q,1

n
* %*" i,p,1, j,q,1

n
,

!39"

which is formally equivalent to the traditional semi-

Lagrangian scheme based on bilinear interpolation. If

higher-order operators are applied the explicit equa-

tions for $
n*1

ij are unfortunately too lengthy to display

here.

For a constant flow the cascade scheme of NSS02 can

be written as

" ij

n*1
# I

!!xij"
n

*

x
'I

!!yij"
n

*

y
!""( # I

!!yij"
n

*

y
'I

!!xij"
n

*

x
!""(, !40"

where the PPM is used for the I operators but, of

course, any order of integral operator can be applied.

For a constant flow (u, 8) # (u0, 80) and when using I

operators without filters/limiters, the order of the “cas-

cade sweeps” can be reversed without influencing the

forecast equation; however, that is not the case for gen-

eral flows and/or when applying limiters (see section

3d). As for the LR96 scheme, the NSS02 scheme re-

duces to the traditional semi-Lagrangian scheme using

bilinear interpolation if the PCM is applied for the I

operators. Also, in the Cartesian geometry with uni-

form grid spacing and for a constant flow (u, 8) # (u0,

80), the cascade scheme of NSS02 is identical to the

scheme of Rančić (1995; reformulated for upstream tra-

jectories).

It is interesting to note that if the inner and outer

operators are identical and no filters are applied in the

LR96 scheme, it reduces to

" ij

n*1
#

1

2
0I

!!xij"
n

*

x
'I

!!yij"
n

*

y
( * I

!!yij"
n

*

y
'I

!!xij"
n

*

x
(2 !41"

# I
!!xij"

n

*

x
'I

!!yij"
n

*

y
!""(, !42"

for a constant flow, since the integral operators under

these assumptions commute. In other words, under the

assumptions made in the stability analysis, the LR96

scheme with identical inner and outer integral opera-

tors is formally identical to the NSS02 cascade scheme.

This is, of course, not the case for general flows and/or

if limiters are applied. This is discussed briefly in sec-

tion 3d.

The fully two-dimensional scheme of NM02 can, of

course, not be expressed in terms of one-dimensional

operators and is given by

" ij

n*1
# !

1,*

1 !
1,%

1

" i,p,1, j,q,1
n !$, )" d$ d)

* !
1,*

1 !
0

1,%

" i,p, j,q,1
n !$, )" d$ d)

* !
0

1,* !
1,%

1

" i,p,1, j,q
n !$, )" d$ d)

* !
0

1,* !
0

1,%

" i,p, j,q
n !$, )" d$ d). !43"

It is easily verified that if the PCM is used [setting

$n
i,p,1, j,q,1(-, 7) # $

n

i,p,1, j,q,1 in (43)] the scheme

becomes formally equivalent to the traditional semi-
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Lagrangian scheme using bilinear interpolation. The ex-

plicit equation for $
n*1

ij in the NM02 scheme results from

substituting the quasi-biparabolic reconstruction func-

tion (26) into (43) and evaluating the analytic integrals.

As for the cascade scheme the result is too lengthy to

display here, and therefore is omitted.

2) AMPLITUDE AND PHASE ANALYSIS

Assume a solution in the form

"n!x, y" # "0
|& |

n exp'ı̂!kxx * kyy"(, !44"

where (kx, ky) # (23/Lx, 23/Ly) is the wavenumber

vector and Lx and Ly are the wavelengths in the two

coordinate directions, respectively. As in the one-

dimensional analysis, the solution (44) is substituted

into the explicit forecast formulas for the respective

two-dimensional schemes. Again, if the amplification

factor is written as 4 # |4 |exp(,ı̂5*+t) then the rela-

tive frequency is given by R # 5*/5 where the exact

frequency is

( # !p * %"kx#x * !q * *"ky#y. !45"

Both |4 |2 and R were computed with Maple software,

and the explicit formulas for the schemes based on

higher-order subgrid cell reconstructions are too

lengthy to display here but are, for selected parameters,

shown graphically. Multidimensional advection

schemes are, in general, the most challenged when the

advection is oblique or skew to the grid lines, which can

lead to anisotropic distortion of the transported distri-

bution. One might expect the most distortion when the

flow is along grid diagonals or slightly off diagonals to

avoid any symmetry. For the schemes analyzed here the

diagonal flow is the most challenging with respect to

damping (not shown). Hence the analysis is restricted

to u0 # 80, unless elsewhere specified explicitly, and

only symmetric modes (kx # ky) are considered. For u0

or 80 approaching zero, the schemes degenerate to the

one-dimensional cell-integrated scheme analyzed in

section 2. Hence |4 | for off-diagonal flow not aligned

with the coordinate axis is in between |4 | for the sym-

metric flow / # 9 (analyzed here) and |4 | for the one-

dimensional schemes.

Figures 5 and 6 show the squared modulus of the

amplification factor and relative phase speed for the

traditional semi-Lagrangian scheme using bicubic inter-

polation, LR96 for different combinations of outer and

inner operators, the two-dimensional NM02 based on

PPM, and the NSS02 scheme using PLM and PPM for

the one-dimensional cascade sweeps. The CISL

schemes, NM02 and NSS02, based on PPM are less

diffusive than the traditional semi-Lagrangian scheme

based on bicubic interpolation. Of the two CISL

schemes based on PPM, the cascade scheme of NSS02

is less diffusive (Figs. 5a,b) apart from the 2+x wave

(not shown). Unlike the semi-Lagrangian schemes, the

squared modulus of the amplification factor for the

LR96 scheme using different inner and outer operators

is not symmetric about / # 1⁄2, which is consistent with

the conceptual interpretation of the LR96 scheme. For

small displacement parameters the LR96 schemes are

less diffusive than the semi-Lagrangian schemes but

more diffusive for large / values. The dispersion prop-

erties are worse for the LR96 schemes using PCM for

the inner operator and higher-order outer operator

compared to the semi-Lagrangian schemes for all val-

ues of /. The CISL schemes and the traditional semi-

Lagrangian schemes based on PPM have similar disper-

sion properties (Figs. 5c,d). Overall the best scheme

with respect to phase errors is the NSS02 scheme based

on PLM or equivalently the LR96 scheme using PLM

for both the inner and outer operators.

Consistent with the conceptual interpretation of the

LR96 scheme, the squared modulus of the amplifica-

tion factor is not only a function of / but also the in-

teger value of the Courant number, p, if the inner and

outer integral operators differ. As discussed in detail in

section 3b there can be nonlocal contributions to the

forecast for Courant numbers larger than one. Hence

the diffusion properties can worsen as p increases. In

Fig. 6 the squared modulus of the amplification factor

for the LR96 scheme using different combinations of

inner and outer operators is shown as a function of

Courant number ranging from 0 to 5 and wavelength Lx

# Ly. For comparison, |4 |2 for the least diffusive com-

bination of operators, the LR96 scheme using PPM for

both the inner and outer operator (or equivalently the

NSS02 scheme based on PPM), is also shown. In gen-

eral the LR96 schemes using PCM for the inner opera-

tor and a higher-order outer operator (Figs. 6a,c) be-

come more diffusive as the Courant number increases

since the nonlocal contributions to the forecast origi-

nate from more distant locations (more precisely from

the latitude and longitude at which the arrival cell is

located) and, as already mentioned, the magnitude of

the nonlocal terms is proportional to the difference be-

tween the one-dimensional inner and outer operator

updates over the nonlocal areas. So the difference be-

tween one-dimensional updates based on PPM and

PCM, and PLM and PCM, is large enough to produce

significant dependence of |4 |2 on p, and for large Cou-

rant numbers the dissipation is significantly greater

than the semi-Lagrangian schemes. Since the CISL
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schemes explicitly integrate over the departure cell,

|4 |2 is not a function of p for those schemes. The |4 |2

for the LR96 scheme based on the PLM for the inner

operator and PPM for the outer operator show little

dependence on p, probably because the nonlocal con-

tributions to the forecast, proportional to the difference

between the one-dimensional updates over the nonlo-

cal areas using PLM and PPM, are small and less sig-

nificant. As already mentioned, if the inner and outer

operators are identical the dependence on p disappears

as the LR96 schemes become formally equivalent to the

semi-Lagrangian cascade scheme.

For the LR96 scheme using second-order inner op-

erator (PLM) and third-order outer operator (PPM),

|4 |2 can exceed one and is therefore unstable for cer-

tain wavelengths and Courant numbers (Fig. 6b). Fig-

ure 7 shows the maximum of |4 |2 for this LR96 scheme

for different Courant numbers and reveals that the in-

FIG. 5. The stability properties for the traverse waves (kx # ky # 23/Lx # 23/Ly) as a

function of symmetric displacement parameters (/ # 9) when using the traditional semi-

Lagrangian scheme based on bicubic interpolation (SL-4, cyan dashed–dotted lines), the

NM02 scheme (NM-3, pink dotted lines), the cascade scheme of NSS02 using PLM (NSS-2,

black dashed lines), and PPM (NSS-3, blue dashed lines), and the LR96 scheme for different

combinations of inner and outer operators. For example, LR-3–2 refers to the LR96 scheme

using PPM (third order) for the outer operator and PLM (second order) for the inner opera-

tor. (a), (b) The squared modulus of the amplification factor as a function of the displacement

parameter / and wavelength. (c), (d) Same as in (a) and (b), respectively, but for the relative

phase speed. In (b) and (d) p # 0 for the LR96 scheme (see also Fig. 6). Note that for a

constant flow, u # u0 and 8 # 80, the LR-3–3 and LR-2–2 schemes are identical to the cascade

scheme of NSS02 using PPM and PLM, respectively.
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FIG. 6. The figures show the squared modulus of the amplification factor for the LR96

scheme for different combinations of inner and outer operators as a function of symmetric

Courant numbers (ranging from 0 to 5) and wavelength. On all figures the dashed blue

contours are |4 | 2 for the LR96 scheme using PPM for both the inner and outer operators

(which renders the scheme identical to the NSS02 scheme based on unlimited PPM under

constant flow conditions). Here, |4 | 2 for the LR96 scheme with (a) PLM for the outer

operator and PCM for the inner operator (LR-2–1), (b) PPM for the outer operator and PLM

for the inner operator (LR-3–2), and (c) PPM for the outer operator and PCM for the inner

operator (LR-3–1) are shown with contours 0.3, 0.6, 0.9, 1.0, and 1.0006. For fully semi-

Lagrangian schemes and the LR96 scheme using identical inner and outer operators the

modulus of the amplification factor is not a function of the integer value of the Courant

number, p, whereas for the LR96 scheme applying different inner and outer operators |4 | 2 is

a function of p. A weak instability is present for the LR-3–2 scheme (see also Fig. 7).
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stability is very weak and very scale selective. The

squared modulus of the amplification factor is maxi-

mum on the order of 1.0008 (for Lx # Ly : 8+x and

p # 0) and, probably, not of any practical importance

since the instability is very scale selective and filters are

usually applied to the integral operators that may pro-

vide significant damping that eliminates the instability.

This is indicated by a simulation using the LR96 scheme

for advecting the Lx # Ly # 8+x wave with a velocity

corresponding to displacement parameters / # 9 # 0.9,

p # q # 0. The maximum of $ over the periodic domain

is shown as a function of time step index in Fig. 8.

Applying no filters to the integral operators leads to a

weakly unstable simulation whereas the application of a

monotone filter to the outer operator makes the

scheme stable and diffusive. The instability seems only

to be of theoretical interest.

d. Brief comments on the general application of the

advection schemes

1) THE EFFECT OF LIMITERS/FILTERS

A Von Neumann stability analysis assumes unmodi-

fied subgrid cell reconstructions, that is, monotonic and

other shape-preserving filters/limiters are not incorpo-

rated into the analysis. The use of such filters may result

in schemes with very different stability properties com-

pared to the unlimited versions. Schemes with limiters

are likely to be more diffusive than their unlimited ver-

sions (e.g., Fig. 8). On the contrary the dispersion prop-

erties can be positively affected by the use of limiters

(e.g., Durran 1999, his Figs. 5.10, 12, 14). It seems rea-

sonable to imagine that the unlimited case provides a

baseline from which further dissipation and less disper-

sion is induced by the limiter/filter. It is noted that the

one-dimensional monotonic and positive-definite filters

applied in the NM02 and LR96 schemes do not strictly

guarantee monotonicity and positive definiteness in

two dimensions. In the cascade scheme monotonicity

and positive definiteness are guaranteed since they are

formulated in terms of two sequential applications of

one-dimensional operators for which the filters are

strictly shape preserving. It is noted that shape preser-

vation can be enforced in two dimensions in the LR96

scheme such as done by, for example, Skamarock

(2006). In the next subsection it is discussed further how

spurious negative values can occur in the LR96 and

NM02 schemes even though one-dimensional filters are

applied, and some of the differences between the LR96

scheme and NSS02 cascade scheme for complex flows

are discussed.

2) “SPLITTING ERROR” AND DIRECTIONAL

ASYMMETRY

A Von Neumann stability analysis also assumes a

constant flow that is nondivergent, nondeformational,

FIG. 7. Maximum of the squared modulus of the amplification

factor for symmetric modes (Lx # Ly) as a function of x– and

y–Courant number for the LR96 scheme using third-order outer

operator (PPM) and second-order inner operator (PLM). The

contour levels start at 1.0001 and the increment is 0.0001. In most

of the domain, maximum ( |4 | 2) is 1 but for large displacement

parameters (/, 9) a weak instability is present (maximum of |4 | 2

is on the order of 1.0008). See also Fig. 8.

FIG. 8. The maximum of the field as a function of time step

index for a simulation with the LR96 scheme using PPM for the

outer operator and PLM for the inner operator (LR-3–2) with

/ # 9 # 0.9 and from a Lx # Ly # 8+x initial condition. Filled

circles and the dashed line show maximum ($) for the unlimited

LR-3–2 scheme and LR-3–2 scheme with a monotonic limiter on

the outer operator, respectively. The thick solid line is the neutral

damping reference line.
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and nonrotational. It is beyond the scope of this analy-

sis to make a comprehensive comparative study of the

advection schemes under general flow conditions, but a

brief discussion of the differences between the schemes

in complex flows is given. All the schemes considered

here are based on one-dimensional subgrid cell recon-

structions, even the so-called fully two-dimensional

CISL scheme of NM02 since the subgrid cell recon-

struction is based on the directional fitting of two pa-

rabolas, one in each coordinate direction. This can lead

to so-called splitting errors and directional biases in the

schemes.

First of all, under general flow conditions the cascade

scheme is directionally biased, like any tensor-product

interpolator, in the sense that the scheme can be ap-

plied as

" ij

n*1
# I*

lon'I
!!xij"

n

*

x
( !46"

or

" ij

n*1
# I lat

*
'I

!!yij"
n

*

y
(, !47"

where I lon

*
and I lat

*
are the one-dimensional integrals

along the Lagrangian longitude and latitude (corre-

sponding to an x- and y-isoline transported by the flow),

respectively (see NSS02 for details). For the accuracy of

the cascade scheme it is important that the Lagrangian

longitudes–latitudes are computed with higher-order

interpolation (NSS02). For a constant flow, however,

I lon

*
# Iy

(&yij)
n

*
and I lat

*
# Ix

(&xij)
n

*
, and (46) and (47) are

identical to (40). Hence the directional bias does not

show in the Von Neumann stability analysis. Under

general flow conditions (46) and (47) do not provide

identical forecasts. The directional bias can be elimi-

nated with a symmetric cascade scheme by averaging

over the two possible versions of (46) and (47),

" ij

n*1
#

1

2
0I*

lon'I
!!xij"

n

*

x
( * I*

lat'I
!!yij"

n

*

y
(2, !48"

at the expense of increased computational cost. Four

integrals must be evaluated, as in the LR96 scheme, and

in addition the Lagrangian longitudes and latitudes

must be computed. This extra geometrical work as well

as the computation of the trajectories must, however,

only be performed once per time step and can be re-

used for any additional tracers that are advected with

the cascade scheme. Alternatively the directional bias

can be alleviated in a more cost-effective manner by

alternating between (46) and (47).

The averaging of the cross terms is built into the

LR96 scheme and hence it is directionally symmetric.

For a nondivergent but deformational and rotational

flow, the LR96 scheme applying identical inner and

outer operators can be written in a form similar to (48):

" ij

n*1
#

1

2
0I

!!yij"
n

*

y
'I

!!xij"
n

*

x
( * I

!!xij"
n

*

x
'I

!!yij"
n

*

y
(2, !49"

but the outer integral operators are applied along the

coordinate axis and not along the characteristics of the

flow as in the cascade scheme, that is, the LR96 scheme

uses fixed-directional splitting while the cascade

scheme uses flow-dependent splitting. This can cause a

less accurate approximation to the effective departure

cell in the LR96 scheme compared to the NSS02

scheme for general flows (Machenhauer et al. 2007).

Therefore the splitting errors in the two schemes are

not identical. It is noted that the forecast equation for

the cascade scheme (47) does not correspond to the

directionally biased Eulerian scheme

" ij

n*1
# " ij

n
* Fx * Fy * Fx!Fy", !50"

#I
!!xij"

n

*

x
'I

!!yij"
n

*

y
( !51"

[LR96, their Eq. (2.20)], which has a first-order splitting

error. The formal order of the splitting error in the

cascade scheme is difficult to assess theoretically

(Purser and Leslie 1991) since it requires a nonconstant

flow to trigger the error and thus idealized test cases

have, so far, been the only way to get an indication of

the error. In fact the order of accuracy of the cascade

scheme has been estimated numerically in Nair et al.

(2003) and indicated to be at least of second order;

however, a truncation error analysis is needed to deter-

mine the formal order of accuracy [a formal truncation

error analysis of the one-dimensional cascade scheme is

given in Zerroukat et al. (2006)]. It seems reasonable to

assume that the directional bias and splitting errors

would show in a strong deformational flow with distri-

butions exhibiting rapid variation, such as the idealized

cyclogenesis test case of Doswell (1984) formulated for

the sphere in NM02. In this test case the NM02 and

NSS02 schemes did not show significant splitting or di-

rectional bias errors judging by the standard error mea-

sures as compared to other schemes.

By subtracting the divergence from the inner integral

operator in (49), thereby effectively converting the in-

ner operator into an advective operator, the LR96

scheme preserves a constant for a nondivergent flow

field. The NM02 and NSS02 schemes do not have that

property, which is perhaps the most serious deficiency

of CISL schemes. This issue is, perhaps, worth more

investigation since it is minimally analyzed and dis-

cussed in the literature.
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Negative values generated from nonnegative initial

conditions (nonmonotonic behavior) in the LR96 and

NM02 schemes applying a one-dimensional monotonic

filter seem to occur when the cross derivatives of the

transported distribution exhibit rapid variation (LR96).

The filters in the LR96 scheme and the NM02 scheme

are applied along the coordinate directions and hence

shape-violating variation along the diagonal may still be

present even after the application of one-dimensional

filters. For the solid body advection of a cosine bell over

the Poles with the respective schemes, the negative val-

ues are of the same order of magnitude with the two

schemes (cf. NM02, their Table 1) and tiny compared to

the large-scale distribution. As already mentioned the

cascade scheme is strictly shape preserving when filters

are applied since it is a sequential scheme.

4. Summary

The recently developed finite-volume schemes for

meteorological applications permitting large time steps

have been interpreted conceptually and a theoretical

Von Neumann stability analysis of these schemes has

been performed. The schemes considered have been

developed in the meteorological community and are

the flux-form Lin and Rood (1996) scheme, the fully

two-dimensional cell-integrated scheme of Nair and

Machenhauer (2002), and the cascade scheme of Nair

et al. (2002). It is noted that the Lin and Rood (1996)

scheme is practically identical to the COSMIC scheme

of Leonard et al. (1996). The stability analysis does not

assume simplified subgrid cell reconstructions but ap-

plies the schemes unmodified. Since high-order subgrid

cell reconstructions are applied in the finite-volume

schemes analyzed here, the explicit forecast formulas

and amplification factors are extensive mathematical

expressions and have been computed using symbolic

mathematical software (Maple). Regarding dissipation,

the cell-integrated schemes based on a fully semi-

Lagrangian approach [i.e., based on integrating over

cells moving with the flow; scheme of Nair and Machen-

hauer (2002) and Nair et al. (2002)] perform better than

the traditional semi-Lagrangian scheme based on bicu-

bic Lagrange interpolation. Of the two cell-integrated

schemes, the cascade scheme (Nair et al. 2002) is less

damping. The dispersion properties of the higher-order

semi-Lagrangian schemes are very similar.

The Lin and Rood (1996) scheme is formulated in

terms of a combination of outer flux-form operators

and inner advective or flux-form operators. Although

the Lin and Rood (1996) scheme is termed semi-

Lagrangian, it is based on a Eulerian flux-form ap-

proach in which the flux through cell walls is tracked. A

conceptual interpretation of the Lin and Rood (1996)

scheme is provided that illustrates how the scheme ap-

proximates the integral over a cell moving with the flow

as is done explicitly in the cell-integrated semi-

Lagrangian (CISL) schemes. Here it is shown that if

different inner and outer operators are used, there can

be nonlocal contributions to the forecast if one or both

of the directional Courant numbers are larger than one.

Nonlocal refers to the fact that information to the in-

tegral over the cell moving with the flow originates

from outside the exact departure cell. The magnitude of

the nonlocal contributions is proportional to the differ-

ence between inner and outer operator updates over

the nonlocal areas. Consequently the Lin and Rood

(1996) scheme’s dissipation properties worsen for in-

creasing Courant numbers for certain choices of inner

and outer operators and produces significantly more

damping and dispersion errors than the fully semi-

Lagrangian schemes. For higher-order inner and outer

operators, the nonlocal contributions are small and do

not significantly influence the damping for increasing

Courant numbers, and the overall stability properties

are very similar to the higher-order cell-integrated

semi-Lagrangian schemes although a very weak and

scale-selective instability can occur. If the inner and

outer operators are identical, the Lin and Rood (1996)

scheme is formally equivalent to the cascade scheme

(for constant flows and unlimited operators only) and

the stability properties are, of course, also identical.

This analysis is only restricted to constant flows since

the Von Neumann stability analysis is based on such an

assumption. Hence the performance of the various

schemes under deformational, rotational, and divergent

conditions is not part of such an analysis. Also, the

application of filters/limiters is, of course, not part of

the Von Neumann stability analysis either. All these

issues are briefly discussed.
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APPENDIX

Comments on the Lin and Rood (1996)

Stability Analysis

It is noted that LR96’s Eqs. (A.6), (A.7), and (B.1) in

their appendix are missing some terms. The equation
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relevant for this paper is Eq. (B.1), that is, the ampli-

fication factor for the LR96 scheme using a first-order

inner operator and a second-order outer operator. The

correct formula using the notation in LR96 is (S.-J. Lin

2006, personal communication)

A # 1 ,
1

2 (1 , e,ı̂Mk * cxe,ı̂Mk!1 , e,ı̂k"

1 $1 *
1

4
eı̂k!1 , cx"!1 , e,2ı̂k"%)

1 {1 * e,ı̂Nl'1 , cy!1 , e,ı̂l"(}

,
1

2 (1 , e,ı̂Nl * cye,ı̂Nl!1 , e,ı̂l"

1 $1 *
1

4
eı̂l!1 , cy"!1 , e,2ı̂l"%)

1 {1 * e,ı̂Mk'1 , cx!1 , e,ı̂k"(}. !A1"

The stability analysis performed in LR96 considers the

minimum and maximum of the modulus of the ampli-

fication factor of this particular choice of inner and

outer operators. In that case min |A | is not a function of

the integer translation parameters M and N. Consider-

ing the most damped mode, the 2+x # 2+y wave, it can

easily be shown that |A | reduces to

|A |2# # ;!1 , 2cx * 4cxcy , 2cy"2. !A2"

Obviously |A |2+ is not a function of M and N. For other

wavelengths, as described in this paper, the modulus of

the amplification factor can be a function of the integer

value of the Courant number.
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