
A s tab i l i t y  resul t  for a cer ta in  th i rd  order  

d i f ferent ia l  equa t ion  

bx J. O. C. :EzEILO (Ibadan, ~iger ia)  

Summary. - The main object of this paper is to give sufficient co~,ditions for the asymptotic 
stability (in the large) of the trivial solution x = 0 of the differential equation (1.7). 

1. In the paper  [1] OGu~cov considered the equation 

o, 

in which a, b are constants  and ¢~(~) is a cont inuous funct ion of m and pro- 
ved (in [1; Theorem 3]) that every solution x(t) of (1.t) satisfies 

( i . 2 )  x(t)  - -  O, ~(t)  - -  o ,  }(t )  - -  o 

as t -* c~ provided that 

(1.3) o : ~  0, b > 0 ,  a~(w):> b 

and that 

(1.4) 

x 

0 

where  ap is the funct ion defined by 

(1.5) 

x 

0 

The conditions (1.3) are natural  generalizations of the well known 
ROU~I¢-]~URWITZ conditions for the stabil i ty of solutions of third order dif. 
ferential  equat ions with constant  coefficients.  A slight considerat ion of the 
restr ict ion on ~ in (1.3) shows quite  clearly that if (1.3) holds then (1.4) is 
necessar i ly  true so that an explici t  restr ict ion such as (1.4) becomes redun- 
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dant  if (1.3) is imposed on (1.1). This  would  however  not be the case if the 
condi t ion:  a~(w)> b were to be weakened  to: 

~ ( x ) / x  > b (x, ~ O) 

as the lat ter  res t r ic t ion does not in general  imply (1.4) In view of the fact 
O' that  O ,u rcov  s a rguments  in his proof of [1 ; Theorem 3] are still valid, with  

only tr ivial  changes,  if (1.3) is replaced by 

(1.6.) a > 0 ,  b > 0 ,  a(I)(x)/~> b ( x ~ 0 )  

one is incl ined to feel that  the hypotheses  which Ogurcov ant ic ipated in the 
formula t ion  of his resul t  were (1.4) and (L6) ra ther  than (1.3) and (1.4.). Ho- 
wever  even this s t ronger  resul t  appears  to be unnecessar i ly  restr ic t ive on (I) 
especial ly when  it is recal led that, for the equat ion  

+ ~ + g(~) + bx = O, 

in  which the nonl inear i ty  g now depends  on ~c only, a stabili ty resul t  .such 
as (1.2) holds (See [3]) subject  only to the Rou~K-t tunwI~z condit ions:  

~ 0, ag(y)/y > b > O (y ~ O). 

The  original  a im of the present  paper  was to present  a paral le l  resul t  
for (1.1) by showing that  the resul t  (1.2) does hold subject  to the condi t ions 
(1.6) a lone;  but  it la ter  developed that  the a rgument s  which I had prepared  
for this could be ex tended to the much  more genera  ! equat ion 

(1.7) x + ~x + ~(~)x + f(~) = 0 

in which  f, not necessar i ly  l inear,  is a different iable  funct ion  of x. 
The stability resul t  which  emerged,  and which I shall  now prove, is the 

fol lowing : 

THOREM. Let  f(0)--~ 0 and suppose that 

(i) o : > 0 ,  f(x)/x :> O (x ~ O), 

(ii) ~(~), f'(x) are continuous for all x and there is a censtant ~ ~ 0 such that 

~(x)/x  > ~ ~ ['(x) (~ ~= 0). 
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(1.8) 

T h e n  e v e r y  s o l u t i o n  x - - ~  x(t)  o f  (t.7) s a t i s f i e s  

. .  

x - + 0 ,  x ~ O, x --* a s  t ~ cx~ 

This extends also a previous theorem (See [2]) in which the stability re- 
sult (1.8) was obtained subjee~ to the addit ional requirement ,  analogous to 
(1.4), that 

f l  

(1.9) 

0 

2. The initial steps in the proof of the theorem are as in [2; § 3]. 
Consider the system 

(2.1) x - - ~ y ,  y ~ - z - - a y ,  x ~ - - - y v ( x ) - - f ( x )  

which is derived from (1.1) by setting x - - - -y  and y ~ z -  ay. To prove the 
theorem it will suffice to show that every solution (a~, y, z) of (2.1) satisfies 

2,2)  a~ ~ 0,  y - - ~  0 ,  z ~ 0 

a s  t - - - ~  o o  . 

It  is probably not so obvious from the system (2.1) that the uniqueness  
of the solutions of (2.1), for each appropriately assigned initial  conditions,  
which will play an important  role at some stage in the proof of the theorem, 
is in fac t . impl ied  by our continui ty conditions on ~0 and f'. Consider, howe- 
ver, the system 

(2.3) x - ~  y ,  y ~ z - -  a y  - -  ~ (x ) ,  z -~  - -  f ( x ) ,  

which is obtained from (t.1) on sett ing x- - - -y  and y ~ - - z - - a y - - ~ ( x ) .  

There  is no diff iculty in arr iving at the uniqueness  property  for the solu- 
tions of (2.3) for, since the nonl inear  functions (P(x) ,  f(~c) have cont inuous 
first derivatives, the terms y, z - -  ay - -  ~(0c) and f(~) appearing on the right 
hand  sides of the equations (2.3) are all Lipsehitzian in x ,  y and z. The 
uniqueness  of the solutions of (2.3) implies necessar i ly  the uniqueness  of the 
original equation (1.1) which, in turn  implies that of the solutions of (2.1). 

For  the proof of (2.2) we shall make use of the function V---- V ( x , y ,  z) 
caps which is def ined by 

(2.4) 2 v =  Fix) ÷ t2f+( )d  - -  ex+Cx) + y2 t ÷ ( ~  ÷ 
O 

÷ z ~ +  2 y f ( x ) +  2/~9(x)--~¢¢-1z} x ,  
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where  
X 

f .  

F(z) 
0 

This function will be identif ied readiIy as the Lyapunov function V of 
[2] except that in place of functions g, h, G and H in [2] we have here 
% f, • and F respectively. Because of the suppression here  for the condition 
(1.9) the present  V is not necessar i ly  unbounded for arbi t rar i ly  large values 
of x~-{ - y~-4-z ~ as in [2], but the following properties of V(Lemmas 1 and 2 
to fo l low)wi l l  suffice for our metheds. 

LE~y~A 1. - Sub~eel to the conditions of the theorem, the function V satisfies: 

(2.5) V(x, y, z ) ~ O ,  for x ~ ~y~-4-z~-----0,  

> 0 ,  for ~ + y~ z ~ =~ 0.  

This result  is in fact a part  of the lem~na in [2; § 3] and it was proved 
there using only cou/litions which are identical with those in the present  
theorem. Fa r the r  details of its proof will therefore be omitted. 

Next we have 

LE~{A 2. - Let (w(t), y(t), z(t)) be any  solution o f  (2.1). Then 

(2.6) ~ ~ d V(x)t),y(t),z(t)) ~ - -  {[~ - -  f '(~)]y~ -~ ~- '  [:¢ (I) (w) -- ~0c]f(~c) } 

This is in fact equation (4.1) of [2]. It can however  be verif ied direct ly 
from (2.4) and (2.1), and it is unuecessary to supply hera the details of the 
calculations.  

The calculations in [2] show that, if the addit ional condition (1.8) is also 
imposed on ~, then evory solution (x(t), y(t), z(t)) o[ (2.1) is bounded for all 
suff iciently large t. This bouadeclness result, which played an important  
role in [2] is of course not availlable here, with (1.9) suppressed, but the fol- 
lowing "par t i a l "  boundedness result  will be quite adequate for our present  
needs. 

LEM~± 3. - Subject to the cgnditions of  the theorem, any  solution (~(t), 
y(t), z(t)) of  (2.1) sat is fy ing 

(2.7) Ix ( t )  I > 0  for all t ~ to 

is necessarily bounded for all t ~ to. 

PROOF. - Assume the conditions of the theorem to be fulfilled. Let  
(x(t), y(t)), z(t) be any solution of (2.1) which satisfies (2.7). Then, since x(l) is 
continuous in t, ei ther x ( t ) ~  0 f o r  all t ~ t o  or x ( t ) ~ O  for all t ~ t o .  We 
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shall show that in ei ther  case there is a constant  K, 0 ( K ( co, such that 

(2.8) Ix ( t )  I ~ K ,  ] y ( t )  T ~ K ,  f z(t) l ~ K ,  t ~ t o .  

We  take first  the case 

(2.97 ~c(t) > 0, t ~ to. 

Consider the ftlnetion V(t)=-- V(x(t),.y(t), z(t)). 

Since 

- -  f'(~c) ~ 0 and {~+(x) - -  ~x} f(x) ~ 0 for all x, 

by the hypotheses  of the theorem, it is clear from (2.6) that l]__~ 0 for all t ;  
and thus 

(2.10) V(x,(t), y(t), zlt)) ~ V(x(to), y(to), z(to)), t ~ to. 

Verify  now that the expression (2.4) can be rearranged in the form:  

2 V - ~  {z + +(x,) - -  ~- ix}~  + ~:¢-1 {y + ~:¢-lf(x)l~ .~_ 

/ *  

~] d~. 
*/ J 
0 0 

By the hypotheses of the theorem the two integrals  here are both non. 
negative for all x. Hence  

2V ~ {z + +ix) - -  ~-lw) ~ + ~ - 1  {y + a~- l f (x)}~ 

for all x , y  and z. 0n  combining this with (2.10) we see at once that there 
are finite positive constants K t ,  K~ whose magnitudes depend on a ,  ~ and 
V(x(to), y(to), z(to)) only such that 

(2.11) I z(t) + O(x( t ) ) - -~-~x( t )  ] ~ K~ t ~ to 

(2.12) I y(t) -}- ~- I f (x ( t ) )  i ~ K~ t ~ to. 

W e  take up now the term z(t) + +(~c(t)) appear ing in (2.11). Since x---~y, 
z --~ -- y~(0c) - -  f(0~) it is evident that 

d 
d-~ [z(t) + +(~(t))] = - -  f(x(t)) < O, t ~ to, 

by (2.9), since f(x) sgn x ~ 0 (x -~-i-' 0). Thus 

(2.13) z(t) + +(x(t)) ~ Z(to) + +(X;to)), l ~_~ to. 
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For any -c < to we shall now dist inguish two cases:  

(2.14) z(~) + (I)(~('c)) ~ 0, 

(2.15) z(~) + (I)(~(z)) < 0. 

In  the case (2.14), (2.13) implies that 

0 ~ z(z) + ¢(x(~)) ~ Z(to) + ~(Z(to)) 

so that then, by (2.11), 

[ z(~) I <-- K8 = ~z~-~ {K, + 1 ~(to) ] + j (I)(z(to)) ] }. 

To deal with the case (2.15) observe first that (2.il) implies that 

- -  K ,  ~ ~ - ~  ~:(t) - -  z(t) - -  cb(x(t)) < K , ,  t ~_ to .  

Thus, if (2.9) and (2.15) hold then 

0 < a:¢-~ x(~) - -  {z(~) + ~(x(~)) } _< K, 

and since each of the terms 5:¢ -1 w(z), { - - z ( , ) -  (P(x(z))} is positive the last 
inequal i ty  necessari ly implies that 

0 < ~ - ~  x(':) < K , .  

Thus in the case of (2.15) we have that 

0 < x(~:) ~ ~?-1 Ki ; 

and hence, on comparing our estimates of x(z) for the cases (2.14) and (2.15), 
we see that 

(2.16) 0 < x ( t ) < ~ K  3, t ~ to.  

Since (I)(a~) and f ( x )  are continuous in x the boundedness result  (2.16) 
together  with inequali t ies (2.11) and (2.12) at once yields the boundedness  of 
y(t) and z(t) for t ~ to. Thus in the case (2.9) the result  (2.8) holds. 

I t  remains  now to tackle the case when  

(2.17) ~c(t) < 0, t ~ to. 

and to prove that (2.8) also holds. The proof is quite similas to that given 
for the case when (2.9) holds, and I shall only sketch the outlines, 
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In  v i ew of (2.11) and  (2.12) it is obv ious ly  enough  to ve r i fy  the  boun-  
dedness  of x(t) for all  t ~ to. As be fo re  cons ide r  the func t ion  z ( t ) +  (b(x(t)), 
bu t  note  tha t  in v i ew of (2.17), we  now h a v e - t h a t  

(2A8) z(t) + c~(x(t)) ~ z(to) + ¢(X(to)), t ~ to. 

S u p p o s e  now that ,  at  an a r b i t r a r y  z > to, we  have  that  

~(z) + (I)(x(z)) ~ O. 

Then,  by  (2.1S), ]z(,) + #9(x('c)) [ wou ld  be  b o u n d e d  by  ]Z(to)[ + [(I)(x(to)) [, 
so that ,  by  (2.11), 

t z(:)l _< ~ - ~  {K, + i ~(to) 1 + ] (I,(x(to)) I }. 

Suppose ,  on the o ther  hand,  tha t  

z('~) + ¢(x('~)) > 0 ,  c ~ to.  

Then,  a f t e r  r e p r e s e n t i n g  (2.11) in the f o r m :  

- -  K,  ~ z(z) + (I)(0e(-c)) - -  ~ - ~  x(-:) < K, 

and then  no t ing  that  the t e rms  (z + gP) a n d - - ~ : ¢ - ~ x  here  have  the same 
signs, one a r r ives  qu i te  r ead i ly  at the r e s u l t :  

T h u s  

[ x('c) [ < a~ -~ K,  . 

i ~(t) ] _< K , ,  t ~ t o ,  

as before ,  and  the p roof  of (2.8) in the case  (2.17) is now comple te .  

3. PROOF OF THE TI:iEOI1EM. We a s s u m e  hence  for th  that  all  the  condi- 
t ions of the  t heo rem are  fu l f i l led  and  we tu rn  now to p rove  that  eve ry  solu- 
t ion (~c, y ,  z) of (2.1) sa t i s f ies  (2.2) as t ~ c o .  

B y  a t heo rem of PLISS [3] the resu l t  (2.2) wil l  indeed  fo l low if it could  
be ver i f i ed  t h a t :  

(I) the origin (0, O, O) is a unique critical po in t  of  (2.1) which is stable 
in sense of  Lyapunov;  and that  

(II) there is a plane L in  the (~c, y ,  z ) -  space with the following three 
properties : 

(P,) any  trajectory of  (2.1) which does not intersect L for all t ~ to tends 
to the origin ( 0 , 0 , 0 )  as t ~ oo ; 
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(P~) there ex is t s  a f u n c t i o n  W ---- W (x , y , z) such  tha t  W (O , O , O) ---- O , 
W ( x  , y ,  z) ~ 0 for  a l l  (x , y ,  z) e L such  tha t  x ~" z c y" -]- z "~ ~ O, 
W ( x , y ,  z) ~ ~ as  x3 -~- y"- + z ~" - .  ~ on  L ;  

(P3) i f  a n y  t ra jec tory  F ~ (x(t), y(t) ,  z(t)) o f  (2.1) meets  L at  two po in t s  
Q~, Q2 cor re spond ing  to the va lues  I ---- t~, t: w i t h  t~ ~ t2, then  

W(x(t,) ,  y (O,  z(t~)) > W(x(t~), y(t~), z(t~)) 

where  W is the f u n c t i o n  in  (P~). 

Now since f ( x )  vanishes only at x ~ 0 it is evident that ( 0 , 0 , 0 )  is a 
unique crit ical point of the system (2.1). By Lemma 1 the funct ion V defi- 
ned by (1.4) is positive definite in x ,  y ,  z and by Lemma 2 the time deriva. 
t i re  of V ( x , y , z )  along solution paths of (2~1) is non negative, since 

- -  f ' ( x )  ~ 0 and I c~(x) - -  ~x} f ( x )  ~ 0 

for all x. Hence  the origin is stable in the sense of Lyupunov  and the con- 
dition (I) is thereby verified. 

To verify (II) we shall show that the plane x ~ 0 does have all the 
propert ies  (P~) (i ~ 1, 2~ 3) if, for W, we take the function V defined by (2.4). 
Indeed let (x(t), y:'t), z(t)) be any solntion of (2.1) not intersecting the plane 
x- - - -0  for all t ~_ to. Then by Lemma 3 this solution is bounded for all 
t ~ to. Hence  by Theorem VI I I  [4, p. 66] and by Lemmas 1 and 2 this so. 
lution tends, as t ~ cx~, to the largest  invar iant  set, M say, contained in the 
locus V =  0. But, by (2.6) this locus necessar i ly  lies on the plane x-----0, 
since 

(3.1) t~¢(x) - -  ~x}f(x) > 0 (x :4= 0). 

Thus, since the only t ra jectory of (2.1) lying in the plane x ~ 0 is the 
origin, we must have that M ~ ( 0 , 0 , 0 )  and the proper ty  (P~) then follows. 

The proper ty  (P~) is almost immediate.  For, by Lemma 1, V ( 0 , 0 , 0 ) ~  0 
and' from the definit ion (2.4), 

V(O, y) z)~-- ~-~y~" ÷ x ~ 

and this is str ictly posit ive for y~ + z ~ ~ 0 and tends to + c~ as y* + z" ~ ~ .  
To come now to (P3) let (x(t), y(t) ,  z(t)) be any non trivial solution of 

(2.1) and let F denote the t ra jectory traced out by this solution in the 
(x, y, z)-  space. Suppose that P denote meets the plane x---~0 at t~-- t  I and 
t - - -  t2, t~ ~ t , .  W e  have seen from (2.6) that, under our hypotheses on a, ¢P and f, 

(3.2) V ~ - -  c~ -1 [~@(x) - -  So] f ( x )  ~ I  0 
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a long  F. ~Now, s ince  x(t~) -~- 0 ~- x(t~) wi th  t: ~ t, it is ev iden t  tha t  t he re  is 
an  i n t e rva l  [-c~, x~], wi th  t~ ~ % ~ :2 ~ t~, such  tha t  

(3.3) x(t) ~ O x~ ~__ t . ~  x2; 

for  o the rwise  x(t) ~ 0,  t, ~ t ~ 12, and  thus  the re  is a n o n e m p t y  su b i n t e rv a l  
of [t~, t~] w h e r e  x ~ 0 --~ x _----. x and  by  u n i q u e n e s s  of so lu t ions  of (2.1) this  
wou ld  in t u rn  imp ly  tha t  (x(t), y(t), z ( l ) ) ~  ( 0 , 0 , 0 )  c o n t r a r y  to ou r  cho ice  of 
(x(t), y(t), z(t)). H e n c e  (3.3) holds, and  by  (3.1) and  (3.2) this  leads  to r e su l t :  

V(x(t~), y(t~), z(t,)) > V(~c(l.~), y(t~), z(t~)), 

t h e r e b y  v e r i f y i n g  (P3)- Th i s  c o n c l u d e s  the p roof  of (2.2) and  the t h e o r e m  
n o w  fol lows.  
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