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SUMMARY

An adaptively stabilized monolithic finite element model is proposed to simulate the fully coupled
thermo-hydro-mechanical behavior of porous media undergoing large deformation. We first formulate
a finite-deformation thermo-hydro-mechanics field theory for non-isothermal porous media. Projection-
based stabilization procedure is derived to eliminate spurious pore pressure and temperature modes due
to the lack of the two-fold inf-sup condition of the equal-order finite element. To avoid volumetric
locking due to the incompressibility of solid skeleton, we introduce a modified assumed deformation
gradient in the formulation for non-isothermal porous solids. Finally, numerical examples are given to
demonstrate the versatility and efficiency of this thermo-hydro-mechanical model. Copyright © 2015 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Thermo-hydro-mechanics (THM) is a branch of mechanics aimed to predict how deformable porous

media behave, while heat transfer and fluid transport simultaneously occur in the pores filled by

fluid and in the bulk of solid skeleton. Understanding these multiphysical responses is important

for a wide spectrum of modern engineering applications, such as tissue scaffolding, geothermal

heating, mineral exploration and mining, hydraulic fracture, and nuclear waste storage and manage-

ment [1, 2]. Many of these engineering applications involve porous media undergoing substantial

deformation with rapid changes on temperature and pore pressure.

In the last three decades, a considerable progress has been made for deriving mathematical the-

ories and implementing computer models to replicate the fully coupled thermo-hydro-mechanical

processes. For instance, a monolithic small-strain finite element code, FRACON, has been

developed by Nguyen and Selvadurai [3]. In this code, the balance of linear momentum and mass

are fully coupled, while thermal transport may affect the solid deformation and pore-fluid diffusion,

but not vice versa. A generalized trapezoidal rule is used to discretize temporal space. [4] intro-

duces a co-rotational FEM formulation and incorporate plasticity into THM model to model the

non-isothermal elasto-plastic responses of porous media at large strain. In this formulation, stabi-

lized one-point quadrature element is used to cut computational cost and avoid locking. In addition,

logarithmic finite strain formulation has been derived and implemented in Karrech et al. [5] to over-

come the aberrant oscillations encountered in large simple shear. Recent work by Preisig and Prévost
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employed a fully coupled implicit THM simulator to compare the numerical solutions against the

field data in a case study for carbon dioxide injection at In Salah, Algeria [6]. Kolditz et al. [7] intro-

duces an open-source project OpenGeoSys, which takes advantage of an object-orient framework

and provide software engineering tools such as platform-independent compiling and automated

benchmarking for developers.

In addition to the monolithic finite element scheme, attempts have been made to sequentially cou-

ple multiphase flow and geomechanical simulators by establishing proper feedback and information

exchange mechanisms. This strategy is often referred as operator-splitting method for which several

aliases, such as fractional step, projection, and pressure correction method, exist, as pointed out

by Markert et al. [8]. One such example is TOUGH-FLAC, which links flow simulator TOUGH2

with a small-strain finite difference code FLAC [9]. This sequential coupling approach is an attrac-

tive alternative to the monolithic approach, as it is easier to implement and maintain flow and

solid simulators separately. The idea behind the operator-splitting approach is to decouple the

unfavorable volume constraint from the balance of linear momentum via an immediate step. The

separation of pore pressure update from the solid mechanics solver therefore provides numerical

stability. In other words, proper communication must be established to ensure the correctness and

numerical stability of sequential coupling schemes [6, 10–13]. The sequential coupling scheme

used to link the fluid and solid simulators may have profound impact on the efficiency, stabil-

ity, and accuracy of the numerical solutions. If the fluid and solid simulators use different grids

or meshes, then a proper data projection scheme is required to transfer information from Gauss

points and nodes of the solid mesh to the fluid mesh and vice versa [14]. For large-scale parallel

simulations, the sequential couplings must be carefully designed to avoid causing bottleneck due

to the difference in solver speed. This can be a significant problem if either the solid or the fluid

solver runs only in serial. Recent work by Kim et al. [15] systematically compared fully implicit,

fully explicit, semi-implicit monolithic and staggered schemes for unsaturated porous media under

the isothermal condition. Numerical examples presented in Kim et al. [15] show that the fully

implicit monolithic scheme with either inf-sup stable or stabilized equal-order finite element is

advantageous on resolving sharp pore pressure gradient, but is also less efficient than the semi-

implicit counterparts.

As noted in Borja [16], Mira et al. [17], Preisig and Prévost [6], Simoni et al. [18], Sun et al.

[13], Truty and Zimmermann [19], Wan [20], White and Borja [21], and Zienkiewicz et al. [22],

numerical stability is often a major challenge for monolithic implicit schemes that solve porome-

chanics models. Because of the lack of inf-sup condition [23–26], pore pressure and temperature

fields may exhibit spurious oscillation patterns and/or checkerboard modes if the displacement, pore

pressure, and temperature are spanned by the same set of basis function. While these spurious oscil-

lations are less severe at the drained/isothermal limit, they may intensify when a small time step is

used or when materials are near undrained/adiabatic limit. From a mathematical viewpoint, these

non-physical results are due to the kernel (null space) of the discrete gradient operator being non-

trivial. This non-trivial kernel makes it possible to have certain spatially oscillating pore pressure

and temperature fields that have no impact on the solid deformation in a numerical simulation. To

cure the numerical instability due to the lack of inf-sup condition, previous researches have estab-

lished a number of techniques that employ different basis functions to interpolate displacement and

pore pressure and obtain stable solutions. For instance, Zienkiewicz and coworkers [22] and Borja

[27] used Taylor–Hood finite element (quadratic basis functions for displacement and linear basis

function for pore pressure) to satisfy inf-sup condition and maintain numerical stability for isother-

mal implicit hydromechanics problems. On the other hand, Jha and Juanes [10] have shown that

linear displacement combined with pore fluid velocity in the lowest-order Raviart–Thomas space,

and piecewise constant pore pressure may also lead to stable solutions for isothermal poromechanics

problems. Nevertheless, inf-sup stable mixed finite element models require multiple meshes for dis-

placement, pore pressure, and/or fluid velocity. As a result, they require additional programming

effort to pre-processing and post-processing data and maintain the more complex data structure.
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To avoid the complications of using multiple meshes for each solution field, an alternative is to

use an equal-order finite element mesh with stabilization procedures. Many stabilization procedures

have been proven to be able to eliminate the spurious oscillation modes in implicit scheme without

introducing extra diffusion for small-strain isothermal poromechanics problems. For instance, White

and Borja [21] employed a polynomial projection scheme originated from Dohrmann and Bochev

[28] to simulate slip weakening of a fault segment. This work is extended to the large deformation

regime in Sun et al. [13], where the stabilization term is adaptively adjusted to avoid over-diffusion.

Nevertheless, to the best of the author’s knowledge, stabilization procedure for finite-strain non-

isothermal poromechanics has never been proposed.

The objective of this research is to fill this knowledge gap by establishing large deformation THM

theory and develop the corresponding stabilized finite element model suitable for equal-order dis-

cretized displacement, pore pressure, and temperature. The resultant system of equation is solved

fully implicitly and monolithically to preserve the Mandel–Cryer effect when the multiphysical

coupling is strong. The necessary condition for numerical stability for THM problem and the cor-

responding combined inf-sup condition are derived. A new stabilization procedure is established

based on the combined inf-sup condition.

The rest of the paper is organized as follows. We first establish the field theory for the THM

problem in the geometrical nonlinear regime (Section 2). We then formulate the weak and Galerkin

forms (Section 3.1 and 3.2) and derive stabilization techniques (Section 3.3). Based on the mass

lumping technique, we suggest stabilization parameters that are large enough to eliminate spurious

oscillations without over-diffusing the solution (Section 3.4). Selected benchmark and engineering

application problems are simulated via the stabilized formulations (Section 4). Finally, concluding

remarks are given in Section 5.

As for notations and symbols, bold-faced letters denote tensors; the symbol ‘�’ denotes a single

contraction of adjacent indices of two tensors (e.g., a � b D aibi or c � d D cijdjk ); the symbol

‘:’ denotes a double contraction of adjacent indices of tensor of rank two or higher (e.g., c W �e

= Cijkl�
e
kl

); the symbol ‘˝’ denotes a juxtaposition of two vectors (e.g., a ˝ b D aibj ) or two

symmetric second-order tensors (e.g., .˛ ˝ ˇ/ D ˛ijˇkl ). As for sign conventions, we consider the

direction of the tensile stress and dilative pressure as positive. Throughout this paper, we employ

the standard notation H l .˝/; jj � jjl ; .�; �/l ; l > 0, for the Sobolev spaces of all functions having

square integrable derivative up to order l on a simply connected bounded domain ˝ in R
3, the

corresponding Sobolev norm and inner product, respectively.

2. GOVERNING EQUATIONS AT FINITE STRAIN

In this section, we present the balance principles of mass, momentum, and energy that define the

strong form of the THM problem. Following the saturated porous media theory for isothermal solid-

water mixture at finite strain [13, 29, 30], we describe the kinematics of the solid skeleton with the

Lagrangian coordinates while describing the motion of the pore fluid with respect to the current

configuration of the solid skeleton. In addition, the following assumptions are made.

(1) Mass exchanges between solid and fluid constituents do not occur.

(2) No phase transition occurs.

(3) Pores inside the solid skeleton are fully saturated by one fluid constituent.

(4) The pore-fluid advection is negligible.

(5) The pore-fluid flow is in laminar range.

(6) No chemical reactions take place among the fluid’s species.

(7) Inertial effects are negligible.

(8) The effective stress principle is valid.

(9) The temperatures of solid and fluid constituents that occupy the same material point X 2 B

are identical.

We consider both the fluid and solid constituents compressible and that both the pore fluid and the

solid skeleton may exhibit mechanical and thermal deformation.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2015)
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Figure 1. Trajectories of the solid and fluid constituents 's D ' and 'f. The motion ' conserves all the
mass of the solid constituent, while the fluid may enter or leave the body of the solid constituent. Figure

reproduced from [13].

2.1. Kinematics and volume fraction

Consider a body of fully saturated porous medium B composed of both solid constituent and the pore

fluid in the pore space, as shown in Figure 1. For a sufficiently large volume, the solid constituent and

the pore fluid can be modeled as a homogenized continuum mixture. Here, we apply the continuum

approach in which the solid skeleton of the body B is described by a set of continuously distributed

points X 2 B which occupied by a region within the Euclidean space R
3. Notice that, except in

the undrained limit, material points of pore fluid and solid skeleton do not share the same trajectory

in the space–time continuum. As a result, materials at a point x of the current configuration may

come from the reference configuration of the solid skeleton X s and/or the pore fluid counterpart X f,

that is,

x D '˛.X˛; t / ˛ D s; f: (2.1)

Apparently, one may choose to formulate governing equations via both mappings, 's and 'f. How-

ever, because most of the constitutive laws of the solid skeleton are formulated with respect to the

configurations described by 's, we formulate the finite-strain THM model with respect to the trajec-

tory of the solid skeleton to simplify the derivations. The motion of the pore fluid is therefore taken

into account by considering the relative motion between the pore fluid and the solid skeleton. For

brevity, we drop the designation of the solid phase such that

x D 's.X s; t / D '.X ; t /: (2.2)

Therefore, the motion of the solid skeleton is described by a one-to-one mapping ' W B � Œ0; T � !
R
3, which places a particle at the reference point X 2 B to a position in R

3 in a typical time internal

T . Because the solid–fluid mixture is homogenized as a continuum, the density of a fully saturated

porous medium can be written as

� D �s C �f D �s�s C �f�f; (2.3)

where �˛; ˛ D s; f; is mass of the ˛ constituent divided by the current volume of the ˛ constituent,

while �˛ is the partial density of the ˛ constituent, defined as the mass of the ˛ constituent divided

by the volume of the mixture in the current configuration. �s is the volume fraction of the solid

constituent in the current configuration. �f is the porosity of the porous medium in the current
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configuration, which is referred as Eulerian porosity in [1]. For fully saturated porous media, �s C
�f D 1. Thus, the total current density also reads

� D .1 � �f/�s C �f�f; (2.4)

where the densities of the solid and fluid constituents both depend on the pore pressure and the

temperature.

2.2. Balance of linear momentum

Under the non-isothermal condition, solid skeleton may deform because of external mechanical

loading, thermal expansion (or contraction), and interactions with pore-fluid. Assuming that the

mixture theory is valid for porous media, we have

� D � s C � f D �s�s C �f� f; (2.5)

where � s and � f are the intrinsic partial Cauchy stress defined in the volume of the solid grains

V s and pore space V f, respectively. The total Cauchy stress is the volume averaged stress defined

in the current volume V D V s C V f. Neglecting the shear resistance of the pore fluid, intrinsic

partial stress of fluid consistent � f is therefore isotropic and holds the following relation with the

macroscopic pore pressure pf, that is,

� f D �f� f D ��fpfI D �pfI : (2.6)

The partial stress of the solid constituent � s depends on the effective stress � 0 and the stress exerted

on the solid grains by the pore fluidKpf=KsI , that is,

� s D � 0 C
K

Ks

pfI : (2.7)

This definition is from [31], which assumes that the non-uniform localization of stress at the

grain scale, grain crushing, and damage are all insignificant to the skeleton (cf. [22, p.8–11] ). By

substituting (2.6) and (2.7) into (2.5), the total Cauchy stress now reads

� D � 0 �BpfI ; (2.8)

where B is the Biot’s coefficient defined as [31]

B D 1 �
K

Ks

: (2.9)

Typically, Biot’s coefficient B is close to unity for sand, but can be ranged from 0.5 to 0.8 for rocks

or concrete. Notice that B in (2.8) have been defined in a number of different ways in the literature.

For instance, Terzaghi and Rendulic [32] definedB as a function of the effective area of solid grains

[33]. For bio-materials and composites, Cowin and Doty [34] generalize the effective stress concept

in [35] and introduce the effective stress coefficient tensor B, that is,

� D � 0 � pfB: (2.10)

This definition of effective stress is not adopted in this work, but will be considered in future study.

The balance of linear momentum therefore reads,

rx�� C �G C hs C hf D 0; (2.11)

where G is the acceleration due to gravity. hs and hf are the interactive body forces per unit reference

volume exerted on their corresponding phases due to drag, lift, virtual mass effect, history effects,

and the relative spinning (Magnus effect), which balance out internally, that is, hs C hf D 0 [36].

In the total Lagrangian formulation, balance of linear momentum in Equation (2.11) is rewritten in

reference configuration via the Piola transformation [37], that is,

rX �P C J�G D 0; (2.12)

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2015)
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where P denotes the total first Piola–Kirchhoff stress and J D det.F / is the determinant of the

deformation gradient of the solid skeleton F . Similar to the total Cauchy stress, the total first

Piola–Kirchhoff stress can be partitioned into two parts, the effective first Piola–Kirchhoff stress

P 0 and the pull-back of the pore fluid contribution JBpfF �T . The effective first Piola–Kirchhoff

stress P 0 is the amount of stress carried by the solid skeleton. For solid skeleton exhibiting elasto-

plastic responses, the effective first Piola–Kirchhoff stress can be determined from the deformation

gradient and the internal variable(s) ´ of the solid skeleton,

P.F ; ´; pf ; �/ D P 0.F ; ´; �/� JBpf F �T : (2.13)

Under the non-isothermal condition, the multiplicative decomposition of the deformation gradient

can be written as [37]

F D
@'.X ; t /

@X
D FM � F � I F � D

@'� .X ; t /

@X
I FM D

@'M .X� ; t /

@X�

; (2.14)

where F � and FM are the pure thermal and mechanical splits of the deformation gradient.

As shown in Figure 2, the mechanical split FM of the deformation gradient can be further

decomposed into the elastic and plastic parts such that

FM D F � F �1
� D F e � F p I F p D

@'p.X� ; t /

@X�

I F e D
@'e.X� 0D0; t /

@X� 0D0

; (2.15)

where '� .B/ is the intermediate thermal effective-stress-free configuration caused by thermal

expansion or contraction. Similarly, 'p.'� .B// is the intermediate effective-stress-free configura-

tion, which can be obtained by deforming the current configuration via 'e�1. Notice that we do not

consider the possibility of having the pore pressure split for the deformation gradient of the solid

skeleton. In addition, we assume that the thermal expansion is isotropic. To replicate the thermal

effect accurately, anisotropy of thermal effect must be considered for composite or reinforced mate-

rials. Nevertheless, anisotropy of thermal conductivity is often neglected in the literature, partly

because of the lack of data to characterize detailed tensorial thermal conductivity in field and exper-

imental settings. As a result, F � can be characterized by the thermal expansion coefficient ˛sk.�/,

that is,

F � D exp

"Z �

O�

˛sk. O�/d O�

#
I : (2.16)

Figure 2. Multiplicative decomposition of the thermo-hydro-mechanics deformation.
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If the thermal expansion coefficient is constant, then we have

F � D expŒ˛sk.� � �o/�I I J� D expŒ3˛sk.� � �o/�; (2.17)

where �o is the reference temperature at which there is no thermal-induced deformation. Notice

that linearizing the thermal expansion defined in (2.17) leads to the classical thermal strain �v D
logJ� D 3˛sk.� � �o/. Recall that the configuration '� .B/ is stress free, and the thermal-induced

deformation gradient is isotropic, thus, F D F �FM D FMF � . As a result, Equation (2.13) can

be rewritten as

P
�
FM ; ´; p

f
�

D P 0.FM ; ´/ � JBpf F �T ; (2.18)

in which the thermal expansion alone does not induce any change in the effective stress of the

solid skeleton.

2.3. Balance of fluid content

The three-dimensional balance of fluid content equation for fully saturated porous media was

first derived by Biot [35]. Rice and Cleary [38] extended this study by taking account of the

compressibility of fluid and solid constituents, and provided analytical solution for pressurized

cylindrical and spherical cavity under the isothermal condition. This version of balance of fluid con-

tent was then further generalized by McTigue [2] who takes account of the thermal coupling effect

of fluid-saturated porous media in the geometrical linear regime. In this study, our new contribution

is to provide the derivations for the balance of fluid mass in the geometrical nonlinear regime. In

particular, we adopt the notations of Eulerian and Lagrangian porosities introduced by Coussy [1].

Using this as a starting point, we derive the balance of fluid content equation of the non-isothermal

porous media in the reference configuration.

Let us first define the Lagrangian fluid content M f W B � Œ0; T � ! R
C as the fluid mass per

unit reference volume. The fluid content is therefore a function of the porosity and the fluid density,

that is,

M f D J�f D J�f�f D ˚ f�f; (2.19)

where ˚ f.X ; t / D J.X ; t /�f.'.X ; t /; t / is the Lagrangian porosity, the ratio between current void

volume to the initial total volume (cf. [1, p. 5]). In the current configuration, the balance of fluid

mass content reads, that is,

D

Dt

Z

'.B/

�f�fdv D �

Z

@'.B/

w � n da: (2.20)

Applying Reynold’s transport theorem and Gauss’s theorem, we obtain the corresponding local fluid

content continuity equation in the current configuration

DJ�f�f

Dt
C Jrx �w D 0; (2.21)

where D�f�f =Dt is the material time derivative of the current fluid density that reads,

DJ�f�f

Dt
D
@J�f�f

@t
C �f�f

PJ ; (2.22)

where P.�/ D D.�/=Dt . In (2.20) and (2.21), w is the relative pore-fluid mass flux in the deforming

solid skeleton body. Assuming that the pore-fluid flow is Darcian, then the relative pore-fluid mass

flux is related to both the gradient of the pore pressure and the temperature under non-isothermal

condition, that is,

w D �fk �

"
� rxpf C �fG

#
� �fsTrx�; (2.23)

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2015)
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where k is the permeability tensor divided by the viscosity; ST is the Soret coefficient. In particular,

the latter term sTrx �� represents a phenomenon analogous to the Ludwig–Soret effect (the flux

induced by the gradient of temperature) [2, 39, 40].

The balance of mass content in the Lagrangian configuration can be obtained from (2.21) via

Piola transformation, that is,

DM f

Dt
D �rX �W : (2.24)

The Lagrangian relative mass flux W can be obtained via the Piola identity, that is,

W D JF �1 � w: (2.25)

Furthermore, let us assume that the inertial force is negligible, af D 0. After a pull-back operation,

the Lagrangian mass flux reads

W D �fQf D �fk �
�
�rXpf C �fF

T � G
�

� �fSTrx�; (2.26)

where both the permeability tensor and Soret coefficient tensor are both positive semi-definite,

that is,

k D JF �1 � k � F -T I S T D JsTC �1; (2.27)

where C D F T � F is the right Cauchy–Green tensor. Next, we consider the local rate of change of

the fluid content M f in the left-hand side of (2.24). The material time derivative of the fluid mass

content can be partitioned by applying the chain rule on (2.19),

PM f D ˚ f P�f C �f
P̊ f: (2.28)

To complete the formulation, we need to re-express (2.28) in terms of the two fields ' and pf. As a

result, we assume that the pore fluid density only depends on temperature � and pore pressure pf.

Hence, we have

P�f

�
�; pf

�
D
@�f

@pf

ˇ̌
ˇ
�

Ppf C
@�f

@�

ˇ̌
ˇ
pf

P�: (2.29)

In the preceding expression, @�f=@pfj� represents the change of the density due to pore pres-

sure rise/drop at a fixed temperature, while @�f=@� jpf represents the change of density due to a

temperature rise/drop at a fixed pore pressure. Assuming that the bulk modulus Kf and thermal

expansion coefficient ˛f of the pore fluid remains constant, we have

�f.�; p
f/ D �fo exp

�
pf � pf

o

Kf

� 3˛f.� � �o/

�
: (2.30)

Hence, @�f=@pfj� and @�f=@� jfp can be written as

@�f

@pf

ˇ̌
ˇ̌
ˇ
�

D
�f

Kf

I
@�f

@�

ˇ̌
ˇ̌
ˇ
pf

D �3�f˛f: (2.31)

Meanwhile, the constitutive relation of the Lagrangian porosity ˚ f is a function of ', pf, and � .

For example, one may generalize Athy’s exponential porosity–pressure relation [41] and express the

Lagrangian porosity as shown in (2.32).

˚ f D ˚ f
o exp

�
B logJ C

B � ˚ f

Ks

.pf � pf
o/ � 3.J � ˚ f/˛s.� � �o/

�
; (2.32)
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where log J D log.det F / D tr�, � is the Eulerian logarithm strain tensor, and ˛s is the thermal

expansion coefficient of the solid constituent. This version of porosity constitutive law features a

multiplicative decomposition which reads

˚ f D J'J p
f

J �˚ f
o; (2.33)

where

J' D exp.B logJ /I J p
f

D exp

�
B � ˚ f

Ks

�
pf � pf

o

��
I J � D exp.�3.J�˚ f/˛s.���o//: (2.34)

The advantage of a constitutive law like (2.32) is that it will not predict an unphysical negative

porosity even under extreme loading conditions. However, as argued by Armero in [29] and sub-

sequently in [5, 42], it is more consistent with the nature of the fluid content, a scalar field, to

be modeled by additive decompositions in both infinitesimal [1] and finite deformation regimes

[29, 42]. Because for porous media with incompressible fluid constituents, PM f D �f
P̊ f , an addi-

tive decomposition of fluid content implies that the Lagrangian porosity should also be defined in

an additive decomposition. As a result, we employ a linear approximation of (2.32), that is,

˚ f � ˚ f
o � logJ' C logJ p

f

C logJ � D B logJ C
B �˚ f

Ks

.pf � pf
o/ � 3

�
J � ˚ f

�
˛s.� � �o/:

(2.35)

Equation (2.35) is identical to the Lagrangian porosity defined in [1, 43] if the thermal coefficient

term in [1, 43] ˛� D ˚ s˛s D .J �˚f /˛s. Taking the material time derivative of (2.35), the material

time derivative of Lagrangian porosity now reads

P̊ f D
@˚ f

@J

ˇ̌
ˇ
.pf;�/

PJ C
@˚ f

@pf

ˇ̌
ˇ
.';�/

Ppf C
@˚ f

@�

ˇ̌
ˇ
.';pf/

P�: (2.36)

Assuming that B and Ks remain constant and taking the material time derivative of (2.35) leads to,

�
1C

pf � pf
o

Ks

� 3˛s.� � �o/

�
P̊ f D

B

J
PJ � 3˛s.� � �o/ PJ C

B � ˚ f

Ks

Ppf � 3.J �˚ f/˛s
P�: (2.37)

For simplicity, let jpfj << Ks and j˛s.� � �o/j << 1. Substituting (2.29), (2.31), and (2.37) into

(2.28) and working through algebra, we obtain the expression of the material time derivative of the

fluid content PM f, which reads

PM f D �f

��
B

J
� 3˛s.� � �o/

�
PJ C

1

M
Ppf � 3˛m P�

�
; (2.38)

where M is the Biot’s modulus as defined in [1, 31]. ˛m is the thermal expansion coefficient of the

mixture. In infinitesimal range where ˚ f � �f, this definition is identical to the thermal expansion

coefficient in [6], that is,

M D
KsKf

Kf .B � ˚ f/CKs˚ f
I ˛m D ˚ s˛s C ˚ f˛f D .J � ˚ f/˛s C˚ f˛f: (2.39)

Combining (2.26) and (2.38), we obtain the strong form of the balance of fluid content equation,

�
B

J
� 3˛s.� � �o/

�
PJ C

1

M
Ppf � 3˛m P� C

1

�f

rX � W D 0: (2.40)

Notice that if both constituents are incompressible, thenB D 1, 1=M D 0, and rx�f D 0. Applying

the Piola transform and assuming isothermal condition, (2.40) reduces to the form identical to that

seen in [30],
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rx � v C rx � q D 0; (2.41)

where q D .1=�f /w. In summary, the balance law expressed in (2.40) captures the influence of the

skeleton deformation and heat transfer on fluid transport in the following ways.

(1) Compression or expansion of fluid induced by solid skeleton deformation.

(2) Shrinkage or expansion of the pore space that leads to the change of the change of specific

storage.

(3) Expansion or shrinkage of solid and fluid constituents due to temperature changes.

(4) The Soret effect, that is, the thermo-induced diffusion of pore fluid.

(5) The geometrical nonlinear effect due to the deformation of solid skeleton.

Remark 1

One important observation of the derivation shown in (2.32)–(2.40) is that both the balance of energy

and the balance of fluid content equations depend strongly on the porosity evolution law in the

geometrically nonlinear regime.

2.4. Balance of energy

In the vast body of literature on THM problems, the expression of balance of energy differs signifi-

cantly because of the variety of underlying assumptions. For the sake of simplification, some THM

models assume that both the skeleton deformation and pore-flow diffusion processes impose negli-

gible influences on the heat transfer process and thus lead to a decoupled heat transfer equation in

the infinitesimal regime [2, 3, 44, 45], that is,

rxk�rx� D �Cp P�; (2.42)

where k� and Cp are the volume averaged thermal conductivity and heat capacity of the fluid–

solid mixture. Similar assumptions are made in several other small-strain THM codes reported in

international co-operative research project DECOVALEX [46] and in the open source simulation

code OpenGeoSys [7].

Our objective here is to provide a more complete energy balance law to bring new sights on

the thermo-hydro-mechanical responses of porous media. In particular, we consider the contribu-

tion of the mechanical work done by the solid skeleton and pore-fluid, the density variation, and

size changes of pore space due to thermo-hydro-mechanical coupling and the geometrical nonlinear

effect in finite strain regime. To simplify the derivation, we consider that all phases of the satu-

rated porous media are locally in thermal equilibrium, and hence the temperature of both solid and

fluid constituents are identical locally (in a homogenized sense of each elementary representative

volume), that is, �s D �f D � . Except the additional advection term, the local balance of energy is

in analogous to that of the single-phase thermo-plasticity materials [47],

cF
P� D ŒDmech �H� �C

�
�Jrxq� C

�fcF f

�f

Jw � rx� CR�

�
; (2.43)

where cF is the specific heat capacity per unit volume of the porous media at constant deformation

[37]. For the fully saturated, two-phase porous media, the specific heat capacity of the solid–fluid

mixture can be obtained by volume averaging the specific heat capacities of the solid and fluid

constituents, that is,

cF D .J � ˚ s/cF s C˚ fcF f D .J � ˚ s/�focs C ˚ f�socf; (2.44)

where �fo and �so are the initial densities, and cf and cs are the specific heat capacities (per unit

mass) of the fluid and solid constituents.Dmech denotes the contribution to the dissipation due to pure

mechanical load. On the other hand, H� is the non-dissipative (latent) structural heating or cool-

ing [37]. At the adiabatic limit without heat source, the last three terms in (2.43) can be neglected.

By contrary, for many petroleum and geotechnical engineering applications, the life cycle of the
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thermo-hydro-mechanical system is in the order of years. For those applications, it is com-

mon to neglect the contribution from the structural heating and dissipation as shown in

[2–4, 7, 9, 18, 45, 48].

Here, we assume that the structural heating is thermoelastic. This leads to the classical Gough–

Joule coupling effect in which local temperature changes may occur when a porous medium

undergoes adiabatic deformation. R� is the heat source term. �Jr.q�=J / is the heat conduction

term. Pulling back (2.43) into the reference configuration via the Piola transformation yields

cF
P� D ŒDmech �H� �C

�
�rX � Q� C

˚ fcF f

�f

W � F �TrX� CR�

�
; (2.45)

whereQ� is the Piola–Kirchhoff heat flux. Assuming that both the solid and fluid constituents obey

Fourier’s law, the Cauchy heat flux is often written as the dot product of the volume averaged heat

conductivity tensor and the gradient of temperature [49], that is,

q� D �fkf
�rx� C .1 � �f/ks

�rx� D k�rx�; (2.46)

where k� D �fkf
� C .1 � �f/ks

� is the volume averaged heat conductivity tensor. However, this

volume averaged approach is only valid if the solid and fluid constituents are connected in parallel.

Presumably, calculating the correct homogenized effective heat conductivity requires knowledge of

the pore geometry and connectivity, which can be obtained from three-dimensional tomographic

images [50, 51] or directly from experiments. However, because micro-structural attributes of pore

space is not always available, we adopt an alternative homogenization approach where equivalent

inclusion method is used to determine effective heat conductivity tensor of the two-phase materials

[52]. Assuming that the pore fluid as the bulk material and the solid grains as spherical inclusions,

the effective thermal conductivity may be estimated via Eshelby equivalent inclusion method reads

k� D

 
k
f

�
C

�
1 � �f

� �
ks
�

� kf
�

�
kf
��

ks
�

� kf
�

�
�f C kf

�

!
I D

 
k
f

�
C

�
J � ˚ f

� �
ks
�

� kf
�

�
kf
��

ks
�

� kf
�

�
˚ f C Jkf

�

!
I ; (2.47)

where ks
�

and kf
�

are the isotropic thermal conductivity coefficient of the solid and the fluid con-

stituents. Applying the Piola transformation and using the relations ˚ s C˚ f D J and �s C �f D 1,

(2.46) can be rewritten in reference configuration, that is,

J�1FQ� D �k�F �TrX� : (2.48)

Hence, the Piola–Kirchhoff heat flux Q� corresponding to (2.46) reads

Q� D �K�r
X�; (2.49)

where K� is the pull-back thermal conductivity tensor, that is,

k� D JF �1 � k� � F �T : (2.50)

2.4.1. Simplified heat transfer equation in the geometrically nonlinear regime. If both the mechan-

ical dissipation and the Gough–Joule coupling effect are neglected, then we recover the finite

deformation version of the heat transfer equation in [3, 7, 44, 45, 48], which reads

cF
P� � rX � k�rX� C

˚ fcF f

�f

W � F �T � rX� �R� D 0: (2.51)

Notice that the thermal diffusion process is fully coupled with the skeleton deformation in the geo-

metrical non-linear regime, even if the mechanical dissipation and Gough–Joule coupling effect are

both neglected. This coupling effect is captured by the porosity changes and volumetric deforma-

tion that lead to changes in the effective specific heat CF , the pull-back conductivity tensor, and

the convection term. If the both structural heat and dissipation mechanisms exhibit little influence
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on the thermal diffusion process of the porous medium, then (2.51) is sufficient. However, for more

general cases, particularly biological tissues or other rubber-like materials, both the structural heat

and dissipation mechanism must be taken into account properly.

2.4.2. Structural heating and the Gough–Joule coupling effect. Giving the fact that the actual

expressions of both structural heating and dissipation vary significantly for different material

models, we consider Equation (2.45), a general statement for the energy conservation law. However,

we may introduce additional assumptions to express the balance of energy in a more explicit form.

For instance, we may assume that the structural heating contains no latent plastic terms, and this is

identical with the thermoelastic heating [47]. To further particularize the problem, assume that the

non-dissipative (latent) structural heating or cooling H� is the sum of the power contributed by the

solid skeleton and the pore fluid, that is,

H� D H s
� CH f

� ; (2.52)

where power contributed by the volumetric deformation of the solid skeleton reads [47]

H s
� D ��

@

@�
P 0 W PF D ��

@2

@J @�
3˛skK logJ.� � �o/ PJ D �3K˛sk�

PJ

J
: (2.53)

Following the derivation in [1], the pore-fluid contribution reads

H f
� D ��

@

@�
3˛m.� � �o/ Ppf D �3˛m� Ppf: (2.54)

Substituting (2.53) and (2.54) into (2.45) and neglect the mechanical dissipation, we obtain the

energy balance equation that takes account of the Gough–Joule coupling effect,

cF
P� � 3K˛sk�

PJ

J
� 3˛m� Ppf � rX � k�rX� C

˚ fcF f

�f

W � F �T � rX� �R� D 0: (2.55)

3. STABILIZED VARIATIONAL FORMULATION

In this section, we consider the stabilized variational form for the equal-order displacement–

pressure–temperature finite element model, with assumed deformation gradient that prevents

volumetric locking. We first define the standard weak form of the poromechanics problem based on

the balance law derived in Section 2. By applying a multiplicative split, we introduce the assumed

deformation gradient for the THM problem. To prevent spurious modes due to the usage of equal-

order interpolations, we introduce a stabilization mechanism into the weighted-residual statement of

the mass and energy balance equations. A simple scheme for choosing the stabilization parameters

is also presented.

3.1. Galerkin form

Our objective is to derive a weighted-residual statement suitable for a total Lagrangian scheme.

We first specify the appropriate boundary and initial conditions. Following the standard line, we

consider a domain B whose boundary @B is the direct sum of the Dirichlet and von Neumann

boundaries, that is,

@B D @Bu [ @Bt D @Bpf [ @BQf
D @B� [ @BQ�

; (3.1)

; D @Bu \ @Bt D @Bpf \ @BQf
D @B� \ @BQ�

; (3.2)

where @Bu is the solid displacement boundary; @Bt is the solid traction boundary; @Bp is the pore

pressure boundary; @BQf
is the pore-fluid flux; @B� is the temperature boundary; @BQf

is the heat

flux boundary, as illustrated in Figure 3.
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Figure 3. Domain and the corresponding boundaries of the thermo-hydro-mechanics problem. Figure
reproduced from [53].

In summary, Dirichlet boundary conditions for the THM problem read

u D u on @Bu;

pf D p on @Bp;

� D � on @B� :

(3.3)

Meanwhile, the von Neumann boundary conditions that describe the traction and fluxes read

N � P D t on @Bt;

�N � Qf D Qf on @BQf
;

�N � Q� D Q� on @BQ�
:

(3.4)

In addition, the spaces for the trial displacement, pore pressure, and temperature read

V u D ¹u W B ! R
3ju 2 ŒH 1.B/�3;uj@Bu

D uº;

Vp D ¹pf W B ! Rjpf 2 L2.B/; pfj@Bpf
D pfº;

V� D ¹� W B ! Rj� 2 L2.B/; � j@B�
D �º;

(3.5)

where H 1 denotes the Sobolev space of degree one. The admissible variations of displacement �,

pore pressure  , and temperature � therefore read

V � D ¹� W B ! R
3j� 2 ŒH 1.B/�3;�j@B�

D 0º;

V D ¹ W B ! Rj 2 L2.B/; j@Bpf
D 0º;

V! D ¹! W B ! Rj 2 L2.B/; !j@B�
D 0º:

(3.6)

For brevity, the spatial argument X 2 B is not explicitly written. The weighted-residual statement

of the balance of linear momentum, fluid content, and energy is as follows.

Find u 2 V u, pf 2 Vpf , and � 2 V� such that for all � 2 V� and  2 V such that

G.u; pf; �;�/ D H.u; pf; �;  / D L.u; pf; �; !/ D 0; (3.7)

where G W V u � Vpf � V� � V� ! R is the weak statement of the balance of linear momentum,

that is,

G.u; pf; �; �/ D

Z

B

rX � � W P � J.�f C �s/� � g dV

�

Z

@Bt

� � t d�;

(3.8)
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H W V u � Vpf � V� � V ! R is the weak statement of the balance of fluid content, that is,

H.u; pf; �;  / D

Z

B

 

�
B

J
� 3˛s.� � �o/

�
PJ dV

C

Z

B

 
1

M
Ppf � 3 ˛m P� dV

�

Z

B

rX �
1

�f

W dV

�

Z

@BQ

 Qf d�;

(3.9)

and L W V u � Vpf � V� � V! ! R is the weak statement of the balance of energy, that is,

L.u; pf; �; !/ D

Z

B

!

 
cF

P� � 3˛skK�
PJ

J
� 3˛m� Ppf

!
dV

C

Z

B

rX!k�rX P� C !
˚f cf

�f

W � F �T � rX� � !R� dV

�

Z

@BQ

!Q� d�:

(3.10)

3.2. Temporal discretization

Because of the transient nature of the THM problem, the weak statement must be discretized in time.

Typically, this temporal discretization is often conducted after the spatial discretization [54]. Here,

we use a different approach in which temporal discretization will be considered before applying

spatial discretization. This treatment is due to the usage of the template-based generic-programming-

based package called Phalanx [55], which enables a component-based implementation and thus

significantly simplify the programming efforts. This implementation method will be discussed in

Section 4. As a result, we first derive an equivalent static problem [54] by discretizing the temporal

domain before introducing basis functions for the spatial discretization. Here, we use finite differ-

ence approach in temporal domain such that the pore pressure and temperature at time step n C 1

can be written as

pf
nC1 � pf

n C .1� Ǒ/�t Ppf
n C Ǒ Ppf

nC1; (3.11)

�nC1 � �n C .1� Ǒ/�t P�n C Ǒ P�nC1: (3.12)

To simplify the formulation, we use the unconditionally stable fully backward Euler scheme by

setting Ǒ D 1. However, directly applying Euler scheme to discretize the Jacobian J in time will

lead to erroneous results that make negative Jacobian possible. As a result, we take advantage of the

following identity obtained via the chain rule:

D.logJ /

Dt
D
D logJ

DJ

DJ

Dt
D

PJ

J
; (3.13)

where J 2 R
C, logJ 2 R. Hence, we may obtain the material derivative of the Jacobian J by

discretizing logJ in time, that is,

J�1
nC1

PJnC1 D
D

Dt
.logJnC1/ �

logJnC1 � logJn

�t
: (3.14)

Substituting (3.11), (3.12), and (3.14) into weighted-residual form (3.7), the time discretized

weighted-residual form reads

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2015)

DOI: 10.1002/nme



STABILIZED FEM FOR THERMO-HYDRO-MECHANICS AT FINITE STRAIN

OG
�
unC1; p

f
nC1; �nC1;�

�
D OH

�
unC1; p

f
nC1; �nC1;  

�
D OL

�
unC1; p

f
nC1; �nC1; !

�
D 0; (3.15)

where the discrete weak form of the balance of linear momentum now reads

OG.unC1; p
f
nC1; �nC1;�/ D

Z

B

rX � � W PnC1 dV

�

Z

B

JnC1.�
f
nC1 C �s

nC1/� � g dV

�

Z

@Bt

� � tnC1 d�:

(3.16)

Similarly, the discrete weak form of the balance of fluid content and balance of energy can be

written as

OH.unC1; p
f
nC1; �nC1;  / D

Z

B

 .B � 3˛s.�nC1 � �o/JnC1/
logJnC1 � logJn

�t
dV

C

Z

B

 

 
1

MnC1

pf
nC1 � pf

n

�t
� 3˛m

nC1

�nC1 � �n

�t

!
dV

�

Z

B

rX �
1

�fnC1

W nC1 dV �

Z

@BQf

 QfnC1 d�:

(3.17)

OL.unC1; p
f
nC1; �nC1; !/ D

Z

B

!

�
cFnC1

�nC1 � �n

�t
� 3K˛sk�nC1

logJnC1 � logJn

�t

�
dV

�

Z

B

!

 
3˛m�nC1

pf
nC1 � pf

n

�t
C
˚ f
nC1cf

�fnC1

W nC1 � F �T
nC1 � rX�nC1

!
dV

�

Z

B

rX! � Q�nC1 dV �

Z

@BQ�

 Q�nC1 d�:

(3.18)

Consider the case where the testing functions and the interpolated displacement, pore pressure, and

temperature are spanned by the same basis functions. In that case, the following approximation

holds:

u � uh D

nX

aD1

N aua I pf � pfh D

nX

aD1

Nap
f
a I � � �h D

nX

aD1

Na�a;

� � �h D

nX

aD1

N a�a I  �  h D

nX

aD1

Na a I ! � !h D

nX

aD1

Na!a;

(3.19)

where ua, pf
a, and �a are the nodal values of displacement, pore pressure, and temperature. �a,  a,

and !a are nodal values of the corresponding test functions. The resultant finite dimensional spaces

for the interpolated displacement, pore pressure, and temperature are denoted as V h
u, V hp , and V h

�
,

respectively. Similarly, we denote the finite dimensional space of the corresponding testing functions

as V h
�, V h , and V h! . The integer n is the number of node per element. By substituting (3.19) into

(3.15), we obtain the equal-order Galerkin form of the thermo-hydro-mechanical problem.

3.3. Assumed deformation gradient for volumetric locking

In this section, we derive an assumed deformation gradient for the THM problem to circumvent the

volumetric locking numerical deficiency. Recall that the kinematic split of the deformation gradient

F is formulated as

F D F vol � F iso; (3.20)
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where

F vol D J 1=3I I F iso D J�1=3F : (3.21)

Previously, the assumed deformation gradient method is often used to avoid the over-constraint

associated with equal-order interpolations of the volumetric and isochoric parts of the deforma-

tion gradient [13, 56–59]. The key to avoid overconstraint is to replace the interpolated volumetric

deformation field J D det F with a reduced-order volumetric field J such that fewer volumetric

constraints occur when incompressibility limit is approached. The resultant assumed deformation

gradient is therefore composed of the modified volumetric deformation field and the original interpo-

lated isochoric deformation gradient. In other words, the interpolated volumetric split F vol D J 1=3I

is replaced by a modified definition F vol D NJ 1=3I such that

F D NJ 1=3F iso D NJ 1=3J�1=3F : (3.22)

While the relaxation provided by the modification of deformation gradient definition is able to cure

the locking issue, the usage of non-standard deformation gradient may lead to numerical instability

as exhibited in [60, 61]. Moran et al. [56] suggested replacing the assumed deformation gradient

F with a linear interpolation between the original and the assumed deformation gradient, that is,
eF D ˛F C .1 � ˛/F ; where ˛ is a stabilization parameter in which ˛ D 0 leads to the pure

F-bar formulation and ˛ D 1 leads to the standard formulation. The idea is to introduce stiffness

to spurious zero-energy mode by increasing the magnitude of ˛ whenever the numerical instability

is encountered.

However, as deformation gradient belongs to multiplicative group, linear interpolation may lead

to significant error. For instance, linearly interpolating rigid body rotations may lead to tensor not

belonging to SO.3/ group. To cure locking without comprising stability, we introduce a simple

combined/standard F-bar element by recourse to exponential/logarithmic mapping for the THM

problem in which the modified deformation gradient reads

eF D QJ 1=3F iso D QJ 1=3J�1=3F ; (3.23)

where QJ is the modified volumetric split of the deformation gradient, that is,

QJ D exp

�
1� ˇ

VBe

Z

Be

log J dV C ˇ log J

�
; (3.24)

where ˇ 2 Œ0; 1� is a weighing parameter that partitions the standard and assumed deformation gra-

dient. Augmented with the (2.17) and assumed that the thermal expansion coefficient ˛sk is constant,

the logarithmic volumetric strain logJ reads

logJ D logJ e C logJ p C 3˛sk.� � �o/: (3.25)

The mechanical contribution of the assumed deformation gradient therefore reads

eFM D QJ
1=3
M F iso; (3.26)

where

QJM D exp

�
log QJ � 3

�
1 � ˇ

VBe

Z

Be

˛sk .� � �o/ dV C ˇ˛sk.� � �o

��
: (3.27)

The combined formulation may reduce to the standard or F-bar formulation by adjusting ˛. Further-

more, it can be easily shown that (3.23) is identical to the mid-point assumed deformation gradient

formulation in [58] if ˛ D 0, and the volume averaging of logJ.X/ is computed via one-point

quadrature at the centroid of the element. In all the simulations presented in this paper, we found

that setting ˛ D 0:05 appeared to eliminate the zero energy modes.
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Remark 2

At present, the optimal value of ˇ is not known. While the assumed deformation gradient may lead

to spurious modes for certain single-phase solid mechanics problems, non-zero ˇ is not required in

the solutions presented in the example section.

3.4. Inf-sup conditions and stabilization procedures

It is well known that isothermal hydro-mechanical responses near drained limit may maintain

stability, even though displacement and pore pressure are interpolated by the same set of basis

functions [21]. This seemingly stable responses nevertheless does not imply that the pore pressure

and temperature will be free of spurious oscillations under different thermal and hydraulic condi-

tions. In fact, when a very fine temporal discretization is used or when a simulation is conducted

near the undrained limit, spurious pore pressure may occur because of the lack of inf-sup condition

[13, 21, 22]. Similar spurious behaviors have also been observed in the THM problem. For instance,

Liu et al. [53] study the onset of spurious temperature and pore pressure in small-strain non-

isothermal hydro-mechanical finite element model and subsequently propose the usage of an interior

penalty method to eliminate the oscillations in the pore pressure and temperature fields. The goal of

this section is to develop a stabilized u � pf � � equal-order finite element THM problem, which

eliminate spurious oscillation defined in (3.15).

We limit focus on our attention on a simplified model problem in which (1) the heat transfer and

pore-fluid diffusion are both negligible, and (2) the skeleton deformation is only infinitesimal such

that derivatives in material and current configurations are approximately the same.

Assumption (1) allows us to analyze the numerical stability of a porous medium at both the

undrained and isentropic limits. Both undrained and isentropic conditions often constitute the worst-

case scenario that is prone to spurious oscillations of pore pressure and temperature. Assumption (2)

allows us to analyze the inf-sup condition raised in the linearized governing equation. This means

that we will study the linear THM problem in the hope that this may give some indications on the

more general nonlinear thermo-hydro-mechanical problem. A similar strategy has been adopted in

Auricchio et al. [62], Pantuso and Bathe [63], and Auricchio et al. [64] to analyze the stability

range of mixed finite element formulations for the large-strain incompressible elasticity problem.

As pointed out previously by Pantuso and Bathe [63] and Auricchio et al. [64], schemes that are

inf-sup stable in the linearized problem may still exhibit unphysical instabilities. Nevertheless, the

inf-sup condition of the linear problem is still a valuable tool because it may serve as a necessary

(but not sufficient) condition for maintaining numerical stability [63].

Here, we use the results from Howell and Walkington [65], who proves that finite element model

with a saddle point structure form: .uh; pfh; �h/ 2 Vu
h � V hp � V h

�
, is well-posed if the finite

dimensional spaces Vu
h, V hp , and V h

�
chosen for the displacement, pore pressure, and temperature

interpolation satisfy the two-fold inf-sup condition, that is, there exists a constant Co > 0 such that

sup
wh2Vu

h

R
B

�
pfhB C 3�K˛sk

�
rxwh dV

jjwhjjV h
u

> Co

�
jjpfhjjV h

p
C jj�hjjV h

�

�
; .pfh; �h/ 2 V hp � V h� ;

(3.28)

where jj � jjV h
u

, jj � jjV h
p

, and jj � jjV h
�

are the norms corresponding to the finite dimensional space V h
u,

V hp , and V h
�

. Here, we equip the spaces of the solutions and their corresponding testing functions

with the same associated norms, that is,

jjujj
V h

u
D jjujj1 D

sZ

B

rxu � rxu dV ;

jjpjjV h

pf
D

sZ

B

Bp2 dV ;

jj� jjV h
�

D

sZ

B

3 .˛skK/ �2 dV :

(3.29)
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Note that jj � jjV h

pf
, jj � jjV h

�
, and jj � jj0 are equivalent norms. Unfortunately, if displacement, pore

pressure, and temperatures are all spanned by the same basis function, then the condition listed in

(3.28) does not hold [66].

Our new contribution here is twofold. First, we prove that a weaker inf-sup bound also exists for

the compound matrix B. Then, for the first time, we propose a proper stabilization term that may

eliminate the spurious oscillations of pore pressure and temperature for the THM problem.

3.4.1. Weak inf-sup conditions of coupling terms. To derive stabilized finite element formulation,

we may first quantify the inf-sup ‘deficiency’ of the unstable, equal-order discretization, then pro-

pose additional terms to eliminate the spurious modes due to the inf-sup ‘deficiency’. Previously,

this strategy is used in Bochev et al. [25] where a weaker inf-sup bound is first identified for

the Stokes equations, then a stabilization term is derived to restore stability for two interpolated

velocity–pressure pairs.

To determine the weak inf-sup bound of individual coupling terms, let us first recall that the diver-

gence is an isomorphism of the orthogonal complement of divergence-free functions in H 1
0.B/ onto

L20.B/ space. Given that the pressure pfh 2 V hp � L20.B/, then the isomorphism of the divergence

operator guarantees the existence of a w 2 H 1
0.B/ such that

rx � w D pfh and jjwjj1 6 jjpfhjjV h

pf
: (3.30)

With (3.30) in mind, we then have

sup
v2H 1

o.B/

j
R
B
pfhBrX � v dV j

jjvjj1
>

R
B

j pfhBrX � w dV j

jjwjj1
>

R
B

j pfhBpfh dV j

jjpfhjjV h

pf

> QCpjjpfhjjV h

pf
;

(3.31)

where QCp is a constant such that

ˇ̌
ˇ̌
Z

B

pfhBrx � w dV

ˇ̌
ˇ̌ > QCpjjpfhjjV h

pf
jjwjj1: (3.32)

By letting wh be the interpolant of v of V u and using the well-known approximation result of

[67, p. 217], that is, jjw � whjjV h

pf
6 Chjjwjj1 I jjwhjj1 6 C jjwjj1 and the fact that jj � jj0 and

jj � jjV h

pf
are equivalent norms, we obtain

sup
vh2V h

u ;v¤0

R
B
pfhBrx � vh dV

jjvhjj1
>

j
R
B
pfhBrx � wh dV j

jjwjj1

>

R
jB p

fhBrx � w dV j

jjwjj1
�

j
R
B
pfhBrx � .w � wh/ dV j

jjwjj1

>

QCp

C
jjpfhjjV h

pf
�

jjrxpfhjjV h

pf
jjwh � wjjV h

pf

C jjwjjV h

pf

:

(3.33)

Therefore,

sup
vh2V h

u ;v¤0

R
B
pfhBrx � vh dV

jjvhjj1
> ˛1jjp

fhjjV h

pf
� ˛2hjjrxpfhjjV h

pf
; pfh 2 V hp ; (3.34)

where h is the mesh size, and C , ˛1, and ˛2 are constants. Following the same logic, it is trivial to

show that the same procedure can be applied to the thermo-elastic coupling term, that is,
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sup
wh2V h

u ;v¤0

R
B
3K˛sk�

hrx � wh dV

jjwhjj1
> ˇ1jj�

hjjV
�h

� ˇ2hjjrx�hjjV
�h
; �h 2 V h� ; (3.35)

where ˇ1 and ˇ2 are positive constant.

3.4.2. Combined weak inf-sup condition. Our goal here is to use the weak inf-sup bounds of indi-

vidual coupling terms expressed in (3.34) and (3.35) to define a weak inf-sup bound for the THM

problem.

First, note that (3.34) can be written as

sup
vh2V h

u ;v¤0

R
B
pfhBrx � vh dV

jjvhjj1
D sup

vh2V h
u ;v¤0

Z

B

pfhBrx �

 
vh

jjvhjj1

!
dV

D sup
vh2V h

u ;jjv
hjj1D1

Z

B

pfhBrx � vh dV:

(3.36)

As a result, (3.34) can be rewritten as

sup
vh2V h

u ;jjv
hjj1D1

Z

B

pfhBrx � vh dV > ˛1jjp
fhjjV h

pf
� ˛2hjjrxpfhjjV h

pf
: (3.37)

Applying the same argument on (3.35), we have

sup
wh2V h

u ;jjv
hjj1D1

Z

B

3K˛sk�
hrx � wh dV > ˇ1jj�

hjjV
�h

� ˇ2hjjrx�hjjV
�h
: (3.38)

Note that (3.37) implies the existence of vh 2 V uh with jjvhjj1 D 1 such that

Z

B

pfhBrx � vh dV > C1jjp
fhjjV h

pf
� C2hjjrxpfhjjV h

pf
; pfh 2 V hp : (3.39)

On the other hand, (3.38) implies the existence of wh 2 V wh with jjwhjj1 D 1 such that

Z

B

3K˛sk�
hrx � wh dV > ˇ1jj�

hjjV h
�

� ˇ2hjjrx�hjjV h
�
; �h 2 V h� : (3.40)

Now, let u D vh C wh, then

Z

B

pfhBrx � u dV D

Z

B

pfhBrx � vh dV C

Z

B

pfhBrx � wh dV

D

Z

B

pfhBrx � vh dV C

Z

B

Bpfh

3K˛sk

.3K˛sk/r
x � wh dV;

Z

B

3K˛sk�
hrx � u dV D

Z

B

3K˛sk�
hrx � vh dV C

Z

B

3K˛sk�
hrx � vw dV

D

Z

B

3K˛sk�
h

B
Brx � vh dV

Z

B

3K˛sk�
hrx � wh dV:

(3.41)

Recall that V h
pf and V h

�
are spanned by the same set of basis functions. Thus, Qph D .3K˛sk=B/�

h

and Q�h D .B=.3K˛sk// p
fh, we have
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Z

B

�
pfhB C 3K˛sk�

h
�

rx � u dV D

Z

B

�
pfh C Qph

�
Brx � vh dV

C

Z

B

3K˛sk

�
�h C Q�h

�
rx � wh dV

> 
1

�
jjpfhjjV h

pf
Cjj�hjjV h

�

�
�
2h

�
jjrxpfhjjV h

pf
Cjjrx�hjjV h

�

�
;

(3.42)

where 
1 D min.˛1; ˇ1/, and 
2 D max.˛2; ˇ2/. Thus, according to the definition of supremum,

we may express the combined weaker inf-sup bound as

sup
vh2V h

u ;v¤0

R
B

�
pfhB C 3K˛sk�

h
�

rx � vh dV

jjvhjj1
> C1

�
jjpfhjjV h

pf
C jj�hjjV h

�

�

� C2h

�
jjrxpfhjjV h

pf
C jjrx�hjjV h

�

�
;

(3.43)

where C1 and C2 are positive constant.

3.4.3. Projection-based stabilization. By comparing (3.28) and (3.43), we notice that the difference

between the inf-sup bound and the weak inf-sup bound is the gradient term in (3.43), that is,

� C2h

�
jjrxpfhjjV h

pf
C jjrx�hjjV h

�

�
: (3.44)

This term can be used as a template for the design of stabilization terms. For instance, a simple

remedy to restore numerical stability by directly adding perturbation gradient terms in (3.43) such

that the inf-sup deficiency is counterbalanced. Here, we consider an alternative characterization of

the inf-sup deficiency formulated in terms of projection operators. The upshot of a projection-based

stabilization method is that it does not depend on the mesh size h or the type of element shapes,

hence, easier to be implemented. As discussed in Sun et al. [13], the rationale of the projection-

based stabilization is based on the inverse inequality, which guarantees the existence of a positive

constant CI such that

CIh

�
jjrxpfhjjV h

pf
C jjrx�hjjV h

�

�
6 jjpfh �˘pfhjjV h

pf
C jj�h �˘�hjjV h

�
; (3.45)

where ˘.�/ is a projection operator leads to a piecewise constant field. Here, we define ˘.�/ as

simply the element average operator that reads

˘.�/ D
1

V e

Z

K

.�/ dV IK 2 B: (3.46)

Furthermore, because it is not clear whether the two-way couplings between pore-fluid diffusion

and heat transfer may destabilize the system if either the pore-fluid or the thermal conductivity is

too low, we introduce a third term as a safety measure. The resultant perturbation functional reads

W per .�h; pfh/ D C

�
1

2
jjpfh �˘pfhjj2

V h

pf

C
1

2
jj�h �˘�hjj2

V h
�

C
X

K2˝

j

Z

K

3˛m.pfh �˘pfh/.�h �˘�h/dV j

!
;

(3.47)
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where C is a positive constant. The stabilization term added to the discrete balance of mass

Equation (3.17) is simply the first variation of (3.47) with respect to pore pressure, that is,

OH stab. ; pfh
nC1; �

h
nC1/ D

X

K2B

Z

K

Cp1. �˘ /
�
pfh
nC1 � pfh

n �˘
�
pfh
nC1 � pfh

n

��
dV

C
X

K2B

Z

K

Cp2. �˘ /
�
�hnC1 � �hn �˘

�
�hnC1 � �hn

��
dV:

(3.48)

On the other hand, the stabilization term added to the balance of energy (3.17) is obtained by taking

the first variation of (3.47) with respect to temperature and multiply the result by the temperature,

that is,

OLstab.!; pfh
nC1; �

h
nC1/ D

X

K2B

Z

K

C�1.! �˘!/�hnC1

�
pfh
nC1 � pfh

n �˘
�
pfh
nC1 � pfh

n

��
dV

C
X

K2B

Z

K

C�2.! �˘!/
�
�hnC1 � �hn �˘

�
�hnC1 � �hn

��
dV;

(3.49)

where Cp1, Cp2, C�1, and C�2 are the stabilization parameters. Finally, applying the stabilized

formulation in the discrete variational Equation (3.15) yields

OG
�
uhnC1; p

fh
nC1; �

h
nC1;�

�
D 0;

OH
�
uhnC1; p

fh
nC1; �

h
nC1;  

�
� OH stab

�
uhnC1; p

fh
nC1; �

h
nC1;  

�
D 0;

OL
�
uhnC1; p

fh
nC1; �

h
nC1; !

�
� OLstab

�
uhnC1; p

fh
nC1; �

h
nC1; !

�
D 0:

(3.50)

While stabilization procedure provides a convenient and simple way to eliminate spatial oscil-

lations from equal-order mixed finite element, the selection of stabilization parameter(s) remains

a challenging problem [68]. This problem is further complicated by the fact that the heat transfer

and pore-fluid diffusion may occur at different spatial and time scales and therefore making it diffi-

cult to select a stabilization parameter that ensures both spatial stability but avoid over-diffusion for

both processes.

Our objective here is to provide a rough estimation of the optimal value of stabilization

parameters. These estimated parameters can be served as useful guidelines for tuning the stabiliza-

tion parameters, but they should not be viewed as the definitive choices for a given THM problem.

The influence of the stabilization parameter will be further tested via numerical experiments pre-

sented in Section 5. Here, we recommend the following stabilization parameters for Equation (3.50):

Cp1 D ˛

�
2G.1� �/

1 � 2�

�
B2.1C �u/

2.1 � 2�/

9.1 � �u/.�u � �/

���1

;

Cp2 D ˛
2.�u � �/

B.1C �u/.1 � �/

�
˛sk C

B.1� �/.1C �u/

2.�u � �/
˛m

�
;

C�1 D ˛

�
cF C

9�˛2skK
2

K C 4G=3

�
;

C�2 D ˛

�
3˛skK

K C 4=3G
� 3˛m

�
�;

(3.51)

where ˛ is the safety factor. �u is the undrained void ratio, which reads

�u D
3� C B.1� 2�/.1�K=Ks/

3 � B.1� 2�/.1�K=Ks/
: (3.52)

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2015)

DOI: 10.1002/nme



W. SUN

The stabilization parameters are inferred from the simplified linear thermo-hydro-mechanical prob-

lem in Coussy [1, p.136]. In particular, we use the previous results from Preisig and Prévost [6] and

Sun et al. [13], who show that by setting parameter ˛ D 1, one may recover the stable lumped mass

formulation for one-dimensional problems.

4. HIGHLIGHTS OF THE IMPLEMENTATION METHOD

The THM model described in the previous sections is implemented in an open source, component-

based finite element code called Albany [69–71]. Broadly speaking, the Albany code acts as a ‘glue

code’ that integrates multiple re-usable libraries. Many of these libraries are available in the Trilinos

project [72]. The key feature of Albany is the template-based programming approach, which allows

developers to implement the finite element residuals by decomposing them into expression objects.

These expression objects can be physical quantities (e.g., permeability, thermal conductivity, and

deformation) or mathematical entities, such as sets, points, lines, graphs, functions, and boundary

conditions.

The Albany code also features a graph-based software design, which has been employed previ-

ously in Notz et al. [73] to model thermo-fluid problem and in Sun et al. [13] to model isothermal

hydro-mechanical responses of porous media. This section is intended to provide a brief account

about the implementation of the THM problem via this new technique developed by Salinger et al.

[71]. Readers interested at the software design and details of the Albany code, please refer to Notz

et al. [73], Pawlowski et al. [69] and Salinger et al. [71] for further details.

Our starting point is the stabilized Galerkin form listed in (3.50) where the standard Gaussian

integration is used to compute the integrands. To assembly the balance laws listed in (3.50), we

decompose the discretized PDE systems into a directed graph, a mathematical object formed by

a collection of vertices and directed edges. In our case, the vertices are the expressions that form

the discretized PDE system, and the directed edges indicate the data hierarchical dependence. The

decomposition of residuals are done while following the rules listed subsequently.

– The residual equations are always at the top of the hierarchy, that is, the source vertices in the

directed graph.

– The nodal solutions are always at the bottom of the hierarchy, that is, the sink vertices of the

directed graph.

– The directed graph formed by the decomposed expression objects must be acyclic, which

means that there must be no cycle in the directed graph.

Figure 4. Directed graph that represents the hierarchy of mathematical expressions for thermo-hydro-
mechanical problems.
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– All expressions in the directed graph must be connected, that is, no isolated vertex in the

directed graph.

Figure 4 shows a directed graph used to assemble the residuals of the thermo-hydro-mechanical

model. One salient feature of this implementation approach is the transparency of data dependence.

Even for multi-physical processes with very complicated coupling mechanisms, such as the THM

problem, one may still explore, examine, and modify the topology of mathematical models in a

visual way.

In the thermo-hydro-mechanical model, each expression in the vertex is implemented as an eval-

uator [69, 70]. An evaluator stores numerical values of the expression (e.g., permeability, thermal

conductivity, and equivalent plastic strain at the quadrature points of each finite element), record

the location of the expression in the directed graph, and contains the actual code that compute the

numerical values of the expressions (e.g., Equations 2.9, (2.39), (3.24), and 2.26). Residual vectors

and the consistent tangent stiffness matrix are then computed via automatic differentiation per-

formed on the directed graph via the Phalanx package [69, 70]. As a result, there is no need to derive

the linearized forms of the variational equations.

5. NUMERICAL EXAMPLES

We present a selection of numerical examples to validate the implementation of the finite element

model and demonstrate the three-way coupling effects of thermo-sensitive porous media at geomet-

rically nonlinear regime. In particular, we will use the first example to address the numerical stability

issue associated with material near undrained and adiabatic limits. The mechanical response of the

solid skeleton is assumed to be elastic and replicated by a rate-independent neo-Hookean model.

Because of the three-way coupling effects, the pore pressure evolves in a non-monotonic manner.

This non-monotonic change is due to the Mandel–Cryer effect. Previously, the Mandel–Cryer effect

has been observed in small-strain numerical simulations of drained sphere [45]. Here, our new

contribution is to demonstrate the Mandel–Cryer effect of the undrained sphere at finite strain.

In the second example, we will examine the formation of shear band in a globally undrained

specimen. The specimen is not in an isothermal condition. Thus, solid response is affected by the

thermal expansion of both the solid and fluid constituents. The heat transfer is governed by a coupled

diffusion–convection equation in which temperature changes at a material point can be caused by

the structural heating, plastic dissipation, as well as the heat and pore-fluid fluxes. In both examples,

we assume that there is no phase transition occurred.

5.1. Heated globally undrained porous sphere

In this numerical example, we simulate an undrained porous sphere heated by a raised temperature

prescribed at the outer boundary. The purpose of this example is to demonstrate the performance of

the stabilization scheme when thermal and pore-fluid diffusion occur at different time scales. The

outer boundary of the sphere is subjected to a zero-Darcy-velocity boundary condition, and thus the

sphere is globally undrained. The temperature of the surface of the sphere is prescribed, while the

rest of the sphere is initially at zero degree. Because of the rotational symmetry, only 1=8 of the

spherical domain is meshed. The radius of the sphere is 1 m. The material parameters used to con-

duct these simulations are listed in Table I. To illustrate how the stabilization term may alter the

numerical solution, we conduct three numerical simulations with different stabilization parameters

(˛ D 0; 1; 8). It should be noted that the globally undrained porous sphere problem presented here

might not be the worst case scenario for spatial stability. For instance, other benchmark problems,

such as the generalized Terzaghi’s one-dimensional consolidation problem coupled with heat trans-

fer and the heated porous spherical problem with a fully permeable boundary, are also known to

generate sharp pressure gradients and spurious oscillations at early time. For brevity, these problems

are not included in this paper, but will be explored in future study. In this example, a combination

of low permeability and small time step is used to trigger the spurious oscillation in this numerical

examples. This method has been used in Preisig and Prévost [6] and Sun et al. [13] to trigger spuri-

ous oscillation for isothermal poromechanics problem. The theoretical basis for the onset of spurious
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Table I. Material properties of the undrained sphere in non-isothermal condition.

Parameter Description Value Unit

E Young’s modulus 2000 MPa
� Poisson’s ratio 0.10 Dimensionless
To Reference temperature 0 ıC

˛s Skeleton thermal expansion 8:3 � 10�5 1/ıC

˛f Pore-fluid thermal expansion 6:9 � 10�5 1/ıC

�s Solid constituent density 2700 kg/m3

�f Fluid constituent density 1000 kg/m3

cs Solid specific heat 1700 J/kg/ıC
cf Fluid specific heat 4200 J/kg/ıC
ks
�

Solid thermal conductivity 2.50 W/m/ıC

kf
�

Fluid thermal conductivity 2.50 W/m/ıC

Ks Solid grain bulk modulus 50 GPa
Kf Fluid bulk modulus 20 GPa

ko Kozeny–Carmen coefficient 1 � 10�19 m/s

� Viscosity 1:0 � 10�3 Pa � s

�f Initial porosity 0.25 Dimensionless

Figure 5. Comparison of the finite element solution and the analytical solution for three cases where �o D
5; 50; and 500ıC.

oscillation can be found in the one-dimensional analyses by Harari [74], Preisig and Prévost [6],

and Sun et al. [13].

5.1.1. Verification of a limiting case. Figure 5 shows the simulated and analytical transient thermal

responses of center when the prescribed temperature �o D 5; 50; and 500ıC. The analytical solution

is obtained by neglecting the poro-elasticity coupling effect. Using Laplace transform [45], the

temperature at the center is

�.t/ D �o � 2�o

"
1X

nD1

.�1/nC1 exp
�
�n2�2�

�
#

I � D
K� t

R2o

�
.1 � �f/�s

�
cs C �f�

f

�
cf

� ; (5.1)

where R0 D 1m is the radius of the sphere, and �o is the temperature prescribed at the surface. Pre-

viously, Selvadurai and Suvorov [45] observed that for certain limited case where (1) fluid and solid

constituents are incompressible, and (2) thermal convection and structural heating are not important,

thermal diffusion of a spherical object can be solved via Laplace transform in a decoupled manner.

In this example, we purposely use nearly incompressible constituents and make the solid skeleton
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nearly impermeable to compare analytical and finite element solutions. According to Figure 5, the

temperature obtained from the finite strain THM simulation is very similar to the analytical solution

obtained via (5.1) when �o D 5ıC. This is attributed to the fact the permeability is relatively low,

and the material is stiff. The temperature changes because of structural heating and convection due

to fluid transport are therefore very limited, when the prescribed temperature is close to the initial

body temperature. Nevertheless, as we increase the prescribed temperature while holding the initial

body temperature constant, the discrepancy between the coupled and decoupled simulations does

become more significant, as shown in Figure 5, where �o D 50 and �o D 500ıC.

Remark 3

The code has also been verified via a number of analytical solutions under the isothermal condition

in Sun et al. [13]. For brevity, the verification problems for the isothermal case are not included in

this article. Interested readers please refer to Sun et al. [13] for details.

5.1.2. Assessments of the stabilization procedure. Figure 6 shows the pore pressure of the

undrained sphere 1 second after it was put into the 5ı heat bath. Figure 6(a) is obtained from the sta-

bilized FEM simulation, while Figure 6(b) is obtained without any stabilization procedure. Because

of the low permeability, spatial oscillations of pore pressure occur in the standard equal-order THM

element, while the stabilized equal-order THM element is able to deliver smooth pore pressure.

On the other hand, Figure 7 compares the temperature at timeD 1 s from the stabilized and stan-

dard FEM simulations. Because the thermal conductivity is relatively high, one may expect that the

temperature would not exhibit any spatial oscillation even with standard FEM simulations. Yet, the

simulation results show that the coupling between pore-fluid diffusion and heat transfer alone is

significant enough to trigger spatial oscillation in the temperature field. This example demonstrates

that the spurious oscillation of the temperature field can be triggered by an unstable pore pressure

field, even when the thermal diffusivity is high. On the other hand, results demonstrated in Figures 6

and 7 indicate that the stabilization procedure is able to eliminate the spurious oscillations in both

pore pressure and temperature. As reported in Sun et al. [13], Tezduyar and Osawa [68], White and

Borja [21], stabilization procedures may eliminate spurious oscillations, but it may also over-diffuse

the numerical solutions and lead to incorrect conclusion. To determine whether the stabilization

procedure proposed in Section 3.4.3 is able to eliminate spurious modes without over-diffusing the

solutions, we conduct two numerical simulations on the undrained sphere, one with stabilization

(i.e., ˛ D 1), and a control test without stabilization (i.e., ˛ D 0).

Figure 8 compares the temperature and pore pressure at the center of the globally undrained

sphere. The thermal responses shown in Figure 8(a) indicate that the stabilization procedure does

not lead to significant changes in thermal responses. The hydraulic responses exhibited in Figure 8

(a) Stabilized FEM response (b) Standard FEM response

Figure 6. Pore pressure profile of undrained porous sphere in heat bath: (a) stabilized FEM response and (b)
standard FEM response.
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(a) Stabilized FEM response (b) Standard FEM response

Figure 7. Temperature profile of undrained porous sphere in heat bath: (a) stabilized FEM response and (b)
standard FEM response.

102 104 106 108
−1

0

1

2

3

4

5

6

Time, Second

T
e
m

p
e
ra

tu
re

, 
C

e
ls

iu
s

α = 8

α = 1

α = 0

(a) Temperature at Center

104 106 108
−6

−4

−2

0

2

4

6

8

10

12
x 105

Time, Second

P
o
re

 P
re

s
s
u
re

, 
P

a

α = 8

α = 1

α = 0

(b) Pore Pressure at Center

Figure 8. Time-history of the (a) temperature and (b) pore pressure at the center of the undrained sphere.
The stabilization parameter equals to 0 ( green dot), 1 (red dash line), and 8 (blue line).

indicate that a large stabilization parameter may alter the simulated hydraulic responses at the

undrained limit and steady responses are not significantly affected by the stabilization procedure.

Figure 9 shows the surface displacement obtained with different stabilization parameters. Again,

we note that the discrepancies among standard and stabilized responses are insignificant in the tran-

sient and steady state regimes. The results presented in this example indicate that the stabilization

procedure is able to eliminate spurious oscillations even when permeability is very low. Neverthe-

less, over-diffusion may occur if the stabilization parameter assigned in the simulations is larger

than the optimal value. The rough estimation of the optimal value described in Section 3.4.3 seems

to be working for this particular problem. However, the optimal value of stabilization parameters is

usually problem-dependent, and its determination should be done with caution.

To study how the selection of stabilization parameters affects the convergence rate, we con-

duct additional simulations with stabilization parameter ˛ D 0; 1; 10; and 100. Table II shows the

residual norms of the Newton–Raphson algorithm taken at the first time step when the undrained

sphere has just been put into the heat bath. The residual norms of the trial step and the first four

iteration steps are recorded. The numerical experiment indicates that while increasing the value
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Figure 9. Radial displacement of the boundary of the undrained sphere. The stabilization parameter equals
to 0 ( green dot), 1 (red dash line), and 8 (blue line).

Table II. Residence norm (square root of the inner product of residual
column vector) of the heated undrained sphere simulations at the first

four iteration steps.

˛ D 0 ˛ D 1 ˛ D 10 ˛ D 100

Trial step 5.911e�01 5.911e�01 5.911e�01 5.911e�01
Iteration 1 2.168eC01 4.446eC01 1.049eC02 1.538eC02
Iteration 2 4.058e�03 1.559e�02 6.413e�02 1.099e�01
Iteration 3 2.075e�10 2.349e�10 1.495e�09 3.720e�09
Iteration 4 1.327e�10 1.316e�10 1.323e�10 1.426e�10

of stabilization parameter ˛ does lead to noticeable higher residual at the first two iterations, the

convergence rate is not severely affected by the choice of the stabilization parameter.

5.2. Biaxial undrained compression test with insulated boundaries

The second example deals with the simulation of a biaxial undrained compression test. Our goal

here is to demonstrate that the nonlinear coupling effect, as depicted in Figure 4, has been fully

implemented in the finite element model and to assess how the coupling mechanism evolves before

and after the shear band is formed.

A rectangular sample of homogeneous thermo-sensitive elasto-plastic material of 4 cm � 1 cm �
14 cm is subjected to a prescribed vertical displacement on the top surface of the specimen, while

the bottom of the specimen is fixed. The loading rate is �1:4 cm/hour and the vertical displacement

remains constant after reaching �1:4 cm. The specimen is globally undrained and thus no-fluid-flux

boundary conditions are prescribed at all six surfaces. To simplify the problem, gravity is neglected

for this small specimen, and we also assumed that no phase transition occurred in both the fluid

and solid constituents. The temperature is initially uniform at ambient value (zero degree). All six

surfaces are thermally insulated and thus no-thermal-flux condition applied to these surfaces. In

other words, both the pore pressure and temperature fields have no corresponding Dirichlet boundary

condition. To control where the shear band initiates, the right-hand side of the specimen is tapered

at ´ D 7 cm, as shown in Figure 10. The material parameters used to conduct these simulations are

listed in Table III.
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Figure 10. Description of the geometry, boundary, and loading conditions of the biaxial compres-
sion problem.

Table III. Material properties of the specimen in non-isothermal condition.

Parameter Description Value Unit

E Young’s modulus 2000 MPa
� Poisson’s ratio 0.30 Dimensionless
�Y Initial yield strength 100 MPa
@�Y =@� Thermal hardening parameter �1.60 MPa/ıC
H Mechanical hardening modulus 0 MPa
To Reference temperature 0 ıC

˛s Skeleton thermal expansion 8:3 � 10�6 1/ıC

˛f Pore-fluid thermal expansion 6:9 � 10�6 1/ıC

�s Solid constituent density 2700 kg/m3

�f Fluid constituent density 1000 kg/m3

cs Solid specific heat 1700 J/kg/ıC
cf Fluid specific heat 4200 J/kg/ıC
ks
�

Solid thermal conductivity 1.00 W/m/ıC

kf
�

Fluid thermal conductivity 100.00 W/m/ıC

Ks Solid grain bulk modulus 50 GPa
Kf Fluid bulk modulus 20 GPa

ko Kozeny–Carmen coefficient 1 � 10�17 m/s

� Viscosity 1:0 � 10�3 Pa � s

�f Initial porosity 0.25 Dimensionless

One key departure of this numerical example from previous work on THM is that it takes account

of the plastic dissipation in the balance of energy equation. For the von Mises J2 plasticity with no

mechanical hardening, the thermomechanical dissipationDmech reads [47],

Dmech D

r
2

3
P�p
�
�Y .�/ � �

@�Y .�/

@�

�
; (5.2)

where �p is the equivalent plastic strain, @�Y �=@� is the thermal softening coefficient, and �Y is the

flow stress, which corresponds to the Mises yield criterion,
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(a) at 900 seconds (b) at 1800 seconds (c) at 2700 seconds

(d) at 3600 seconds (e) at 5400 seconds (f) at 7200 seconds

Figure 11. Equivalent plastic strain (EQPS) at various time during the biaxial loading test at (a) 900, (b)
1800, (c) 2700, (d) 3600, (e) 5400, and (f) 7200 s.

jjdevŒ� 0�jj �

r
2

3
�Y 6 0 I � 0 D P 0 � F T : (5.3)

5.2.1. Solid responses. The mechanical response is influenced by the pore-fluid trapped inside the

specimen and the thermal diffusion. Nevertheless, because there is no heat source in the boundary,

the thermal effect on the mechanical response is insignificant. Figure 11 shows the spatial distribu-

tion of equivalent plastic strain at various time during the biaxial loading test. We found that plastic

strain first initiates at the left lower corner of the specimen at around 900 s. The region with plas-

tic strain enlarges between 900 and 3600 s, while a shear band is formed at the defect point. After

3600 s of simulation, the vertical displacement is held between 3600 and 7200 s, and the plastic

strain distribution remains almost identical.

Because the bulk moduli of the solid and fluid constituents are both one order higher than the bulk

modulus of the solid skeleton, the global undrained response of the material is expected to be nearly

isochoric if the specimen is under the isothermal condition. Nevertheless, as the thermo-hydro-

mechanical simulation is run under the non-isothermal condition, the solid skeleton may expand

or shrink because of temperature change. This temperature change is due to the mechanical plastic

work that converts into heat. The heat in return causes expansion of the solid skeleton. Figures 12

and 13 show the Jacobian of the deformation gradient det F and the (Eulerian) porosity �f of the

solid skeleton at different times during the biaxial loading. Because of the globally undrained status,

both the Jacobian and porosity do not change much before the onset of plastic yielding and shear
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(a) at 900 seconds (b) at 1800 seconds (c) at 3600 seconds

Figure 12. Determinant of the deformation gradient at various time during the biaxial loading test at (a) 900,
(b) 1800, and (c) at 3600 s.

(a) at 900 seconds (b) at 1800 seconds (c) at 3600 seconds

Figure 13. Porosity at various time during the biaxial loading test at (a) 900, (b) 1800, and (c) 3600 s.

band as shown in Figures 12(a) and 13(a). This nearly incompressible response also indicates that

structural heating has negligible influence on temperature for this particular simulation. On the other

hand, the solid skeleton exhibits a noticeable volumetric expansion/contraction pattern inside the

shear band at 3600 s after the vertical loading is prescribed. We record the maximum and minimum

of the Jacobian changing from 1 to 1.05 and 0.76, respectively, while the maximum and minimum

of the porosities also change 0.25 to 0.26 and 0.19, respectively, after the shear band is formed, as

shown in Figures 12(c) and 13(c). This pattern is located at the region where plastic deformation

is concentrated (as shown in Figure 11). Because of the coupling of the thermo-hydro-mechanical

processes, this plastic work inside the shear band may trigger multiple deformation mechanism. For

instance, the plastic work that converted into heat may cause volumetric expansion of both the solid

and fluid constituents, but also lead to the shrinkage of the yield surface in stress space and more

plastic strain to be accumulated. Meanwhile, as porosity changes because of the thermal effect, both

the thermal and hydraulic diffusivities also change accordingly.

5.2.2. Heat transfer. Because the surface of the specimen is thermally insulated, the temperature

increase in the specimen is due to the structural heating and plastic dissipation. Figure 14 shows

how temperature distributes in the specimen during the ramp-and-hold loading. We observe that
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(a) at 900 seconds (b) at 1800 seconds (c) at 2700 seconds

(d) at 3600 seconds (e) at 5400 seconds (f) at 7200 seconds

Figure 14. Temperature at various time during the biaxial loading test at (a) 900, (b) 1800, (c) 2700, (d)
3600, (e) 5400, and (f) 7200 s.

temperature first raised in the plastic zone, as the vertical displacement is accumulating between

t D 0 and t D 3600 s. The heat generated by the plastic work then transfers in the solid specimen

through two mechanisms, the convection due to pore fluid transport and the thermal diffusion. In

this particular simulation, the effective permeability is very low (10 � 10�19 m/s), and thus the

heat transfer process is dominated by the thermal diffusion. As a result, temperature first raised

in the region where plastic strain initiated, while the thermal boundary layer gradually propagates.

As shown in Figure 14, the thermal diffusion continues when no more displacement is prescribed

between t D 3600 and t D 7200 s. Because the equivalent plastic strain becomes stable at this

phase, the heat source vanishes and the spatial gradient of temperature reduces. In particular, the

maximum and minimum temperature changes from 2.28 and 1.12ıC at t D 3600 s to 1.79 and

1.71ıC at t D 7200 s.

5.2.3. Pore-fluid flow. The pore-fluid inside the specimen is trapped inside the specimen due to

the no-flux boundary condition. Figure 15 shows how pore pressure distributes during the ramp-

and-hold loading. Because of the low permeability of the specimen, the excess pore pressure easily

builds up in the specimen between t D 0 and t D 3600 s because of the solid skeleton defor-

mation. While this excess pore pressure may dissipate, the low permeability of the specimen and

the globally undrained boundary condition may both cause the pore pressure taking longer time to

reach steady state. As a result, the pore pressure at the end of the simulations remains less evenly

distributed than the temperature. Furthermore, because of the thermal effect on the solid and fluid

constituents, temperature may affect the amount of excess pore pressure accumulated in the pores.

By comparing Figure 15 with Figure 14, we notice that the hotter region generally has higher

pore pressure, although the distributions of pore pressure and temperature do not resemble the

same pattern.
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(d) at 3600 seconds (e) at 5400 seconds (f) at 7200 seconds

(a) at 900 seconds (b) at 1800 seconds (c) at 2700 seconds

Figure 15. Pore pressure at various time during the biaxial loading test at (a) 900, (b) 1800, (c) 2700, (d)
3600, (e) 5400, and (f) 7200 s.

5.2.4. Refinement study. To assess the mesh sensitivity of the thermo-hydro-mechanical responses,

a mesh refinement study is conducted. Figure 16 shows the three meshes obtained from subdivision

refinement. The total number of the finite elements are 448, 3584, and 28 672 accordingly. Figure 17

shows the equivalent plastic strain accumulated in the three finite element meshes at the end of the

simulation. While the plastic zone remains very similar to all three meshes, it is clear that the finer

mesh tends to accumulate higher plastic strain in the shear band. This mesh dependence is different

than the dynamics simulation of isothermal porous media in [75] where equivalent plastic strain is

relatively insensitive to the mesh refinement, even though shear band width is found to be narrower

in fine meshes. The porosity, which depends on the the volumetric deformation, temperature, and

pore pressure, also exhibits mesh dependence as shown in Figure 18.

Presumably, both thermo-mechanical and hydro-mechanical coupling effects may both introduce

rate-dependence on the mechanical responses. Nevertheless, the results demonstrated in Figure 17

indicate that this induced rate-dependence is not sufficient to regularize the problem in the transient

case. Mesh dependence is also observed in the temperature and pore pressure distribution, as shown

in Figures 19 and 20, respectively. The temperature of the shear band in the fine mesh is found to

be higher. This is mainly attributed to the fact that temperature increases inside the plastic strain are

caused by plastic dissipation. On the other hand, the pore pressure is not concentrated in the shear

band as shown in Figure 20. The pore pressure distributions of all three meshes look similar, except

at the corners where pore pressure tends to be lower at coarser mesh.

Figure 21 shows the time-history of the temperature and pore pressure at the lower left corner

of the specimen. Interestingly, plastic deformation seems to play a significant role on the evolution
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(a) Coarse Mesh (b) Medium Mesh (c) Fine Mesh

Figure 16. Meshes used in refinement study: (a) coarse, (b) medium, and (c) fine.

(a) Coarse Mesh (b) Medium Mesh (c) Fine Mesh

Figure 17. Equivalent plastic strain at t D 7200 s in three meshes: (a) coarse, (b) medium, and (c) fine.

(a) Coarse Mesh (b) Medium Mesh (c) Fine Mesh

Figure 18. Porosity at t D 7200 s in three meshes: (a) coarse, (b) medium, and (c) fine.

of both pore pressure and temperature. In particular, temperature at the lower left corner is almost

unchanged before the yielding. After the yielding, temperature keeps raising until the prescribed ver-

tical displacement increment stops at 3600 s. While pore pressure begins to increase right after the

simulation begins, the onset of plastic yielding leads to a sudden drop of pore pressure followed by

another monotonic increase in pore pressure. Both temperature and pore pressure gradually decrease

when vertical displacement holds still from t D 3600 to 7200 s.
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(a) Coarse Mesh (b) Medium Mesh (c) Fine Mesh

Figure 19. Temperature at t D 7200 s in three meshes: (a) coarse, (b) medium, and (c) fine.

(a) Coarse Mesh (b) Medium Mesh (c) Fine Mesh

Figure 20. Pore pressure at t D 7200 s in three meshes: (a) coarse, (b) medium, and (c) fine.
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Figure 21. Time histories of (a) temperature and (b) pore pressure at the lower left corner of the three meshes.

Note that refining the mesh seems to have opposite effects on temperature and pore pressure at

the corner node. While refining the mesh leads to a lower pore pressure accumulated at the corner,

the refinement also causes a higher temperature. The increase of the temperature in finer mesh

can be explained by the fact that the power that converts plastic dissipation into heat is higher in

finer mesh as evidenced by the higher equivalent plastic strain in the fine mesh shown in Figure 17

when vertical displacement is increasing. Nevertheless, as heat is transferred via both diffusion and
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Figure 22. Time-histories of vertical force on the top layer of the specimen.

convection, the initially sharp temperature gradient triggered during the formation of shear band

fades over time. At 7200 s after the simulation, the temperature is close to steady state as indicated

by the vanishing of sharp temperature gradient shown in Figure 14. This indicates that the mesh

dependence of the temperature field is more severe when plastic deformation provides a significant

heat source. However, this mesh dependence seems to be more significant when the material is close

to adiabatic limit.

On the other hand, we find that pore pressure at the left lower corner is lower in the finer mesh.

This observation is different than the isothermal shear band observed in Sun et al. [76] where the

magnitude and distribution of pore pressure were insensitive to mesh size, even though equivalent

plastic strain was also found to be higher in fine mesh. Furthermore, because the porosity and per-

meability at the lower left corner are both actually lower in the fine mesh, pore fluid is more likely

to be trapped and build up excess pore pressure locally. The fact that the pore pressure drops but

does not increase upon refinement therefore indicates that the thermal diffusion process may limit

the pore pressure build up.

Figure 22 shows the vertical force applied on the top of the specimen. The force due to the

displacement prescribed at the top of the specimen is found to be around �50 kN for the coarse

mesh and around �48 kN for the medium and fine meshes. In all three cases, the vertical force is at

its peak at 3600 s where the displacement increment stops. In between 3600 and 7200 s, the vertical

force drops slightly. By comparing results from different meshes shown in Figures 21 and 22, we

conclude that the thermo-hydro-mechanical responses are sensitive to the level of refinement. While

the discrepancy of the results seems to be decreased upon each refinement, it is not clear whether

the solution will be converged if further refinement takes place.

5.2.5. Thermo-hydro-mechanical coupling effects under undrained condition. As reported in [75],

shear band width is influenced by the diffusivity of the pore fluid under isothermal condition. In

non-isothermal condition, both pore-fluid and thermal flux may influence mechanical responses of

the solid skeleton and vice versa. To determine how thermal and hydraulic diffusivities influence

the thermo-hydro-mechanical responses, we conduct a parametric study by varying the permeability

and thermal conductivity.

In the first set of tests, we conduct two additional numerical simulations with material parameters

listed in Table III, but the thermal conductivities of both constituents are both multiplied by 100

in the first simulation and divided by 100 in the second simulation. Figure 23 demonstrates the

temperature at 7200 s after the loading. As expected, the material with lower thermal conductivity

reaches higher temperature. The temperature also takes longer time to dissipate. Hence, temperature

is higher inside the shear band zone.
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(a) Low Thermal Conductivity (b) Medium Thermal Conductivity (c) High Thermal Conductivity

Figure 23. Temperature profiles at t D 7200 s, with initial effective thermal conductivity equals to (a) 0.013,
(b) 1.33, and (c) 133W/m=ıC. (a) Low thermal conductivity; (b) medium thermal conductivity; and (c) high

thermal conductivity.

(a) Low Thermal Conductivity (b) Medium Thermal Conductivity (c) High Thermal Conductivity

Figure 24. Flow streamlines at t D 7200 s, with initial effective thermal conductivity equals to (a) 0.013,
(b) 1.33, and (c) 133W/m=ıC. (a) Low thermal conductivity; (b) medium thermal conductivity; and (c) high

thermal conductivity.

(a) Low Thermal Conductivity (b) Medium Thermal Conductivity (c) High Thermal Conductivity

Figure 25. Equivalent plastic strains at t D 7200 s, with initial effective thermal conductivity equals to (a)
0.013, (b) 1.33, and (c) 133W/m=ıC. (a) Low thermal conductivity; (b) medium thermal conductivity; and

(c) high thermal conductivity.

Interestingly, this higher temperature inside the shear band also influences the hydraulic

properties. Figure 24 shows the pore pressure distribution and flow streamlines at 7200 s after the

loading. By comparing Figure 23 with 24, one may notice that the pore pressure is higher and more
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concentrated in the shear band in the low thermal conductivity case, even though the initial effect

permeability of material are the same in both simulations. Notice that all these features are lost if the

heat produced by plastic dissipation is not captured in the balance of energy equation. Varying ther-

mal conductivity nevertheless does not lead to significant changes in the plastic response, as shown

in Figures 25 and 26.

(a) Low Thermal Conductivity (b) Medium Thermal Conductivity (c) High Thermal Conductivity

Figure 26. Porosities at t D 7200 s, with initial effective thermal conductivity equals to (a) 0.013,
(b) 1.33,and (c) 133W/m=ıC. (a) Low thermal conductivity; (b) medium thermal conductivity; and (c) high

thermal conductivity.

(a) Low Permeability (b) Medium Permeability (c) High Permeability

Figure 27. Temperature profiles at t D 7200 s, with permeability coefficient equals to (a) 10�16,
(b) 10�19,and (c) 10�22 m/s. (a) Low permeability; (b) medium permeability; and (c) high permeability.

(a) Low Permeability (b) Medium Permeability (c) High Permeability

Figure 28. Flow streamlines at t D 7200 s, with permeability coefficient equals to (a) 10�16, (b) 10�19,
and (c) 10�22 m/s. (a) Low permeability; (b) medium permeability; and (c) high permeability.
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In the second set of tests, we conduct two additional numerical simulations with material

parameters listed in Table III, but the Kozeny–Carmen coefficient is changed to 10�14 and

10�20 m/s, respectively. Figure 27 compares the temperature distribution at the end of the numerical

simulations. Even though the material is globally undrained, varying permeability does intro-

duce noticeable changes in temperature. This results indicate the importance of coupling effects.

Figure 28 shows the flow streamline obtained form simulations with permeability coefficient equals

to (a) 10�16, (b) 10�19, and (c) 10�22 m/s. The permeability clearly has a significant impact on both

the magnitude of the pore pressure and the flow patterns in the undrained specimen. Interestingly, we

found that the plastic responses are not sensitive to changes of permeability and thermal conductivity

under the globally undrained and insulated conditions, as shown in Figures 29 and 30.

5.2.6. Convergence rate and stabilization parameters. Finally, additional biaxial compression sim-

ulations with ˛ D 0; 1; 10; and 100 were conducted to determine whether the value of the

stabilization parameter has a noticeable impact on the convergence rate. Table IV shows the residual

norms of the Newton–Raphson algorithm taken at the second time step when a small displace-

ment increment is applied on the top of the domain. The residual norms of the trial step and the

first four iteration steps are again recorded. The finding is consistent with the results obtained from

the heated undrained sphere problem. The numerical experiment again indicates that increasing the

value of stabilization parameter ˛ does lead to a slightly higher residuals, but the difference in con-

vergence rate is within an order even when the stabilization parameter ˛ is increased by 10; 000%.

(a) Low Permeability (b) Medium Permeability (c) High Permeability

Figure 29. Temperature profiles at t D 7200 s, with permeability coefficient equals to (a) 10�16, (b) 10�19,
and (c) 10�22 m/s. (a) Low permeability; (b) medium permeability; and (c) high permeability.

(a) Low Permeability (b) Medium Permeability (c) High Permeability

Figure 30. Temperature profiles at t D 7200 s, with permeability coefficient equals to (a) 10�16, (b) 10�19,
and (c) 10�22 m/s. (a) Low permeability; (b) medium permeability; and (c) high permeability.
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Table IV. Residence norm (square root of the inner product of
residual column vector) of biaxial compression simulation at the

first four iteration steps.

˛ D 0 ˛ D 1 ˛ D 10 ˛ D 100

Trial step 7.275e�04 7.275e�04 7.275e�04 7.275e�04
Iteration 1 2.702e�01 2.667e�01 2.634e�01 2.611e�01
Iteration 2 2.735e�07 2.939e�07 3.297e�07 3.649e�07
Iteration 3 8.147e�11 8.139e�11 8.255e�11 1.426e�10
Iteration 4 6.205e�11 6.343e�11 6.525e�11 8.694e�11

Whether one may expect similar trends for all THM boundary value problems remains unknown,

but the two numerical experiments seem to suggest that the convergence rate is not very sensitive to

the magnitude of the stabilization parameter.

6. CONCLUSION

The new contribution of this work is twofold. First, we establish a large deformation THM theory

that fully incorporates the influences of the geometrical nonlinearity on the full coupled solid

deformation, pore-fluid diffusion, and heat transfer processes. Using the automatic-differentiation

technique to simplify the implementation process, the nonlinear relations between porosity,

permeability, and thermal conductivity are fully captured. Secondly, we introduce a stabilized equal-

order mixed finite element model that provides stable numerical solutions without over-diffusion.

The spatial stability is maintained even when pore-fluid and thermal diffusivities are significantly

different. To the best of the author’s knowledge, this is the first time the large deformation thermo-

hydro-mechanical behavior of porous media is captured with an equal-order finite element in the

geometrical nonlinear regime. Our numerical results indicate that such a stabilization procedure

is able to eliminate the spurious oscillations even near the undrained and adiabatic limits. Never-

theless, it is acknowledged that the stabilization parameter introduced in this paper may require

tuning through trial-and-error. The numerical simulations also exhibit mesh dependence, which

indicate that a regularization procedure (e.g., nonlocal scaling [77, 78] and gradient plasticity

[79]) is necessary to circumvent the mesh dependence. These shortcomings will be addressed in

future studies.
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