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A stabilized volume-averaging finite element method for flow in
porous media and binary alloy solidification processes
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SUMMARY

A stabilized equal-order velocity-pressure finite element algorithm is presented for the analysis of
flow in porous media and in the solidification of binary alloys. The adopted governing macroscopic
conservation equations of momentum, energy and species transport are derived from their microscopic
counterparts using the volume-averaging method. The analysis is performed in a single-domain with a
fixed numerical grid. The fluid flow scheme developed includes SUPG (streamline-upwind/Petrov-
Galerkin), PSPG (pressure stabilizing/Petrov-Galerkin) and DSPG (Darcy stabilizing/Petrov-
Galerkin) stabilization terms in a variable porosity medium. For the energy and species equations
a classical SUPG-based finite element method is employed. The developed algorithms were tested
extensively with bilinear elements and were shown to perform stably and with nearly quadratic
convergence in high Rayleigh number flows in varying porosity media. Examples are shown in natural
and double diffusive convection in porous media and in the directional solidification of a binary-alloy.
Copyright c© 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The understanding of metal alloy solidification processes is essential in many industrial
applications such as casting, welding and growth of single crystals. Most alloys solidify with the
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2 N. ZABARAS AND D. SAMANTA

formation of a two phase region known as mushy zone, which is composed of solid dendrites and
interdendritic liquid. The morphology and size of the resulting solidification microstructure
and the properties of cast products depend on many factors including the convection in
the melt and mushy region during solidification. The most common causes of fluid flow in
alloy solidification are thermal and solutal gradients, surface tension gradients, shrinkage and
external forcing agents such as rotation, vibration, electromagnetic fields, etc. We are herein
interested to develop a finite element methodology for the analysis of flow in variable porosity
porous media. Such flows constitute typical mechanisms usually employed in the solidification
of alloys.

The difficulty associated with the modeling of solidification processes arises from the
morphological complexity of the resulting microstructure and the variety of length- and time-
scales in the system. Figure 1 shows two typical length-scales and some of the corresponding
physical phenomena that are involved in solidification. At the macroscopic scale, fluid flow,
convective-conductive heat transfer, macrosegregation, solid movement and deformation are
some of the mechanisms present. At the microscopic scale, interdendritic flow due to shrinkage,
latent heat release due to phase change, nucleation and microstructure formation mechanisms
are present. Other scales also exist in the solidification process, such as the solute diffusion
length scale and the capillary length scale [1, 2].
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Figure 1. Different length-scales in a typical solidification process with a schematic of various
convection patterns [2].

In this paper, we are only interested in single-domain solidification models based on volume
averaging and other approaches are not discussed. Single-domain models, which overcome
many of the limitations of multidomain methods (e.g. of front-tracking methods [3]), emerged
in the mid-1980s [4, 5] and showed promise of becoming useful tools for simulating solidification
processes. These models consist of a single set of equations for momentum, energy and species
transport in multi-constituent, solid-liquid, phase change systems, which concurrently are
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STABILIZED VOLUME-AVERAGING FINITE ELEMENT METHOD 3

applied in all regions (solid, mushy and liquid). They require only a single, fixed numerical
grid and a single set of boundary conditions to compute the solution. This brings a significant
advantage in the numerical solution as there is no need to track the boundaries between phases.
Instead, the interfaces are implicitly defined by the distributions of energy and composition
determined from the solutions of the model equations (i.e. as post-processing operations).
The momentum equations are a generalization of Darcy’ law and reduce to the single-phase
Navier-Stokes equations in the liquid region.

Some of the earliest continuum models for binary alloy solidification used classical mixture
theory to postulate macroscopic equations without reference to any microscopic equations [6]-
[8]. A similar mathematical model in which, however, the macroscopic transport equations were
derived from the classical microscopic transport equations using volume-averaging is presented
in [9]. Models have also been presented in which the conservation equations for each phase are
solved separately with the aid of interphase transport models [10, 11]. Other developments in
this direction can be found in [12]-[16].

In terms of numerical implementation of the single domain model, almost all the reported
algorithms have been implemented by the finite difference method [8, 7, 11]. Some finite element
implementations have also been developed but their applicability seems limited in accurately
modeling solidification phenomena at high Rayleigh number melt flows or in accurately
predicting the pressure distribution in the mushy zone. Among these methods, we refer to
the penalty method (see [17]) implementation of Poirier, Heinrich and colleagues [18, 19] and
the fractional step method [20] implemented by Nithiarasu et al. mostly for natural and double-
diffusive convection in porous media flows [21, 22]. As part of our continuing efforts for the
development of a robust simulator for solidification processes, we have implemented and tested
both of these methods.

Stabilized finite element calculations for volume-averaging based solidification models have
not been reported earlier. Even though SUPG/PSPG stabilization techniques [23]-[25] can
be useful in such models, their implementation shows that they alone cannot capture the
underlying phenomena especially for variable porosity as is the case in modeling flow in the
mushy zone. In a very recent work, Masud and Hughes proposed stabilization terms for pure
Darcy flow [26] that work well without mesh-dependent parameters. We will present a stabilized
FEM for the generalized Navier Stokes/Darcy equations in varying porosity porous media flows
and solidification systems. In addition to the selection of the stabilization terms, other key
ingredients of the developed approach include the overall numerical scheme coupling the flow,
heat and species transport, the solution of the assembled equations and the required updates
for the phase change process.

The organization of the paper is as follows. In Section 2, a brief review of the
mathematical volume-averaging formulation considered here together with the required closure
relationships is presented. Section 3 provides the final dimensionless form of the mathematical
model considered for modeling double-diffusive convection in porous media. The overall
thermodynamic relations and update formulae for the phase change process are summarized in
Section 4. Section 5 presents the stabilized finite element formulation. The solution of the heat
and species equations is summarized in Section 6. The summary of the coupling algorithm
for the time integration of all sub-problems is given in Section 7. Numerical examples are
summarized in Section 8. They include double diffusion convection in a cavity with uniform
porosity, natural convection in a cavity with variable porosity and solidification of a binary
mixture of ammonium-chloride and water at Ra=107.
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4 N. ZABARAS AND D. SAMANTA

2. VOLUME-AVERAGING MACROSCOPIC TRANSPORT EQUATIONS

In this work, we consider a two-component, two-phase (solid and liquid) binary alloy system.
The macroscopic transport equations can be obtained by averaging the microscopic transport
equations over a finite size control volume that contains both phases. The averaging volume
is defined such that the scale it represents is small enough to capture the global fluid flow
motion, heat transfer, and species distribution, but large enough to smooth out the details
of the morphological complexities, interdendritic fluid flow, latent heat release and species
redistribution. For such systems, for example in solidification processes, the averaging volume
can track the overall nature of the liquid, solid and mushy regions without accounting for any
details of the solidification microstructures. Under typical solidification conditions, the system
and interfacial structures are of the orders of 10−1 to 100 m and 10−5 to 10−4 m, respectively,
so the size of the averaging volume in solidification can vary between 10−3 to 10−2 m. The
resulting averaged transport equations need to be supplemented by constitutive relations that
describe morphological characteristics and the interactions between the two phases.

The volume-averaging technique shows how various terms in the macroscopic equations
arise and how the resulting macroscopic variables are related to the corresponding microscopic
variables [27]. This gives considerable insight into the formulation of constitutive relations and
holds the key for incorporating the evolution of the solid structure and transport phenomena
at the micro level into a macroscopic model.

The microscopic (exact) mass, momentum, energy and species transport equations for phase
k (here k = s, l) are given by:

Mass
∂ρk

∂t
+ ∇ · (ρkvk) = 0 (1)

Momentum
∂ρkvk

∂t
+ ∇ · (ρkvkvk) = ∇ · σk + bk (2)

Energy
∂ρkhk

∂t
+ ∇ · (ρkhkvk) = −∇ · qk (3)

Species
∂ρkCk

∂t
+ ∇ · (ρkCkvk) = −∇ · jk (4)

where σ is the stress tensor, b is the body force, q is the heat flux, j is the species diffusion flux
and the rest of the notation is standard. The detailed expressions for these terms are supplied
by constitutive equations for specific cases. The energy equation is here written in terms of
the total enthalpy. For simplicity, viscous heat dissipation, compression work, and volumetric
energy and species sources are not included. One can easily relax these assumptions as required.

The equations above representing microscopic transport in each phase k take the general
form:

∂Φk

∂t
+ ∇ · (Φk vk) = ∇ · Jk + Sk (5)

for appropriate selection of the fields Φ,J and S.
In order to provide some physical insight of the mathematical models examined in this

paper, we herein provide a brief review of the foundations of volume-averaging techniques and
for more details the reader can consult references [27]-[29]. Let us introduce the phase function
νk taking the value 1 in phase k and zero elsewhere. We can then define the volume fraction
ǫk of phase k as follows:
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STABILIZED VOLUME-AVERAGING FINITE ELEMENT METHOD 5

ǫk =
1

dV

∫

dV

νk(x, t)dv = dVk/dV (6)

where dVk is the portion of dV that is occupied by phase k.
The volume-averaged quantity < Ψk > of any quantity Ψ(x, t) in phase k over the entire

averaging volume dV can now be introduced as:

< Ψk >=
1

dV

∫

dV

Ψkνk(x, t)dv (7)

Similarly, one can introduce the intrinsic volume-averaged quantity < Ψk >
k (averaged value

of Ψ(x, t) in the control volume dVk) as:

< Ψk >
k=

1

dVk

∫

dV

Ψkνk(x, t)dv =
< Ψk >

ǫk
(8)

When Ψk is uniformly distributed in dVk, then < Ψk >
k= Ψk.

The fluctuating component Ψ̂k is commonly introduced to represent the deviation of Ψk

from the intrinsic volume-averaged < Ψk >
k. It is given by:

Ψ̂k = (Ψk− < Ψk >
k)νk (9)

In phase k, Ψ̂k is zero only when Ψk is uniformly distributed.
Various volume-averaging formulae important to transport phenomena have been derived

in [30]-[33]. They include, for example, a relation for the average of a product of two fields,
the average of the time derivative in terms of the time derivative of the average, the average
of the spatial derivative in terms of the spatial derivative of the average, etc.

Multiplying each side of Equation (5) representing microscopic transport by νk, integrating
it over the averaging volume dV and applying averaging formulae such as the ones mentioned
above, we obtain the following macroscopic transport equation for phase k:

∂< Φk >

∂t
+ ∇ · ǫk < Φk >

k< vk >
k= ∇· < Jk > + < Sk >

+∇ ·
1

dV

∫

dV

(−Φ̂kv̂k)dv +
1

dV

∫

dAk

Jk · nkdA

+
1

dV

∫

dAk

Φk(wk − vk) · nkdA (10)

where dAk is the interfacial area of phase k with the other phase, n is the outward unit normal
of the infinitesimal element of area dA of phase k, and w is the velocity of the microscopic
interface.

Compared with the exact microscopic equations (5), three extra terms ID
k , IJ

k and IQ
k appear

from the volume averaging procedure of the form:

ID
k ≡ ∇ ·

1

dV

∫

dV

(−Φ̂kv̂k)dv (11)

IJ
k ≡

1

dV

∫

dAk

Jk · nkdA (12)

IQ
k ≡

1

dV

∫

dAk

Φk(wk − vk) · nkdA (13)
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6 N. ZABARAS AND D. SAMANTA

At the microscopic scale characterizing the two phase region (e.g. the mushy zone in
solidification processes), there always exist species, temperature, and velocity gradients in
the liquid. Despite this fact, almost all models reported in the literature neglect the ID

k term

[6, 32, 33]. The same approximation is considered here as well. The term IQ
k accounts for

the interfacial transfer due to phase change, whereas IJ
k represents the transport phenomena

between phases within dV by diffusion and is related to the gradients of microscopic velocity,
temperature and species concentration on each side of the solid/liquid interface dAk [11].

In this work, the averaged macroscopic equations from different phases are added within the
averaging volume dV , therefore, detailed modeling of the interfacial transfer terms IJ

k and IQ
k

can be avoided. The heat or mass lost from one phase is gained by other phases, i.e.
∑

k

IJ
k = 0 and

∑

k

IQ
k = 0 (14)

The model discussed here is unsuitable for modeling interfacial behavior. Interfacial
phenomena can be modeled with the help of two phase models that involve detailed balance
of interfacial fluxes between individual phases [11, 33].

In the following section, we will utilize this model in a single fixed domain and present
the averaged macroscopic equations of mass, momentum, heat and species in the context
of a general double-diffusive flow in a porous medium. Enhancement of this model to allow
modeling of binary alloy solidification is provided in Section 4. Detailed discussion on more
general volume averaging models is provided, for example, in [2], [34].

3. MATHEMATICAL MODEL FOR DOUBLE-DIFFUSIVE CONVECTION IN A
FLUID-SATURATED POROUS MEDIUM

The volume averaging techniques developed in the earlier section are herein applied to the
analysis of double-diffusive convective flow and of the associated heat and mass transfer in a
fluid-saturated porous medium. To arrive at a model tractable for computation, we assume
that only the solid and liquid phases may be present, that is, ǫl + ǫs = 1. In addition, the
variations of material properties in dVk are neglected, although globally they may vary, that
is

Assumption 1: < ρk >
k= ρk, < µk >

k= µk, < kk >
k= kk, < Dl >

l= Dl, Ds = 0,
the last condition implying negligible species (solutal) diffusion in the solid phase.

Assumption 2: All phases in the averaging volume are assumed to be in thermodynamic
equilibrium, i.e. < Ts >

s=< Tl >
l and the liquid in the averaging volume is solutally well

mixed, that is, < Cl >
l= Cl.

For the derivation of the macroscopic equation of mass conservation using Equation (10),
we substitute Φ = ρ, J = 0, and S = 0. By writing and adding the individual macroscopic
mass conservation equations for the two phases, neglecting the microscopic deviation term
and considering the interfacial mass flux balance, i.e. IQ

l + IQ
s = 0, and the conditions of

Assumption 1, we obtain:
∂ρ

∂t
+ ∇ · (ρv) = 0 (15)
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STABILIZED VOLUME-AVERAGING FINITE ELEMENT METHOD 7

where we have further defined:

ρ = ǫl ρl + ǫs ρs (16)

v = fl < vl >
l=

ρl

ρ
ǫl < vl >

l (17)

where fk (k = s, l) denotes mass fraction of phase k, i.e. ρfk = ρkǫk.

Assumption 3: Note that we have assumed that < vs >
s= 0. In the context of solidification

processes, such assumption for example will be appropriate for columnar but not equiaxed
growth.

For deriving the macroscopic equation of momentum conservation from Equation (10), we
take Φ = ρv and S = b. Furthermore, we assume a Newtonian fluid and hence the viscous-
stress in terms of the rate of deformation is given as,

σ = −plI + µl[∇vl + (∇vl)
T ]

As discussed earlier, we consider that ID
l = ID

s = 0 and approximate < µl >
l= µl. The

interfacial momentum fluxes due to solidification balance each other, that is, IQ
l + IQ

s = 0.
However, IJ

l + IJ
s = σχ, where σ is the surface tension, assumed to be constant, and χ is the

mean curvature of the interface.
Flow through a mushy zone consisting of a continuous solid structure (here assumed as

columnar dendritic crystals), is usually very slow due to the high value of the interfacial area
concentration. Therefore, the dissipative interfacial stress may be modeled in analogy with
Darcy law as follows:

IJ
l = −

ǫ2l µl < vl >
l

K(ǫl)
(18)

where K(ǫl) is the permeability of the mushy zone. Values of the permeability have been
reported for a columnar dendritic structure in the literature [35]. The permeability is commonly
approximated using the Kozeny-Carman equation:

K(ǫl) =
K0 ǫ

3
l

(1 − ǫl)2
(19)

where K0 is a permeability constant depending on the morphology of the two-phase mushy
region.

Using the previous assumptions and the definition of ρ and v given earlier, the final form of
the macroscopic transport equation of momentum conservation then yields:

∂(ρ v)

∂t
+ ∇ · (ρ

vv

fl
) = − ǫl∇ < pl >

l +∇ ·

[
µl

(
∇

(
ρ

ρl
v

)
+

(
∇

(
ρ

ρl
v

))T
)]

− ǫlµl
ρ

ρl

v

K(ǫl)
+ ǫlρlg (20)

where g is the gravity vector.
The change in liquid density is here expressed using the Boussinesq approximation ρl =

ρ0[(1 − βc(C − Ce) − βT (T − Te)] and it appears only in the body force term. The term
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8 N. ZABARAS AND D. SAMANTA

−ǫl∇ < pl >
l in Equation (20) is written as follows:

−ǫl∇ < pl >
l= −∇ < pl > +

< pl >

ǫl
∇ǫl (21)

This modification is better suited for CFD applications with the second term on the right
hand side treated as a source term.

For deriving the macroscopic equation of energy conservation we take Φ = ρh, where
h represents the total enthalpy. In addition, we consider S = 0 and utilize Fourier’s law
J = −k∇T . We also define the following:

ρh = ρlǫl < hl >
l +ρsǫs < hs >

s (22)

k∗ = ǫlkl + ǫsks (23)

Equation (10) then yields the following:

∂(ρh)

∂t
+ ∇ · (ρ < hl >

l v) = ∇ · (k∗∇T ) (24)

For arriving at the macroscopic equation of species conservation, we note that for this case,
Φ = ρC, where C represents solutal concentration (per unit mass) and S = 0. Furthermore, we
utilize Fick’s law for species diffusion flux, that is, J = −ρD∇C. The macroscopic transport
equation of species conservation can be derived from Equation (10) as follows:

∂(ρC)

∂t
+ ∇ · (ρ < Cl >

l v) = ∇ · (ρlD
∗∇ < Cl >

l) (25)

where

ρC = ρlǫl < Cl >
l +ρsǫs < Cs >

s (26)

D∗ = ǫlDl (27)

Assumption 4: To further simplify the above equations, we will assume that the densities of
the two phases are constant and equal, i.e. < ρs >

s= ρs = ρl =< ρl >
l= ρ = ρ0, thus fs = ǫs

and fl = ǫl. In the context of solidification, such an assumption will imply no solidification-
induced shrinkage.

We now non-dimensionalize our governing equations with the non-dimensional parameters
being defined as

x̂ =
x

L
, t̂ =

αlt

L2
, v̂ =

v

αl/L
, p̂ =

pL2

ρ0α2
l

θ =
T − Te

∆T
, Ĉ =

C − Ce

∆C
, ĥ =

h

cl∆T
, ĥf =

hf

cl∆T
(28)

where ρo is a reference density, αl the fluid thermal diffusivity, L a characteristic length and
Te, ∆T = T0 − Te and Ce, ∆C = C0 − Ce are problem dependent characteristic values and
increments in T and C, respectively. The important non-dimensional parameters are expressed
in Table I.

We next finalize the dimensionless form of our double-diffusive convection model of a two
phase (solid/liquid) dilute, incompressible binary mixture. The mixture is confined in mass
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STABILIZED VOLUME-AVERAGING FINITE ELEMENT METHOD 9

Table I. Dimensionless groups and their characteristic values

Symbol Formula
Prandtl number Pr νl/αl

Lewis number Le αl/Dl

Darcy number Da K0/L
2

Thermal Rayleigh number RaT βT |g|(T0 − Te)L
3/νlαl

Solutal Rayleigh number RaC βc|g|(C0 − Ce)L
3/νlαl

Heat conductivity ratio Rk ks/kl

Heat capacity ratio Rc cs/cl

Table II. Governing equations for double-diffusive convection in a fluid-saturated porous medium.

∇ · v(x, t) = 0, x ∈ Ω (29)

∂v(x, t)

∂t
+ ∇ ·

(
v(x, t)v(x, t)

ǫ(x, t)

)
= −∇p(x, t) +

p(x, t)

ǫ(x, t)
∇ǫ(x, t) + ∇ · [Pr(∇v(x, t) + (∇v(x, t))T )]

−
(1 − ǫ(x, t))2

ǫ2(x, t)

Pr

Da
v(x, t) − ǫ(x, t) Pr (RaT θ(x, t) +RaC Cl(x, t)) eg, x ∈ Ω (30)

∂h(x, t)

∂t
+ v(x, t) · ∇hl(x, t) = ∇ · [(ǫ(x, t) + (1 − ǫ(x, t))Rk)∇θ(x, t)], x ∈ Ω (31)

∂C(x, t)

∂t
+ v(x, t) · ∇Cl(x, t) = ∇ ·

(
ǫ(x, t)

Le
∇Cl(x, t)

)
, x ∈ Ω (32)

Initial conditions:

v(x, 0) = 0, h(x, 0) = hi, C(x, 0) = Ci, x ∈ Ω (33)

Boundary conditions:

v(x, t) = 0, x ∈ Γ (34)

h(x, t) = hs, x ∈ ΓT (35)

∂h

∂n
(x, t) = 0, x ∈ Γq (36)

∂C

∂n
(x, t) = 0, x ∈ Γ (37)
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10 N. ZABARAS AND D. SAMANTA

impermeable walls. For simplicity, a uniform initial temperature Ti and concentration Ci are
assumed. Let us denote the region of interest by Ω ∈ ℜnsd , where nsd is the number of the
space dimensions. The region Ω has a piecewise smooth boundary Γ which consists of ΓT

(boundary with prescribed temperature) and Γq (insulated boundary).

The non-dimensional governing equations are given in Table II where for simplicity we denote
ǫl as ǫ, < pl > as p and the hat is dropped from the dimensionless variables. The pressure
p used from now on refers to the volume-averaged dynamic pressure component. The vector
eg denotes the direction cosines of the gravity vector and for all two-dimensional examples
reported later in this report the gravity acts vertically and downwards, i.e. eg = [0.0, −1.0]T .
Solution of the four coupled conservation equations will lead to the solution of the general
thermal transport problem in porous media. The solution scheme to be presented in a later
section treats this system of equations in an uncoupled fashion within each time step.

We will utilize the model of Table II to address convection in porous media as well as
directional solidification of binary alloys. The additional conditions to those of Table II needed
to account for a phase change process are reviewed next.

4. THERMODYNAMIC RELATIONS

In the above derived single-domain model, we have four governing equations but seven unknown
variables: velocity v, pressure p, mixture enthalpy h, mixture concentration C, temperature
θ, liquid volume fraction ǫ, and liquid concentration Cl. To close the model, we need three
supplementary relationships for θ, ǫ, and Cl.

By assuming that all phases in the averaging volume are in thermal equilibrium, that is,
θl = θs = θ, the general expression for the mixture enthalpy in terms of the temperature is:

h = (ǫ+ (1 − ǫ)Rc) θ + ǫ hf +
RcTe

∆T
(38)

where the last term in the equation comes from the non-dimensionalization process. Recall that
Te is used as the reference temperature in the definitions of dimensionless quantities given in
Equation (28). Note that with these definitions, θe = 0 and Ce = 0.

In this work, we consider a binary mixture with the phase diagram shown in Fig. 2 where
the dimensionless slope of the liquidus line is denoted as m < 0 (m =

mliq∆C
∆T ). As discussed

earlier, we assume that the liquid within the averaged volume is solutally well mixed, that is,
Cl = CLiquidus. The local conservation of concentration can be expressed using the lever rule:

C = ǫ Cl + (1 − ǫ) Cs (39)

With the definition of the equilibrium partition ratio kp = Cs/Cl, a direct relationship between
the mixture concentration C and liquid concentration Cl is obtained.

The liquidus concentration and the temperature are related by:

CLiquidus =
θm − θ

θm
Ce (40)

To simplify the presentation of update formulae for temperature θ, liquid concentration Cl

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60/5:1–38
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Figure 2. Typical equilibrium phase diagram for a binary alloy system. The regions shown here are
used in the update formulae.

and liquid volume fraction ǫ, we first define some useful variables:

θLiquidus = θm +m(C +
Ce

∆C
) (41)

θSolidus = max{θm +
m

kp
(C +

Ce

∆C
), 0} (42)

hLiquidus = θLiquidus +Rc
Te

∆T
+ hf (43)

hSolidus = Rc(θSolidus +
Te

∆T
) (44)

he = Rc
Te

∆T
+

[
1 −

1

1 − kp

θLiquidus

θm

]
hf (45)

With the definition of hLiquidus, hSolidus and he, the phase diagram is divided into three
regions according to the relationships between the mixture enthalpy and the three critical
enthalpy values:

• When h > hLiquidus, the control volume is occupied by pure liquid, corresponding to
region (1) in the phase diagram.

• When he < h ≤ hLiquidus, solidification has started but the liquid concentration has
not reached the eutectic point, corresponding to region (2) in the phase diagram.
In this region the volume fraction ǫ and temperature θ are solved iteratively using

θ =
h−ǫ( Te

∆T
(Rc−1)+hf )

ǫ+(1−ǫ)Rc
− Te

∆T and ǫ = [1 − 1
1−kp

(
θ−θLiquidus

θ−θm
)] subjected to the constraint

θSolidus < θ < θLiquidus. ǫ is also subjected to the constraint ǫe < ǫ < 1.0 to prevent

oscillations, where ǫe is calculated as ǫe = [1 − 1
1−kp

(
θSolidus−θLiquidus

θSolidus−θm
)].
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• When hSolidus < h ≤ he, the melt in the control volume is solidified at eutectic
temperature and eutectic concentration.

• When h ≤ hSolidus, the alloy in the averaging volume is completely solidified,
corresponding to region (3) in the phase diagram.

After calculating hLiquidus, hSolidus and he corresponding to a certain mixture concentration
C, the following scheme is utilized to update the values of temperature, liquid concentration
and liquid volume fraction:

• When h > hLiquidus, θ = h− (Rc
Te

∆T + hf ), ǫ = 1 and Cl = C.
• When he < h ≤ hLiquidus, θ and ǫ are calculated by iteratively solving θ =

h−ǫ( Te
∆T

(Rc−1)+hf )

ǫ+(1−ǫ)Rc
− Te

∆T and ǫ = [1 − 1
1−kp

(
θ−θLiquidus

θ−θm
)]. Then, Cl is updated as follows:

Cl = C
kp+ǫ(1−kp) +

Ce
∆C

(1−kp)(1−ǫ)

kp+ǫ(1−kp) .

• When hSolidus < h ≤ he, θ = 0, ǫ =
h−Rc

Te
∆T

hf
and Cl = 0.

• When h ≤ hSolidus, θ =
h− Te

∆T
Rc

Rc
, ǫ = 0 and Cl = 0.

5. A STABILIZED FINITE ELEMENT SCHEME FOR THE MOMENTUM EQUATIONS

Let us define the function spaces Sv and Sp as follows:

Sv
def
= {v|v ∈ (L2(Ω))nsd, divv ∈ L2(Ω), v = 0 on Γ} (46)

Sp
def
= {p|p ∈ L2(Ω),

∫

Ω

pdΩ = 0} (47)

The classical Galerkin formulation for the flow problem in Table II can be stated as follows:

Find V
def
= {v, p} ∈ Sv × Sp such that for all W

def
= {w, q} ∈ Sv × Sp the following holds:

B(W ,V ) = L(W ) (48)

where

B(W ,V ) =

∫

Ω

w · (
∂v

∂t
+ v · ∇

(v

ǫ

)
+

(1 − ǫ)2

ǫ2
Pr

Da
v)dΩ −

∫

Ω

p∇ · wdΩ

+

∫

Ω

Pr ∇w ·
(
∇v + (∇v)T

)
dΩ +

∫

Ω

q ∇ · vdΩ

L(W ) =

∫

Ω

p

ǫ
w · ∇ǫdΩ −

∫

Ω

w · ǫ Pr(RaT θ +RaCCl)egdΩ (49)

The above formulation theoretically works only for certain velocity and pressure
interpolations. In the finite element implementation of the Navier-Stokes equations, stabilizing
techniques are needed to accommodate equal-order-interpolation velocity-pressure elements.
The most common stabilization methods are the SUPG (Streamline-Upwind/Petrov-Galerkin)
and the PSPG (Pressure-Stabilizing/Petrov-Galerkin) formulations proposed by many
researchers (e.g. see Tezduyar et al. [23, 24]). These stabilizing terms can be obtained by
many approaches including by minimizing the squared residual of the momentum equation,
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STABILIZED VOLUME-AVERAGING FINITE ELEMENT METHOD 13

i.e. following a least squares FEM approach [36]. As shown in [26], a proper stabilization term
for pure Darcy flows is needed that differs in sign from that obtained by regular least squares
approach.

In introducing the FEM used here, let us first define a modified pressure space S ′
p as follows:

S′
p

def
= {p|p ∈ H1(Ω),

∫

Ω

qdΩ = 0} (50)

The stabilized weak form proposed here is the following: Find V = {v, p} ∈ Sv ×S′
p such that

for all W = {w, q} ∈ Sv × S′
p the following holds:

Bstab(W ,V ) = Lstab(W ) (51)

where:

Bstab(W ,V ) = B(W ,V ) +

∫

Ω

F(v, p) · G(w, q)dΩ +

∫

Ω

τ5∇ · v∇ · wdΩ (52)

Lstab(W ) = L(W ) +

∫

Ω

{
p

ǫ
∇ǫ− ǫ Pr(RaT θ +RaC Cl)eg} · G(w, q)dΩ (53)

where we defined:

F(v, p) =
∂v

∂t
+ v∗ · ∇

(v

ǫ

)
+ ∇p+

(1 − ǫ)2

ǫ2
Pr

Da
v − Pr∇2v (54)

G(w, q) = τ1v∗ · ∇
(w

ǫ

)
− τ2

(1 − ǫ)2

ǫ2
Pr

Da
w − τ3Pr∇

2w + τ4∇q (55)

with v∗ a divergence-free velocity that in the implementation of Equation (51) at a given time
is usually taken as the known velocity at the previous time step.

The last term on the right hand side of Equation (52) is introduced to stabilize the
incompressibility equation as discussed in [25]. The remaining stabilizing terms in Equations
(52) and (53) can be derived by various techniques including a least squares procedure.
However, note that the sign of the Darcy term used here is the reverse of that obtained
by least squares [26]. This sign reversal first discussed in [26] was verified in our work as being
essential for allowing the stabilized method to work even for the simplest problems of constant
porosity. The particular values of the parameters τ1, . . . , τ5 used in this work are introduced
later in this section.

Let us now consider a given finite element partition Ω̄ =
⋃nel

e=1 Ω̄e. In this work, we assume
that ǫ varies linearly within each element and is computed at the nodes as discussed in Section
4. To avoid high sensitivity of the fluid flow simulator on the variation of ǫ, a constant value of
ǫ is taken for each element in the implementation of Equation (51). Thus the value of ǫ used
in the flow simulator is evaluated at the centroid of each element. With this assumption, the
terms in Equation (51) containing gradients of the porosity ǫ can be neglected. However, it is
noted that a piece-wise linear variation of ǫ is maintained in the heat and mass transfer solvers.

We next define for the given finite element partition the spaces Sh
v and Sh′

p as follows:

Sh
v

def
= {vh|vh ∈ Sv, vh ∈ (Co(Ω̄))nsd , vh|Ωe ∈ (P (Ωe))nsd , e = 1, 2, . . . , nel} (56)

Sh′

p
def
= {ph|ph ∈ Sp, p

h ∈ Co(Ω̄), ph|Ωe ∈ P (Ωe), e = 1, 2, . . . , nel} (57)
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14 N. ZABARAS AND D. SAMANTA

The final FEM is then posed as follows: Find V h = {vh, ph} ∈ Sh
v × Sh′

p such that for all

W h = {wh, qh} ∈ Sh
v × Sh′

p the following holds:

Bh
stab(W h,V h) = Lh

stab(W h) (58)

with

Bh
stab(W h,V h) = Bh(W h,V h) +

nel

A
e = 1

∫

Ωe

Fh(vh, ph) · Gh(wh, qh)dΩe

+
nel

A
e = 1

∫

Ωe

τe
5∇ · vh∇ · whdΩe (59)

Lh
stab(W h) = Lh(W h) +

nel

A
e = 1

∫

Ωe

−ǫ Pr (RaT θh +RaC Ch
l )eg · Gh(wh, qh)dΩe

(60)
where we have defined Fh(vh, ph) and Gh(wh, qh) as:

Fh =
∂vh

∂t
+ vh

∗ · ∇

(
vh

ǫ

)
+ ∇ph +

(1 − ǫ)2

ǫ2
Pr

Da
vh − Pr∇2vh (61)

Gh = τ e
1vh

∗ · ∇

(
wh

ǫ

)
− τ e

2

(1 − ǫ)2

ǫ2
Pr

Da
wh − τ e

3Pr∇
2wh + τ e

4∇q
h (62)

Lh(W h) is defined from Equation (49) by neglecting the contribution of the p
ǫ∇ǫ term as

discussed earlier.

The stabilizing contributions from the advective, Darcy, viscous and pressure terms are
expressed as:

(A) δh = 1
ǫ τ

e
1vh

∗ · ∇wh (advection term)

(B) γh = −τ e
2

(1−ǫ)2

ǫ2
Pr
Dawh (Darcy term)

(C) ζh = −τ e
3 Pr∇

2wh (viscous term)
(D) ηh = τ e

4∇q
h (pressure term)

It is easy to identify that the form of the stabilizing term δh corresponds to the classical
SUPG stabilizer and the form of ηh to the classical PSPG stabilizer, respectively. At the
element interiors the contribution to the weighting function from the viscous term ζh is
identically zero for the P1P1 element and is neglected for the Q1Q1 element. The last stabilizing
term, γh, which we call DSPG, comes from the Darcy term and it is an important stabilizing
term for the generalized Navier-Stokes/Darcy equations.

The stabilizing parameters for the advective and pressure terms are selected as follows:

τe
1 = min

x∈Ωe

[
τSUPG,

ǫ2(x)

(1 − ǫ(x))
2

Da

Pr

]
for the convective term, (63)
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STABILIZED VOLUME-AVERAGING FINITE ELEMENT METHOD 15

τe
4 = min

x∈Ωe

[
τPSPG,

ǫ2(x)

(1 − ǫ(x))
2

Da

Pr

]
for the pressure term (64)

where τSUPG, τPSPG are defined as

τSUPG =
ǫh

2‖vh‖
z(Rev) (65)

τPSPG =
ǫh#

2‖V h‖
z(ReV ) (66)

Here, Rev and ReV are the element Reynolds numbers, which are based on the local velocity

vh and a global scaling velocity V h and are given by

Rev =
‖vh‖h

2Pr
(67)

ReV =
‖V h‖h#

2Pr
(68)

The element length h is computed by using the expression

h = 2

(
nen∑

e=1

|s.∇Ne
α|

)−1

(69)

where nen is the number of nodes in the element, N e
α is the basis function associated with

the local node α, and s is the unit vector in the direction of the local velocity [23, 24, 25].
The element h# on the other hand is defined to be the diameter of the circle which is area
equivalent to the element. The function z(Re) is defined as follows:

z(Re) =

{
Re/3 0 ≤ Re ≤ 3
1 3 ≤ Re

(70)

Stabilization forms similar to that in Equation (63) have been introduced earlier for the Stokes
problem [37]-[39].

The stabilizing parameter τ e
5 is similar to τLSIC discussed in [25] and is given by

τe
5 =

h

2
‖vh‖ (71)

with h being defined in Equation (69). Slightly different forms for τ e
5 have been discussed in

[25] and [40]. The present form holds good for convection dominated flows.
For the Darcy term, we select τ e

2 such that the stabilization takes the form γh = −(1−ǫ)wh,
i.e.

τe
2 =

ǫ2

1 − ǫ

Da

Pr
(72)

Remark 1: The stabilization term γh induced by the Darcy flow varies linearly with ǫ
transitioning from γh = 0 for a pure fluid phase (ǫ = 1) to γh = −wh towards a pure
solid phase (ǫ→ 0). Note also that for ǫ = 0 (pure solid), the advection stabilization term δh
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16 N. ZABARAS AND D. SAMANTA

using Equation (63) becomes δh = limǫ→0
1
ǫ

[
ǫ2

(1−ǫ)2
Da
Pr

]
= 0. Thus the selection in Equation

(63) allows for a stabilizing advection term that transitions from the classical SUPG values
for a pure fluid to a zero contribution for a pure solid.

Remark 2: The stabilizing terms are linearized using quantities from the earlier time step or
at the previous iteration at the current time step. For example, the advection stabilizing term
at a particular time step is linearized using the velocity from the previous iteration denoted
by v∗. Same arguments apply for the stabilizing parameter τ e

5 defined in Equation (71). The
Darcy stabilizing function, γh, is linearized using the liquid volume fraction, ǫ, known prior to
the fluid flow solution at a particular time step. The stabilizing parameters τ e

1 and τ e
4 defined in

Equations (63) and (64) are also linearized using the above mentioned procedures. Numerical
simulations have shown that this linearization does not affect appreciably the convergence rate.

The spatial discretization of Equation (58) now leads to the following set of nonlinear
ordinary differential equations:

[M + Mδ + Mγ ]{v̇} + [N(v) + Nδ(v) + Nγ(v)]{v} + [K + Kδ + Kγ ]{v} + CΓ{v}

+ [D + Dδ + Dγ ]{v} − [G + Gδ + Gγ ]{p} = {F(θ, Cl) + Fδ(θ, Cl) + Fγ(θ, Cl)}, (73)

Mη{v̇} +
(
GT + Nη(v) + Kη + Dη

)
{v} + Gη{p} = {Fη(θ, Cl)}, (74)

where {v} is the vector of nodal values of vh, {v̇} is the time derivative of {v}, {p} is the
vector of nodal values of ph. The matrices M, N(v), K, D and G are derived, respectively,
from the time-dependent, advective, viscous, Darcy and pressure terms. Note that only explicit
dependencies on primary solution variables are shown. The vector F is derived from the
buoyancy term. The subscripts δ, η and γ identify the SUPG, PSPG and DSPG stabilizing
terms, respectively. The subscript p is used here to denote the global velocity degrees of freedom
in the final system of equations that corresponds to the ith velocity degree of freedom of the
elemental node α (α = 1, . . . , ne

nodes) in the eth element. Similarly, one can define q. We also
introduce r and s to denote the global pressure degrees of freedom. We also denote the SUPG
contribution as P e

α, the PSPG contribution in the ith (i = 1, ..., nsd) direction as Ee
αi and

with De
α the DSPG contribution. They are defined as follows:

P e
α =

1

ǫ
τe
1vh · ∇Ne

α (75)

Ee
αi = τ e

4N
e
α,i (76)

De
α = −(1 − ǫ)N e

α (77)

where ǫ in the above and following equations is referred to the constant value computed for
the element e, i.e. ǫ = ǫ(x), x ∈ Ωe.

The various matrices forming the discrete finite element equations are described below.

[M + Mδ + Mγ ]pq =
nel

A
e = 1

∫

Ωe

(N e
α + P e

α +De
α)N e

β δij dΩ
e (78)

[N(v) + Nδ(v) + Nγ(v)]pq =
nel

A
e = 1

∫

Ωe

1

ǫ
(N e

α + P e
α +De

α)N e
β,kvk δij dΩ

e (79)
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[K + Kδ + Kγ ]pq =
nel

A
e = 1

∫

Ωe

Pr(N e
α,kN

e
β,k − P e

αN e
β,kk −De

αN e
β,kk) δij dΩ

e

+
nel

A
e = 1

∫

Ωe

PrN e
α,jN

e
β,i dΩ

e (80)

[D + Dδ + Dγ ]pq =
nel

A
e = 1

∫

Ωe

(1 − ǫ)2

ǫ2
Pr

Da
(N e

α + P e
α +De

α)N e
β δij dΩ

e (81)

[G + Gδ + Gγ ]ps =
nel

A
e = 1

∫

Ωe

(N e
α,iN

e
β − P e

αN e
β,i −De

αN e
β,i) dΩ

e (82)

[F + Fδ + Fγ ]p =
nel

A
e = 1

∫

Ωe

− ǫPr (N e
α + P e

α +De
α)(RaT θ

e +RaCC
e
l )egi dΩ

e (83)

[CΓ]pq =
nel

A
e = 1

∫

Ωe

τe
5N e

α,iN
e
β,j dΩ (84)

[
GT
]
rq

=
nel

A
e = 1

∫

Ωe

N e
α N e

β,j dΩ
e (85)

[Mη]rq =
nel

A
e = 1

∫

Ωe

Ee
αj N e

β dΩe (86)

[Nη(v)]rq =
nel

A
e = 1

∫

Ωe

1

ǫ
Ee

αj vk N e
β,k dΩ

e (87)

[Kη]rq =
nel

A
e = 1

∫

Ωe

−PrEe
αj N e

β,kk dΩ
e (88)

[Dη]rq =
nel

A
e = 1

∫

Ωe

(1 − ǫ)2

ǫ2
Pr

Da
Ee

αj N e
β dΩe (89)

[Gη]rs =
nel

A
e = 1

∫

Ωe

Ee
αkN

e
β,k dΩ

e (90)

[Fη]r =
nel

A
e = 1

∫

Ωe

−ǫEe
αkPr egk(RaT θ

e +RaCC
e
l ) dΩe (91)

where δij stands for the Kronecker delta. The time integration of the Equations (73, 74) is
performed using a backward Euler scheme, i.e.

v̇ =
vn − vn−1

∆t
(92)

The resulting nonlinear algebraic equations are solved by the Newton-Raphson method as
discussed next.

Remark 3: Various other forms of stabilization parameters were considered. Let Rv denote
the residual of the momentum equation. Following the approach of [40], we consider the
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18 N. ZABARAS AND D. SAMANTA

evaluation of τ when various terms dominate in their residual. For each case, one can

approximate τ =
(

∂Rv
∂v

)−1

. For example, when advection dominates, one can show that

τconv ≈ ǫh
2‖vh

n−1
‖
, here h/2 is the representative elemental length given by the distance between

the centroid of an element and its boundary [40]. Similarly one can compute τdiff ≈ h2

4Pr and

τDarcy ≈ Da
Pr

(
ǫ

1−ǫ

)2

in the diffusive and Darcy flow regimes, respectively. Following [25], [40]

and others, one can then approximate a unified value for τ applicable to all regimes:

τstab =

(
1

τnsd
conv

+
1

τnsd

diff

+
1

τnsd

Darcy

)−1/nsd

(93)

For transient problems, an extra contribution of a τ in the form ∆t/2 is introduced in the
expression for τstab above as suggested in [23] and [25]. Variations of this forms were also
considered including using a global scaling velocity V h instead of the local elemental velocity
vh in the computation of τ in the pressure stabilizing function ηh. These forms of stabilization
parameter did not result yet in stable simulations in particular in the implementation of high
Ra number melt flow in solidification processes. More research in this direction is currently in
progress.

Remark 4: Using the approach highlighted in Remark 3, τ e
2 results in a Darcy stabilization

term of the form γh = −wh. Even though this term is appropriate for pure Darcy flows (see
[26]), it did not lead to stable solutions for flows in media with varying porosity ǫ. Considering
that the contribution of the Darcy stabilizing term should vanish as ǫ increases towards a pure
fluid phase (ǫ = 1), we herein select τ e

2 such that γh = −(1 − ǫ)wh.

Remark 5: The subgrid scale or multiscale approach introduced in [41] can also be applied
to the generalized Navier-Stokes/Darcy equations. The formulation involves a subgrid scale
decomposition of the exact solution (v, p) into a numerical finite element approximation
(vh, ph) and an unresolvable or subgrid part (v′, p′). The formulation obtained from the subgrid
scale model is of the same form as the present model given by Equation (58) (including the sign
and form of the Darcy stabilizing term). The difference lies in the selection of the stabilizing
parameters τ . In the subgrid scale method τ can assume a unified form as e.g. given in Equation
(93), which incorporates the advective, Darcy and diffusive effects in a single parameter. As
discussed in Remark 3, more work is needed in selecting a unified stabilizing parameter τ
appropriate for all regimes of ǫ (0 ≤ ǫ ≤ 1).

5.1. Solution Strategy

Let us denote M̂ = M + Mδ + Mγ . Similar notation is introduced for N̂, K̂, D̂, Ĝ and F̂.
Therefore, the resulting nonlinear algebraic equations are written as:

g1(vn, pn) = M̂ (vn − vn−1) + (N̂(vn) + K̂ + D̂ + CΓ)∆tvn − Ĝ∆tpn

− F̂(T,C)∆t = 0 (94)

g2(vn, pn) = Mη (vn − vn−1) + (GT + Nη(vn) + Kη + Dη)∆tvn

+ Gη∆tpn − Fη(T,C)∆t = 0 (95)
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This set of nonlinear equations is solved using the Newton-Raphson method. Suppose
(vi−1

n , pi−1
n ) is known, the algorithm to compute (vi

n, p
i
n) is as follows (with i here an iteration

index):

1. Form the residual R evaluated at (vi−1
n , pi−1

n ):

R1 = g1 = [M̂vi−1
n +

(
N̂(vi−1

n ) + K̂ + D̂ + CΓ

)
∆tvi−1

n (96)

− Ĝ∆tpi−1
n ] − F̂∆t− M̂vn−1

R2 = g2 = [Mηvi−1
n +

(
Nη(vi−1

n ) + GT + Kη + Dη

)
∆tvi−1

n (97)

+ Gη∆tpi−1
n ] − Fη∆t− Mηvn−1

2. Compute the Jacobian matrix J evaluated at (vi−1
n , pi−1

n ):

J11 =
∂g1
∂vn

= M̂ +
∂N̂

∂v
∆tvi−1

n + (N̂ + K̂ + D̂ + CΓ)∆t (98)

J12 =
∂g1
∂pn

= −Ĝ∆t

J21 =
∂g2
∂vn

= Mη +
∂Nη

∂v
∆tvi−1

n + (Nη + GT + Kη + Dη)∆t

J22 =
∂g2
∂pn

= Gη∆t

3. Solve the linearized equations:

J ·

{
dvi

dpi

}
=

{
−R1

−R2

}
(99)

The preconditioned bi-conjugate gradient iterative solver (BiCGStab) is used to solve
this system of equations for most of the time steps. LU-factorization was performed only
at a few time steps in the beginning of the transient solution process.

4. Do a full Newton step and update v and p: vi+1
n = vi

n + dvi and pi+1
n = pi

n + dpi.

To avoid singularity of J in Equation (99), the minimum value of ǫ allowed in the simulation
is taken as ǫnum = 1 × 10−3. This value of ǫ is used here to identify the solid phase.

6. NUMERICAL SCHEME FOR THE ENERGY AND SPECIES EQUATION

A classical SUPG formulation is used for the solution of the energy and species conservation
equations. The energy and species equations are first cast into the standard form of a
convection-diffusion scalar equation. We first consider the energy equation. In dimensional
form the enthalpy h can be expressed as:

h = ǫhl + (1 − ǫ)hs, hs = csT, hl = clT + h0
l (100)

Here h0
l is the reference enthalpy and is expressed as (cs − cl)Te +hf , with hf being the latent

heat of melting at the eutectic temperature Te (here taken as the reference temperature). The
following equation then holds:

hl − h = (1 − ǫ)[(cl − cs)(T − Te) + hf ] (101)

Copyright c© 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60/5:1–38
Prepared using nmeauth.cls



20 N. ZABARAS AND D. SAMANTA

In the non-dimensional form, we can write:

ĥl = ĥ+ (1 − ǫ)[(1 −Rc)θ + ĥf ] (102)

Following our earlier convention, for convenience we drop the hat from dimensionless fields.
Referring to [42], one can approximate ∇θ as follows:

∇θn ≈ αn−1∇hn (103)

with n denoting the time step and αn defined element-wise as:

αn =






∇θn(x)·∇hn(x)
|∇hn(x)|2 if |∇hn(x)| > 0,

dθ
dh (x) if |∇hn(x)| = 0,

Using Equation (102) and the above approximation, Equation (31) is written as:

∂h(x, t)

∂t
+ v(x, t) · ∇h(x, t) = −v(x, t) · ∇[(1 − ǫ)((1 −Rc)θ(x, t) + hf )]

+∇ · [(ǫ + (1 − ǫ)Rk)α∇h(x, t)] (104)

We also define the following finite element interpolation function space for hh:

Sh
θ = {hh | hh ∈ Co(Ω̄), hh|Ωe ∈ P l(Ωe), e = 1, 2, . . . , nel, h

h .
= 0 on Γ} (105)

The weak formulation of Equation (104) can be stated as follows: Find hh ∈ Sh
θ such that,

∀ ŵh ∈ Sh
θ :

∫

Ω

ŵh

(
∂hh

∂t
+ vh · ∇hh

)
dΩ +

∫

Ω

∇ŵh ·
(
(ǫ+ (1 − ǫ)Rk)α∇hh

)
dΩ

+
nel

A
e = 1

∫

Ωe

δ̂h

(
∂hh

∂t
+ vh · ∇hh

)
dΩe

= −

∫

Ω

ŵh
(
vh · ∇[(1 − ǫ)((1 −Rc)θ

h + hh
f )]
)
dΩ

−
nel

A
e = 1

∫

Ωe

δ̂h
(
vh · ∇[(1 − ǫ)((1 −Rc)θ

h + hh
f )]
)
dΩe (106)

The spatial discretization of Equation (106) leads to the following ordinary differential
equation:

[M̂ + M̂δ]{ḣ} + [N̂ + N̂δ]{h} + [K̂ + K̂δ]{h} = {F̂ + F̂δ} (107)

The element stiffness matrices and the load vector are given as follows:

[
M̂ + M̂δ

]

pq
=

nel

A
e = 1

∫

Ωe

(Ne
α + δe

α)Ne
βdΩ

e (108)

[
N̂(v) + N̂δ(v)

]

pq
=

nel

A
e = 1

∫

Ωe

(Ne
α + δe

α)ve
kN

e
β,kdΩ

e (109)
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[
K̂ + K̂δ

]

pq
=

nel

A
e = 1

∫

Ωe

(ǫ+ (1 − ǫ)Rk) α Ne
α,kN

e
β,kdΩ

e (110)

[
F̂ + F̂δ

]

pq
=

nel

A
e = 1

∫

Ωe

−(Ne
α+δe

α)[(1−ǫ)(1−Rc) θ
h
,k v

h
k −v

h
k ǫ,k((1−Rc)θ

h+hf )]dΩe

(111)
Using a similar argument, we rewrite Equation (32) as:

∂C(x, t)

∂t
+ v(x, t) · ∇C(x, t) = ∇ ·

( ǫ

Le
∇C(x, t)

)

+v(x, t) · ∇(C(x, t) − Cl(x, t)) + ∇ ·
( ǫ

Le
∇(Cl(x, t) − C(x, t))

)
(112)

Recasting the species equation in this form allows accounting for the effect of the liquid
concentration Cl via a body force term and in addition allows for an easy implementation
of different microscopic diffusion models.

The weak formulation of Equation (112) can be stated as follows: Find Ch ∈ Sh
C such that,

∀ w̃h ∈ Sh
C :

∫

Ω

w̃h

(
∂Ch

∂t
+ vh · ∇Ch

)
dΩ +

∫

Ω

∇w̃h · (
ǫ

Le
∇Ch)dΩ

+
nel

A
e = 1

∫

Ωe

δ̃h

(
∂Ch

∂t
+ vh · ∇Ch

)
dΩe

=

∫

Ω

w̃h[(vh · ∇(Ch − Ch
l )) + ∇ ·

( ǫ

Le
∇(Ch

l − Ch)
)
]dΩ

+
nel

A
e = 1

∫

Ωe

δ̃h[(vh · ∇(Ch − Ch
l )) + ∇ ·

( ǫ

Le
∇(Ch

l − Ch)
)
]dΩe (113)

This weak form can be modified as follows:
∫

Ω

w̃h

(
∂Ch

∂t
+ vh · ∇Ch

l

)
dΩ +

∫

Ω

∇w̃h · (
ǫ

Le
∇Ch)dΩ

+
nel

A
e = 1

∫

Ωe

δ̃h

(
∂Ch

∂t
+ vh · ∇Ch

l

)
dΩe

=

∫

Ω

w̃h[∇ ·
( ǫ

Le
∇(Ch

l − Ch)
)
]dΩ

+
nel

A
e = 1

∫

Ωe

δ̃h[∇ ·
( ǫ

Le
∇(Ch

l − Ch)
)
]dΩe (114)

The spatial discretization of Equation (114) leads to the following ordinary differential
equation:

[M̃ + M̃δ]{Ċ} + [Ñ + Ñδ]{Cl} + [K̃ + K̃δ]{C} = {F̃ + F̃δ} (115)

The element stiffness matrices and the load vector are given as follows:

[
M̃ + M̃δ

]

pq
=

nel

A
e = 1

∫

Ωe

(Ne
α + δe

α)Ne
βdΩ

e (116)
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[
Ñ(v) + Ñδ(v)

]

pq
=

nel

A
e = 1

∫

Ωe

(Ne
α + δe

α)ve
kN

e
β,kdΩ

e (117)

[
K̃ + K̃δ

]

pq
=

nel

A
e = 1

∫

Ωe

ǫ

Le
Ne

α,kN
e
β,kdΩ

e (118)

[
F̃ + F̃δ

]

pq
=

nel

A
e = 1

∫

Ωe

(Ne
α + δe

α) [
ǫ

Le
(Cl,kk − C,kk)] dΩe (119)

Let us denote:
M̂ = [M̃ + M̃δ] (120)

with similar notation being used for N̂, K̂, and F̂. The resulting non-linear equations for
enthalpy and solute concentration can be expressed as:

M̂

(
hn − hn−1

∆t

)
+ (N̂(vn) + K̂)hn = F̂T (121)

M̂

(
Cn − Cn−1

∆t

)
+ N̂(vn)Cln + K̂Cn = F̂C (122)

These equations are solved by the multistep predictor corrector method. The convection
term is linearized using the velocity vn−1 from the previous time step. Let us denote as ḣ the
enthalpy rate. With known hn and ḣn, the algorithm below computes hn+1 and ḣn+1:

1. Predictor step (0.5 ≤ γ ≤ 1):

h
(0)
n+1 = hn + ∆t(1 − γ)ḣn (123)

ḣ
(0)
n+1 = 0 (124)

2. Solve M∗∆ḣi
n+1 = Ri

n+1, where

M∗ = M̂ + γ∆t(K̂ + N̂) and (125)

Ri
n+1 =

nel

A
e = 1

(
f̂e − m̂eḣ

e(i)
n+1 − (n̂e(vn−1) + k̂e)h

e(i)
n+1

)
(126)

with f̂e, m̂e, n̂e(un−1) and k̂e representing the respective vectors and matrices at the
element level.

3. Corrector step:

h
(i)
n+1 = hi

n+1 + ∆tγ∆ḣi
n+1 (127)

ḣ
(i)
n+1 = ḣ

(i)
n+1 + ∆ḣi

n+1 (128)

4. Repeat steps 2 and 3 until convergence in hn+1 is achieved.

The solution strategy for Cn+1 (solute solver) is similar to that used for hn+1. The
matrix M∗ used is M̂ + γ∆tK̂ but in the fluid phase (when C = Cl), M∗ is modified as
M∗ = M̂ + γ∆t(N̂(vn−1) + K̂).
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7. COUPLING OF THE VARIOUS SUBPROBLEMS AND OVERALL TIME
INTEGRATION SCHEME

The various subproblems considered here include the thermal, flow, solute species problems
as well as the update formulae for example the thermodynamical relations describing the
phase transformation, enthalpy/temperature relation, etc. The tolerance level used to define
convergence in all three main solution steps (heat, solute and momentum) is set at 10−12. The
error criterion is based on the relative error in the solutions obtained between Newton-Raphson
iterations within a time step. For example, in the fluid flow solver, the error norm is defined
as ‖∆U i+1‖/‖U i+1

n ‖ where U = [v, p]. The overall algorithm is summarized below:

1. At time tn, all fields such as velocity vn, enthalpy hn, temperature θn, concentration Cn,
liquid volume fraction ǫn, etc. are known.

2. Advance to time step tn+1 = tn + ∆t. Set j=0, v
j=0
n+1 = vn, hj=0

n+1 = hn, ǫj=0
n+1 = ǫn, etc.,

where j is an iteration index and the subscript denotes the time level.
3. Compute the mixture enthalpy hj+1

n+1 using the algorithm described in Section 6
(Equations (123)-(128)).

4. Compute the mixture concentration Cj+1
n+1 using the algorithm described in Section 6.

5. Update the temperature θj+1
n+1, liquid concentration Cl

j+1
n+1 and liquid volume fraction

ǫj+1
n+1 using the scheme described in Section 4.

6. Repeat steps 3 to 5 so that ‖θj+1
n+1−θ

j
n+1‖ < ǫtol, ‖Cl

j+1
n+1−Cl

j
n+1‖ < ǫtol, ‖ǫ

j+1
n+1−ǫ

j
n+1‖ <

ǫtol are all satisfied (ǫtol = 10−8 here denotes appropriate tolerance). If convergence is
satisfied, set hn+1 = hj+1

n+1, Cn+1 = Cj+1
n+1 and ǫn+1 = ǫj+1

n+1.

7. Compute the mixture velocity v
j+1
n+1 and pressure pj+1

ln+1
using the algorithm of Section

5.1. Upon convergence, set vn+1 = v
j+1
n+1, n = n+ 1 and proceed to step 2.

8. NUMERICAL EXAMPLES

To test the applicability of the macroscopic transport equations to the solid/liquid two-phase
system, a series of fluid flow problems in porous media are investigated using the present
model. All the example problems for flow in porous media have been taken from Nithiarasu
et al. [21, 22]. We then proceed to model a directional binary alloy solidification example.

8.1. Example 1: Double diffusive convection in a constant porosity medium

We consider a square cavity filled with a liquid of constant porosity. The main equations to
be solved are the momentum, energy and solute equations. A quadratic drag force term is
included in addition to the Darcy term in order to allow us to compare the present method
with the results given in [21]. The non-dimensional form of the momentum equation with the
quadratic drag force is as follows:

∂v

∂t
+ v · ∇

(v

ǫ

)
= −

Pr

Da

(1 − ǫ)
2

ǫ2
v −

1.75‖v‖(1 − ǫ)

(150Da)
1/2
ǫ2

v +Pr∇2v − ǫ∇p− ǫPr[RaT θ+RacC]eg

The energy equation is now expressed in terms of the temperature and the species equation
is similar to that discussed in the beginning of this report with the liquid concentration Cl
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Figure 3. Flow in a constant porosity medium: RaT = 2× 108, Rac = −1.8× 108, Da = 7.407× 10−7,
Pr = 1.0, ǫ = 0.6, Le = 2.0. A finite element mesh of 50 × 50 bilinear elements is used (Example 1).

replaced by concentration C. These are given by

∂θ

∂t
+ v · ∇θ = ∇2θ (129)

ǫ
∂C

∂t
+ v · ∇C = ∇.

( ǫ

Le
∇C

)
(130)

The non-dimensional variables used here are defined as in Equation (28) with ∆T = Tw − Ti,
∆C = Cw − Ci and Te = Ti. The subscripts w and i refer to the wall and initial conditions,
respectively, and Rk = Rc = 1.

The boundary and initial conditions for this problem are as follows:

• at x = 0: vx = vy = 0, θ = 1, C = 1
• at x = 1: vx = vy = 0, θ = 0, C = 0
• at y = 0: vx = vy = 0, ∂θ/∂n = 0, ∂C/∂n = 0
• at y = 1: vx = vy = 0, ∂θ/∂n = 0, ∂C/∂n = 0

The problem domain along with the boundary conditions and the finite element mesh consisting
of 50 × 50 bilinear Q4 elements is shown in Figure 3. The steady-state solution consisting of
the non-dimensional temperature and concentration fields and the stream function are shown
in Figure 4. These results compare very well with those reported in [21]. The time step size
used was varied starting from 0.00002 at early times to 0.0005 towards steady-state. Note
that the isotherms and iso-concentration lines were significantly affected by convection in the
porous region. With this example, double diffusive convection in a constant porosity medium
was simulated successfully thereby laying the foundations for solving more complex problems
in the following examples.
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Figure 4. Isotherms, stream function contours and iso-concentration lines for flow in a constant porosity
medium (Example 1).

8.2. Example 2: Natural convection in a fluid saturated variable porosity medium

The second example considers natural convection in a variable porosity medium. This problem
is obtained from [22]. The dimensionless 1× 1 domain along with the boundary conditions for
velocity and temperature are shown in Figure 5. The dimensionless length ℓ is taken as ℓ = 0.3.
The equations involved here are the same as those of Example 1 except that there is no species
equation. The wall porosity ǫw is taken as 0.4. The porosity increases linearly from 0.4 at the
wall to 1.0 (pure liquid) at the core. We considered two grids for the solution of this problem,
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Figure 5. Geometry and boundary conditions for the cavity filled with a variable porosity medium.
The finite element mesh consisting of 100 × 100 bilinear elements is also shown here (Example 2).

50× 50 and 100× 100, both slightly biased finite element meshes of bilinear Q4 elements. For
the coarse grid case, the time step size was varied from 0.00005 to 0.0005 and for the finer
grid case between 0.00005 to 0.0001. The finer finite element mesh is shown in Figure 5. The
steady state solutions obtained from the two grids are nearly identical indicating convergence
of the algorithm. The solution obtained with the finer grid is shown in Figure 6. Note that
the obtained results are close but do not match fully with those of [22] where no convergence
studies were conducted. It is also noted that in our own implementation of the method of
[22] using SUPG stabilization of the predictor and corrector flow solvers, the fractional step
algorithm could not converge when using the tied tolerance limits (10−12) set in this example.
In the current stabilized FEM implementation, a quadratic convergence was observed in the
flow solver and the algorithm was successfully completed in two to three iterations in each
time step. The present example problem was repeated for the case with ℓ = 0.2 and using an
80 × 80 mesh. The results are shown in Figure 7. From the computed isotherms, it is evident
that convection was dominant in the liquid core. In the porous region towards the boundaries
with decreasing porosity, conduction was still dominant.

8.3. Example 3: Binary alloy solidification with advection

This example considers the solidification of an aqueous mixture of ammonium chloride and
water (NH4Cl−H2O). This semi-transparent alloy system has been selected in many studies
mainly because it permits flow visualization [43]. Important physical constants and the non-
dimensional parameters used here are summarized in Tables III and IV, respectively. The
domain consists of a rectangular cavity of size 25 mm × 100 mm. Initially, all boundaries are
insulated, the cavity is charged with a superheated binary solution consisting of 70% water
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Figure 6. Isotherms and stream function with a 100 × 100 mesh (see Fig. 5) for natural convection in
a fluid saturated variable porosity medium for the case RaT = 1× 106, Pr = 1.0, Da = 6.665× 10−7,

ǫw = 0.4 and ℓ = 0.3. (Example 2).
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Figure 7. Isotherms and stream function for natural convection in a fluid saturated variable porosity
medium for the case RaT = 1 × 106, Pr = 1.0, Da = 6.665 × 10−7, ǫw = 0.4, ℓ = 0.2 and an 80 × 80

grid (Example 2).
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and 30% ammonium chloride and temperature 311 K and the system is in equilibrium. At
time t = 0+, the temperature of the left vertical wall is suddenly reduced to and maintained
at 223 K, which is less than the eutectic temperature 257.75 K. The right vertical wall is
maintained at the initial temperature, whereas the top and bottom horizonal walls remain
insulated.

In the implementation of this example, various bounds were applied in the update formulae
of Section 4. These bounds include preventing the enthalpy h from taking values higher than
hmax (the enthalpy of the hot wall, here 5.5997) or smaller than hmin (the enthalpy of the cold
wall, here 2.41). Similarly, the upper values of ǫ and Cl were set to 1. In the fluid flow solver,
θ and Cl are both bounded by the expression min(calculated value, 1.0) to prevent spurious
oscillations.

A 50× 50 mesh consisting of 2500 bilinear (Q4) elements and 2601 nodes was taken for this
example. The results obtained at the non-dimensional times t = 0.009, 0.018, 0.036, 0.071 and
0.142 are shown in Figures 8-12, respectively. The time step used for this example was varied
from 0.00001 at early times to 0.00002 near the end.

A comparison between the maximum velocity |vmax| and stream function ψ calculated here
with those reported in [7] is given in Tables V and VI, respectively. While the overall nature and
magnitude of these results are similar, some quantitative differences exist. This discrepancy
may be due to a large extent to the slightly different form of the governing equations used in
[7] where the convective term did not have an ǫ in the denominator, which as shown here arises
from the volume averaging process. In addition, the buoyancy terms were characterized by a
missing ǫ term and the form of the Darcy drag term was Pr(1 − ǫ)

2
/Da ǫ3 which arises directly

from the Kozeny-Karman relationship. In the governing equations discussed here, the Darcy
drag term takes the form Pr(1 − ǫ)

2
/Da ǫ2 which represents final volume-averaged form. The

equations here are similar to those discussed in [15] where the governing equations are derived
from volume-averaging. However, no results or numerical implementation were presented in
[15].

As can be seen from Figures 8-12, convection in the melt was thermally driven by heating
from the hot right wall and cooling through the solid and mushy zones. Solutally driven flow
was predicted in the mushy zone. The thermal and solutal buoyancy forces are opposing each
other due to the fact that water, the lighter solute of the two, was rejected into the liquid.
The two coupled flow mechanisms induced significant deviation from conduction dominated
conditions, and the thickness of the fully solidified and mushy regions varied with vertical
position. Furthermore, as a result of variations in thermal and solutal conditions near the
liquidus interface separating the mushy and melted zones, the shape of the liquidus interface
was highly irregular. The streamlines in these figures reveal more clearly the thermally driven
(counterclockwise) cell in the melt and the solutal driven (clockwise) cell in the mushy zone.
It is clear that the temperature and liquid composition fields have been distorted significantly
by advection effects.

The evolution of macrosegregation patterns was particularly studied. The steady-state
mixture concentration plot is shown in Figure 13. In Figures 10-12, there is a region where the
liquidus penetrates into the mushy zone. Within this region, interdendritic fluid is channeled.
The subsequent effects are revealed by the mixture concentration plot of Figure 13.
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Table III. Physical constants for the 30% NH4Cl - 70% H2O system

Symbol Value
Density of the solid ρs(kgm

−3) 1078
Density of the liquid ρl(kgm

−3) 1078
Thermal conductivity of the solid ks(Wm−1K−1) 0.393
Thermal conductivity of the liquid kl(Wm−1K−1) 0.468
Solid specific heat cs(Jkg

−1K−1) 1870
Liquid specific heat cl(Jkg

−1K−1) 3249
Diffusion coefficient D(m2/s) 4.8 × 10−9

Viscosity of the liquid µ(kgm−1s−1) 1.3 × 10−3

Latent heat hf (Jkg−1) 3.138 × 105

Permeability coefficient K0(m
2) 5.56 × 10−11

Thermal expansion coefficient βT (K−1) 3.832 × 10−4

Solutal expansion coefficient βc 0.257
Eutectic temperature Te(K) 257.75
Eutectic composition Ce 0.803
NH4Cl −H2O melting point Tm(K) 633.59
Equilibrium partition ratio kp 0.30

Table IV. Dimensionless groups and their characteristic values

Symbol Value
Prandtl number Pr 9.025
Lewis number Le 27.84
Darcy number Da 8.896 × 10−8

Thermal Rayleigh number RaT 1.938 × 107

Solutal Rayleigh number Rac −2.514 × 107

Dimensionless slope of the liquidus m 0.905
Heat conductivity ratio Rk 0.840
Heat capacity ratio Rc 0.576

Table V. A comparison between maximum velocities calculated here and those reported in [7]

Non-dimensional time |umax|calculated(mm/s) |umax|reported(mm/s)
0.009 6.94 5.5
0.018 6.62 7.4
0.036 7.03 8.1
0.071 7.38 7.8
0.142 7.26 7.9
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Table VI. A comparison between stream function in the pure liquid and porous region calculated here,
and those reported in [7]

ψcalculated ψreported

Non-dimensional time ψmax,l |ψmax,s+l| ψmax,l |ψmax,s+l|
0.009 1.71 ×10−2 7.38 ×10−4 1.53 ×10−2 6.05 ×10−4

0.018 1.32 ×10−2 9.08 ×10−4 1.70 ×10−2 8.26 ×10−4

0.036 1.47 ×10−2 7.78 ×10−4 2.04 ×10−2 6.74 ×10−4

0.071 1.78 ×10−2 4.45 ×10−4 1.71 ×10−2 1.97 ×10−4

0.142 1.81 ×10−2 1.41 ×10−4 1.71 ×10−2 6.19 ×10−5

9. CONCLUSIONS

A stabilized FEM formulation and implementation was presented for coupled transport
processes in porous media and for modeling melt flow in binary alloy solidification processes.
The governing macroscopic transport equations were derived by volume-averaging the
microscopic equations. Through various numerical examples it was concluded that the present
model converges nearly quadratically. Other methods implemented by the authors (including
the fractional step method) did not show such rates of convergence and in many occasions
failed to converge to the tolerance levels set in the examples presented here. More research is
currently conducted using the subgrid multiscale phenomena approach in order to compute a
unified stabilizing parameter τ that works well for all regions of porosity.
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Figure 8. Solidification behavior at t = 0.009: (a) velocity vectors (vmax = 6.94 mm/s), (b) streamlines,
(c) isotherms, (d) liquid concentration lines (Example 3).
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Figure 9. Solidification behavior at t = 0.018: (a) velocity vectors (vmax = 6.62 mm/s), (b) streamlines,
(c) isotherms and (d) liquid concentration lines (Example 3).
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Figure 10. Solidification behaviour at t = 0.036: (a) velocity vectors (vmax = 7.03 mm/s), (b)
streamlines, (c) isotherms and (d) liquid concentration lines (Example 3).
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Figure 11. Solidification behavior at t = 0.071: (a) velocity vectors (vmax = 7.38 mm/s) (b)
streamlines,(c) isotherms and (d) liquid concentration lines (Example 3).
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Figure 12. Solidification behavior at t = 0.142: (a) velocity vectors (vmax = 7.26 mm/s), (b)
streamlines, (c) isotherms and (d) liquid concentration lines (Example 3).
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Figure 13. Macrosegregation patterns at t = 0.142 (Example 3).
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