
A Stabilizing Output Based Nonlinear Model Predictive Control Scheme

B.J.P. Roset, M. Lazar, W.P.M.H. Heemels and H. Nijmeijer

Abstract— In this paper we present an asymptotically stabi-
lizing output feedback control scheme for a class of nonlinear
discrete-time systems. The presented scheme consists of an
extended observer interconnected with an NMPC controller
which represents a possible discontinuous state feedback control
law. Local asymptotic stability of the resulting closed-loop
system is proven.

I. INTRODUCTION

One of the problems in Nonlinear Model Predictive
Control (NMPC) that receives increased attention and has
reached a relatively mature stage, consists in guaranteeing
closed-loop stability. The approach usually used to ensure
nominal closed-loop stability in NMPC is to consider the
value function of the NMPC cost as a candidate Lyapunov
function, see the survey [1], for an overview. The stability
results heavily rely on state space models of the system,
and the assumption that the full state of the real system
is available for feedback. However, in practice it is rarely
the case that the full state of the system is available for
feedback. A possible solution to this problem is the use of
an observer. An observer can generate an estimate of the full
state using knowledge of the output and input of the system.
However, nominal stability results for NMPC usually do not
guarantee closed-loop stability of an interconnected NMPC-
observer combination. One of the potential approaches to
guarantee closed-loop stability in the presence of estimation
errors in the state, is to employ (inherent) robustness of the
model predictive controller. In [2] asymptotic stability of
state feedback NMPC is examined in face of asymptotically
decaying disturbances. As stated by the authors of [2], their
results are also useful for the solution of the output feedback
problem, although a formal proof is missing. A stability re-
sult on Observer Based Nonlinear Model Predictive Control
(OBNMPC) is reported in [3], under the standing assumption
that the NMPC value function and the resulting NMPC
control law are Lipschitz continuous. However, no nonlinear
observer which satisfies the assumptions made on a potential
nonlinear observer is given in [3]. The stability problem
of OBNMPC is revisited in [4], where only continuity of
the NMPC value function is assumed. In [4] robust global
asymptotic stability is shown under the assumption that there
are no state constraints present in the NMPC problem. Other
related results on OBNMPC can be found in [5]. However,
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in [5] a continuous-time perspective is taken, while we focus
on discrete-time nonlinear systems.

In this paper we investigate asymptotic stability of an OB-
NMPC scheme in the presents of input and state constraints.
The novelty of the proposed approach consists in providing a
generically applicable observer design method. Furthermore,
we employ the Input-to-State Stability (ISS) framework, e.g.
see [6], [7] and the references therein, to study the stability
of the resulting closed-loop system. The extended observer
design methodology from [8] is considered. The extended
observer design has the advantage that it works (locally) un-
der a very mild condition which is strong local observability
of the system dynamics. However, the drawback is that future
information of the controls applied to the system are needed,
which are normally not available and result in a causality
problem. Since in the NMPC framework predicted future
controls are available, this framework might be suitable to be
employed in combination with the proposed observer theory.
This idea has been pointed out in [9]. Still, conditions that
guarantee a priori closed-loop stability are lacking. Resolving
this issue is the main contribution of the current paper.

The paper is organized as follows. First, some basic
definitions and notations are given in Section II, together
with basic NMPC notions. The observer theory of [8] is
summarized in Section III. In Section IV we briefly explain
the proposed NMPC scheme from which the problem set-up
follows. In Section V we spell out how to separately design
an ISS NMPC controller and nonlinear observer. The stabil-
ity of the observer-NMPC interconnection is investigated in
Section VI. Conclusions are summarized in Section VII.

II. PRELIMINARIES

Let R, R+, Z and Z+ denote the set of real numbers,
non-negative reals, integers and non-negative integers, re-
spectively. Z≥i denotes the set {k ∈ Z|k ≥ i} for some i ∈ Z.
A function γ : R+ → R+ is a K -function if it is continuous,
strictly increasing and γ(0) = 0. A function β : R+×R+ →
R+ is a K L - function if, for each fixed k ∈R+, the function
β (·,k) is a K -function, and for each fixed s ∈ R+, the
function β (s, ·) is non-increasing and β (s,k) → 0 as k → ∞.
A function q : X× S → Rn with X ⊆ Rnx and S ⊆ Rns is
Lipschitz continuous w.r.t. x on the domain X×S, if there
exists a constant 0 ≤ Lq < ∞ such that ∀x1, x2 ∈ X and
∀s∈ S, |q(x1,s)−q(x2,s)| ≤ Lq|x1−x2|. Constant Lq is called
a Lipschitz constant of q w.r.t. x. A function f (x) of which
at least its first derivative exists on in its domain is denoted
by f ∈ C1. A function φ : R+ → Rn, i.e. φ(k), is for short-
hand notational purposes also denoted as φk. Furthermore,
limk→∞φk is a shorthand notation for limsupk→∞ φk. For any
x ∈ Rn, xi with i ∈ {1,2, ..,n} stands for the ith component
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of x and |x| stands for its Euclidean norm. For a matrix A ∈
Rn×m we define |A| � supx�=0 |Ax|/|x| as the induced matrix
norm. A pair of matrices (C ∈ Rp×n,A ∈ Rn×n) is called an
observable pair if and only if rank{C,CA, ..,CAn−1} = n.
For any function φ : Z+ → Rn, we denote ‖φ‖ = sup{|φk| :
k ∈ Z+}. An n× n square matrix is called Schur if all its
eigenvalues are within the unit disk. For a set S ⊆ Rn,
we denote by int(S ) its interior. For two arbitrary sets
S ⊆ Rn and P ⊆ Rn, let S ∼ P � {x ∈ Rn|x +P ⊆ S }
and S ⊕P � {x+y|x∈S ,y ∈P} denote their Pontryagin
difference and Minkowski sum, respectively.
A. Systems theory notions

Consider the following discrete-time nonlinear system
ξk+1 = Φ(ξk,vk)

ζk = G(ξk,vk)
, ξk=0 = ξ0, k ∈ Z+, (1)

where ξk ∈ Rn is the state, ζk ∈ Rl the output and vk ∈ V ⊆
Rm the input at discrete time k ∈ Z+. The input vk can be
an unknown disturbance at time k ∈ Z+. V is assumed to be
a known compact set with 0 ∈ int(V). For all disturbances
(inputs) v : Z+ → V, we use the notation MV to denote
a certain subset of disturbance functions v. Furthermore,
Φ : Rn ×Rm → Rn and G : Rn × Rm → Rl are nonlinear,
possibly discontinuous, functions. We assume ξe = 0 is an
equilibrium of the 0-input system, i.e. Φ(0,0) = 0 and that
G(0,0) = 0. A solution to (1) for an input function v and
initial condition ξ0 is denoted as ξ (·,ξ0,v).
Definition II.1 A set P ⊆ Rn is called a Robust Positively
Invariant (RPI) set for system (1) if for all ξk ∈ P it holds
that Φ(ξk,vk) ∈ P for all vk ∈ V.
Definition II.2 Let Z be a subset of Rn, with 0 ∈ int(Z ).
Then, system (1) is called locally
i) input-to-state stable (ISS) for initial conditions in Z if
there exist a K L -function βξ and a K -function γv

ξ such
that, for each input function v taking value in V and each
initial condition ξ0 ∈ Z , it holds that for each k ∈ Z+

|ξ (k,ξ0,v)| ≤ βξ (|ξ0|,k)+ γv
ξ (‖v‖), (2)

ii) input-to-output stable (IOS) for initial conditions in Z if
there exist a K L -function βζ and a K -function γv

ζ such
that, for each input function v taking value in V and each
initial condition ξ0 ∈ Z , it holds that for each k ∈ Z+

|ζ (k,ξ0,v)| ≤ βζ (|ξ0|,k)+ γv
ζ (‖v‖), (3)

iii) stable for initial conditions in Z if there exists a
K -function ϕ such that, for each initial condition ξ0 ∈ Z ,
it holds that for each k ∈ Z+

|ξ (k,ξ0,v)| ≤ ϕ(|ξ0|), ∀v ∈ MV, (4)

iv) asymptotically stable for initial conditions in Z if iii)
holds and lim

k→∞
|ξ (k,ξ0,v)| = 0, ∀v ∈ MV (5)

B. NMPC notions
Consider the following nominal and perturbed discrete-

time nonlinear systems
xk+1 = f (xk,uk), k ∈ Z+, (6a)

x̃k+1 = f (x̃k,uk)+ wk, k ∈ Z+, (6b)

where xk, x̃k ∈ Rn and uk ∈ Rm are the state and the input
at discrete-time k ∈ Z+, respectively. Furthermore, f : Rn ×

R
m → R

n and f (0,0) = 0. The vector wk ∈ W ⊆ R
n denotes

an unknown additive disturbance and W is assumed to be a
known compact set with 0 ∈ int(W). The nominal discrete-
time nonlinear system (6a) will be used in an NMPC scheme
to make an N time steps ahead prediction of the system
behavior. The system given by (6b) represents a perturbed
discrete-time system to which the NMPC controller based on
the nominal model (6a) will be applied. Throughout the paper
we assume that the state and the controls are constrained for
both systems (6a) and (6b) to some compact sets X ⊆ Rn

with 0 ∈ int(X) and U ⊆ Rm with 0 ∈ int(U).
For a fixed N ∈ Z≥1, let x[1,N]

k (x̃k,u
[0,N−1]
k ) �

[x�k+1|k, . . . ,x
�
k+N|k]

� denote the state sequence generated

by the nominal system (6a) from initial state xk|k � x̃k

at time k and by applying the input sequence
u[0,N−1]

k � [u�k|k, . . . ,u
�
k+N−1|k]

� ∈UN , where UN � U× ...×U.
Furthermore, let XT ⊆ X denote a desired target set that
contains the origin. The class of admissible input sequences
defined with respect to XT and state xk ∈ X is UN(x̃k) �

{u[0,N−1]
k ∈ UN | x[1,N]

k (x̃k,u
[0,N−1]
k ) ∈ XN , xk+N|k ∈ XT}.

Problem II.3 Let the target set XT ⊆ X and N ∈ Z≥1 be
given and let F : Rn → R+ with F(0) = 0 and L : Rn ×
R → R+ with L(0,0) = 0 be continuous bounded mappings.
At time k ∈ Z+, let x̃k ∈ X be given and minimize the
cost J(x̃k,u

[0,N−1]
k ) � F(xk+N|k)+∑N−1

i=0 L(xk+i|k,uk+i|k), with

prediction model (6a), over all u[0,N−1]
k ∈ UN(x̃k).

We call a state x̃k ∈ X feasible if UN(x̃k) �= /0. Similarly,
Problem II.3 is said to be feasible for x̃k ∈ X if UN(x̃k) �= /0.
Let X f (N) ⊆ X denote the set of feasible initial states with
respect to Problem II.3 and let VMPC : X f (N) → R+,

VMPC(x̃k) � inf
u[0,N−1]

k ∈UN (x̃k)

J(x̃k,u
[0,N−1]
k ) (7)

denote the value function corresponding to Problem II.3.
If there exists an optimal sequence of controls u[0,N−1]∗

k �

[u∗�k|k ,u
∗�
k+1|k, . . . ,u

∗�
k+N−1|k]

� that minimizes (7), see [10], the

infimum in (7) is a minimum and VMPC(x̃k) = J(x̃k,u
[0,N−1]∗
k ).

Then, an optimal NMPC control law is defined as uk =
κMPC(x̃k) � u∗k|k, k ∈ Z+. The NMPC control law κMPC, can
be substituted in (6b) and yields

x̃k+1 = f (x̃k,κMPC(x̃k))+wk, wk ∈ W ⊆ R
n, k ∈ Z+. (8)

III. EXTENDED OBSERVER THEORY: A SUMMARY

In this paper we use the extended observer theory proposed
in [8]. For notational brevity we consider the theory for the
single input single output case, although the theory applies in
the multiple input output case as well. Consider the system

xk+1 = f (xk,uk), yk = g(xk), xk=0 = x0, k ∈ Z+, (9)

where xk ∈Rn, uk ∈R and yk ∈R is the state, the control and
the output at discrete-time k ∈Z+, respectively. Furthermore,
f ,g∈C1, f : R

n×R
m →R

n and g : R
n →R have the property

that f (0,0) = 0 and g(0) = 0. The observer problem for
(9) deals with the question how to reconstruct the state
trajectory x(·,x0,u) on the basis of the knowledge of the
input u and the output y of the system. The observer design
problem in its full generality is a problem that is not yet fully
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solved for nonlinear systems of the form (9). A proposed
observer candidate applicable for a broad class of discrete-
time nonlinear systems is studied in this paper. To be more
precise, observer design for a class of systems that can be
expressed in the so called Extended Nonlinear Observer
Canonical Form (ENOCF) is considered. Systems of the
form (9) can be transformed, at least in a local sense, into the
ENOCF provided system (9) is locally strongly observable
[8], [11]. In Section III-B we give more details on this
issue. Observers that are based on the ENOCF are denoted
by extended observers. One of the major characteristics
that distinguishes extended observers form “conventional“
observers, is that not only the output yk and input uk at the
current time k are employed to obtain an estimate of the state
xk, but, also future inputs are needed.

A. Observers in the ENOCF
A system representation in ENOCF, or the z-dynamics for

brevity, reads as
zk+1=Azzk + fz(y

[1−n,0]
k ,u[1−n,0]

k ,u[1,n]
k )

yk =hz(Czzk,u
[1−n,0]
k )

, zk=0 = z0, (10)

where y[1−n,0]
k � [yk−n+1, ...,yk]

�, u[1−n,0]
k � [uk−n+1, ...,uk]

�,

u[1,n]
k � [uk+1, ...,uk+n]

�, zk ∈ Rn represent the past output,
input, future input and state in z-coordinates at discrete time
k ∈ Z+, respectively. Furthermore, fz : Rn ×Rn ×Rn → Rn

and hz : R×R
n → R are nonlinear functions, where hz is,

for a fixed input sequence, a one-to-one invertible output
function for the system in ENOCF and Cz � [0, ...,0,1].
Moreover, the pair (Cz,Az) is an observable pair. For the
exact structure of hz, fz and Az we refer the reader to [8].
Except for the future input sequence, all other sequences are
known at time k if input and output variables (measurements)
are buffered.

Observer candidates based on the system descriptions in
ENOCF were proposed in [8]. One of the observer candidates
simply consists of a “copy“ of the z-dynamics (10) added
with an output injection term (also known as an “innovation“
term), i.e.

ẑk+1 = Azẑk+ fz(y
[1−n,0]
k ,u[1−n,0]

k ,u[1,n]
k )+

[�1, ..., �n]
�(h−1

z,u fixed(yk,u
[1−n,0]
k )− ẑn,k),

(11)

with ẑn,k = Czẑk, ẑk=0 = ẑ0, and h−1
z,u fixed representing for a

fixed input sequence u[1−n,0]
k the inverse function of hz in

(10). Furthermore, �1, ..., �n represent the observer gains. The
observer gains can be used to assign a certain dynamic
behavior of the observer z-error dynamics. The z-error dy-
namics is the dynamics which describes the evolution of
the z-error defined at each time k ∈ Z+ as ez,k � zk − ẑk.
Due to the fact that the state zk of a system representation
in ENOCF appears linearly in the system equations and
all nonlinearity enters the state equations via the nonlinear
function fz, depending only on input and output sequences of
the system, a linear autonomous z-error dynamics is obtained.
The z-error dynamics for (10) and (11) reads as

ez,k+1 = Aeez,k, with Ae � (Az − [�1, ..., �n]
�Cz). (12)

Note that (Cz,Az) is an observable pair, this is sufficient for
the existence of observer gains �1, ..., �n to render Ae Schur.

B. Existence of the ENOCF
We explained that if the dynamics of a system is given

in the ENOCF (10), then it is always possible to design an
observer for this system. However, the following question
remains open: Which systems in the general from (9) can be
transformed into the ENOCF (10)?

In order to answer this question, we recall the notion of
strong local observability [11]. For convenience we first in-
troduce the observability map for non-autonomous discrete-
time nonlinear systems [12].
Definition III.1 The observability map ψ of the system
given by (9) is defined as:

ψ(xk,u
[0,n−2]
k ) �

[
g(xk) g( f 1(xk,uk)) . . .

g( f n−1(xk, [uk, ...,uk+n−2]
�))

]�
, where

f i(xk, [uk, ..,uk+i−1]
�) = f ( f (.. f ( f (xk ,uk),uk+1), ..,),uk+i−1),

with i ≥ 1.
Definition III.2 i) System (9) is strongly locally observable
at x0, if there exists an open neighborhood N ⊂ X around
x0 such that for all states x̆0 ∈ N and all admissible input
sequences u[0,n−2]

0 resulting in the same output sequence as

obtained by x0, i.e. ψ(x0,u
[0,n−2]
0 ) = ψ(x̆0,u

[0,n−2]
0 ), implies

that x0 = x̆0.
ii) System (9) is strongly locally observable on a domain

X, if i) holds for all x0 ∈ X.

A sufficient condition for system (9) to be strongly locally
observable at x0 is the following rank condition:

rank{∂ψ(xk,u
[0,n−2]
k )/∂xk|xk=x0} = n, ∀u[0,n−2]

k ∈ Un−1.

In [8] it is proven that if (9) is strongly locally observable
on a domain X, then there exists a function Ξ : Rn ×Rn−1×
Rn ×Rn−1 → Rn, i.e.

zk = Ξ(xk,y
[1−n,−1]
k ,u[1−n,0]

k ,u[1,n−1]
k ), (13)

which acts for fixed input and output sequences as a one-to-
one invertible map around all x0 ∈X relating state xk satisfy-
ing (9) and the state zk satisfying a system representation in
ENOCF (10). The interested reader can find a detailed proof
and the explicit structure of (13) in [8].

IV. THE OBNMPC SCHEME

Consider the system dynamics given by (9). The full state
xk is assumed not to be available for feedback. For feedback,
an estimate of the state, x̂k, is fed to an NMPC controller
instead, i.e. uk = κMPC(x̂k). The state estimate x̂k is obtained
by buffering input and output and using this information
in observer (11) in combination with the map Ξ−1

uy fixed which
represents, for fixed input and output sequences, the inverse
of Ξ in (13). The observer candidate (11), appears to be a
(local) observer for the class of strongly locally observable
systems under the assumption that the future input sequence
u[1,n]

k is known a priori. Still, the future input sequence is
not known a priori. However, under the assumption that the
prediction horizon of the NMPC controller is sufficiently
long (N ≥ n), one can employ a part of the predicted future
input sequence obtained by the NMPC controller at every
time step k, denoted by u[1,n]∗

k , as a guess for the unknown

sequence u[1,n]
k and inject this sequence to the observer.
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To show that this OBNMPC strategy can work, we will
investigate whether the resulting closed-loop system can be
rendered (locally) asymptotically stable to the origin, i.e.
ez � z− ẑ = 0 (ex = 0) and x = 0. An outline of the approach
is given next.

V. CONTROLLER & OBSERVER RESULTS

A. Controller
Since there are estimation errors present in the estimated

state which is injected to model predictive control law, we
will synthesize a model predictive controller which is robust
to these estimation errors. The input-to-state-stability (ISS)
framework is used for this purpose. Once the controller in
closed-loop with system (9), i.e.

xk+1 = f (xk,κMPC(xk + ex,k)), ex,k ∈ Ex ⊆ R
n, (14)

k ∈ Z+, is locally ISS with respect to the estimation error
ex, it is known that if the estimation error vanishes e.g.
ex,k → 0, then also xk → 0 for k → ∞. This follows directly
from the ISS property given in Definition II.2. Our approach
to synthesize an NMPC controller that renders (14) ISS, is
to employ existing NMPC schemes for which one can a
priori guarantee ISS properties with respect to additive model
uncertainty, like the one in [13], and then use the following
result to conclude about ISS of (14).
Theorem V.1 Let Lf be the Lipschitz constant of the function
f on the domain X × U with respect to its first argument.
Furthermore, let W � {w ∈ Rn | ‖w‖ ≤ µ} for some µ > 0,
Ex � {ex ∈ Rn | ‖ex‖ ≤ µ/(Lf + 1)} and let X̃ f (N)⊆X f (N)

be an RPI set for closed-loop system (8) with 0 ∈ int(X̃ f (N))

and X̃ e
f (N) � X̃ f (N) ∼ Ex with 0 ∈ int(X̃ e

f (N)). Suppose
uk = κMPC(x̃k) is an NMPC control law which renders system
(8) ISS, i.e. for additive disturbances w in W and initial
conditions x̃0 in X̃ f (N) there exist a K L -function βx̃ and
a K -function γw

x̃ such that for all k ∈ Z+

|x̃(k, x̃0,w)| ≤ βx̃(|x̃0|,k)+ γw
x̃ (‖w‖). (15)

Then, the NMPC control law uk = κMPC(xk +ex,k), renders (14)
ISS, i.e. for initial conditions x0 in X̃ e

f (N) and estimation
errors ex in Ex we have for each k ∈ Z+

|x(k,x0,ex)| ≤ βx(|x0|,k)+ γex
x (‖ex‖), (16)

with βx(|x0|,k) � βx̃(2|x0|,k), γex
x (‖ex‖) � βx̃(2|x0|,0) +

γw
x̃ ((Lf + 1)‖ex‖)+ ‖ex‖. Moreover, X̃ e

f (N) is rendered RPI
for the closed-loop system given in (14) with ex,k ∈ Ex.

Proof: To prove that X̃ e
f (N) is RPI for (14) we have to

show that xk ∈ X̃ e
f (N) and ex,k ∈ Ex implies f (xk,κMPC(xk +

ex,k))∈ X̃ e
f (N). Let xk ∈ X̃ e

f (N), we will now show that for

any ẽk ∈Ex f (xk,κMPC(xk +ex,k))+ ẽk ∈ X̃ f (N), which yields
f (xk,κMPC(xk + ex,k)) ∈ X̃ f (N) ∼ Ex � X̃ e

f (N). Indeed
f (xk,κMPC(xk + ex,k))+ ẽk = f (x̃k,κMPC(x̃k))+ wk (17)

with x̃k = xk + ex,k and wk = f (xk,κMPC(x̃k)) −
f (x̃k,κMPC(x̃k)) + ẽk. Utilizing the Lipschitz property of
f yields | f (xk,uk)− f (xk +ex,k,uk)| ≤ Lf |ex,k|. Thus it holds
that for and all k ∈ Z+ and ex,k ∈ Ex

|wk| = | f (xk,κMPC(x̃k))− f (xk + ex,k,κMPC(x̃k))+ ẽk|

≤ Lf ‖ex‖+‖ẽ‖ ≤ µ .
(18)

Due to (18) and the hypothesis in the Theorem V.1 we have
that f (x̃k,κMPC(x̃k))+wk ∈ X̃ f (N) and thus (17) implies that

for ex,k ∈ Ex f (xk,κMPC(xk +ex,k))+ ẽk ∈ X̃ f (N) for any ẽk ∈
Ex. We continue proving the ISS property (16) for (14). We
perform the following coordinate change on (14), i.e.

xk = x̃k − ex,k, ∀k ∈ Z+, (19)
which gives

x̃k+1 = f (x̃k − ex,k,κMPC(x̃k))+ ex,k+1. (20)
Rewriting (20) as x̃k+1 = f (x̃k − ex,k,κMPC(x̃k)) +
f (x̃k,κMPC(x̃k))− f (x̃k,κMPC(x̃k))+ ex,k+1 yields

x̃k+1 = f (x̃k,κMPC(x̃k))+ wk (21)
where wk � f (x̃k − ex,k,κMPC(x̃k))− f (x̃k,κMPC(x̃k)) + ex,k+1.
Thus for all k ∈ Z+ and ex,k,ex,k+1 ∈ Ex it holds that
|wk| =| f (x̃k − ex,k,κMPC(x̃k))− f (x̃k,κMPC(x̃k))+ ex,k+1|

≤| f (x̃− ex,k,κMPC(x̃k))− f (x̃k,κMPC(x̃k))|+‖ex‖

≤(Lf + 1)‖ex‖ ≤ µ .

(22)

Then, from the hypothesis in Theorem V.1 it follows that,
for x̃0 ∈ X̃ f (N), (21) is ISS w.r.t. additive disturbance wk.
Substituting (22) into (15) yields

|x̃(k, x̃0,ex)| ≤ βx̃(|x̃0|,k)+ γex
x̃ (‖ex‖), (23)

where γex
x̃ (‖ex‖) = γw

x̃ ((Lf + 1)‖ex‖). Since X̃ f (N) is an RPI
set for (21), ‖ex‖ ≤

µ
Lf +1 and relation (22) holds, it follows

that property (23) holds for all k ∈ Z+, ex,k,ex,k+1 ∈ Ex and
x̃0 ∈ X̃ f (N). Utilizing (19), property (23), the fact that x0 ∈

X̃ e
f (N) implies that x̃0 ∈ X̃ f (N) (due to X̃ e

f (N) � X̃ f (N)∼

Ex and (19)) and that X̃ e
f (N) is an RPI set for (14) we have

that for all x0 ∈ X̃ e
f (N), ex,k ∈ Ex and k ∈ Z+

x(k,x0,ex) = (x̃(k, x̃0,ex)− ex,k) ∈ X̃
e
f (N) ⊆ X f (N) ⊆ X

and |x(k,x0,ex)| = |x̃(k, x̃0,ex)− ex,k| ≤ |x̃(k, x̃0,ex)|+ |ex,k|

≤ βx̃(|x0 + ex,0|,k)+ γex
x̃ (‖ex‖)+ |ex,k|

≤ βx(|x0|,k)+ γex
x (‖ex‖).

As mentioned before, once (14) is ISS with respect to
the estimation error ex, the requirement which will lead to
asymptotic stability of the OBNMPC scheme is that the
estimation error vanishes i.e. ex,k → 0 for k → ∞. In case

the predicted future input sequence u[1,n]∗
k coincides with

the actual future input sequence u[1,n]
k , the error dynamics

appears to be linear by employing the coordinate change
(13). The requirement for asymptotic stability of ex (ez) is, in
this special case, that the system matrix Ae defining the linear
error dynamics is Schur. However, since the predicted future
input sequence u[1,n]∗

k does not coincide with the actual future

input sequence u[1,n]
k in general, the asymptotic stability result

of the estimation error dynamics pointed out in Section III
does not apply. A possible approach for dealing with this
problem is presented in the sequel.

B. Observer
Recall that all nonlinearity of the system in ENOCF

appears in the state equations as a nonlinear term, which only
depends on the input and output sequences of the system. In
case of mismatch between sequences in the applied observer
dynamics and the actual nominal dynamics in ENOCF,
elimination of the nonlinear term in the derivation of the
z-error dynamics is not realized. In this situation the error
dynamics (12) changes into

45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006 FrA01.4

4630



ez,k+1 = Aeez,k + ∆ fz(y
[1−n,0]
k ,u[1−n,0]

k ,u[1,n]∗
k ,e[1,n]

u,k ), (24a)

ex,k = ∆Ξ(ez,k, ẑk,y
[1−n,−1]
k ,u[1−n,0]

k ,u[1,n−1]∗
k ,e[1,n−1]

u,k ), (24b)

where e[1,n]
u,k � u[1,n]∗

k −u[1,n]
k ,

∆ fz � fz(y
[1−n,0]
k ,u[1−n,0]

k ,u[1,n]∗
k −e[1,n]

u,k )− fz(·, ·,u
[1,n]∗
k ),

∆Ξ � Ξ−1
uy fixed(ẑk −ez,k,y

[1−n,−1]
k ,u[1−n,0]

k ,u[1,n−1]∗
k −e[1,n−1]

u,k )−

Ξ−1
uy fixed(ẑk,y

[1−n,−1]
k ,u[1−n,0]

k u[1,n−1]∗
k )

with ∆ fz(·, ·, ·,0) = 0, ∆Ξ(0, ·, ·, ·, ·,0) = 0. Recall that Ae is a
matrix that can always be rendered Schur by an appropriate
choice of the observer gains. In the sequel we assume
Ae in (24a) is Schur. Equations (24a) and (24b) define
the error dynamics of the observer candidate in case of
feeding an imperfect predicted future input sequence to the
observer. The error dynamics (24a) has now become a non-
autonomous system. We will continue formulating an ISS
and IOS result of the error dynamics (24a), (24b) with
respect to e[1,n−1]

u,k as input. Since U is compact we have

that e[1,n]
u,k also lives in a compact set, i.e. e[1,n]

u,k ∈ Eeu where

Eeu � {e[1,n]
u ∈ Rn | ‖e[1,n]

u ‖ ≤ εeu} with εeu > 0. Before we
formulate the main result in this section we introduce Lfz as
being the Lipschitz constant of the function fz in (10) with
respect to the argument u[1,n]

k on the domain Yn ×Un ×Un,
where Yn � Y× . . .×Y with Y � {y ∈ R | y = g(x), x ∈ X}.
Furthermore, LΞ denotes a constant such that for all k ∈ Z+

|∆Ξ(ez,k, ·, ·, ·, ·,e
[1,n−1]
u,k )| ≤ LΞ(|ez,k|+ |e[1,n−1]

u,k |). (25)
The constant LΞ is directly related to the Lipschitz con-
stant of the function Ξ−1

uy fixed on the domain Sz × Yn−1 ×

Un ×Un−1 with respect to the arguments zk and u[1,n−1]
k ,

where Sz � {z ∈ Rn | z = Ξ(x,y[1−n,−1],u[1−n,0],u[1,n−1]), x ∈
X, y[1−n,−1] ∈ Yn−1, u[1−n,0] ∈ Un, u[1,n−1] ∈ Un−1}.
Assumption V.2 For the state xk of (9) (or (14)) there
holds xk ∈ X ∀k ∈ Z+ where X is a compact set with
0 ∈ int(X) such that X⊕Ex ⊆X with Ex � {ex ∈ Rn | ‖ex‖ ≤
LΞεeu(

�

1−η Lfz(εz +1)+1)} for some εz > 0 and with � ≥ 1,
η ∈ [0,1) such that |Ak

e| ≤ �ηk holds for all k ∈ Z+.

Theorem V.3 Let y[1−n,0]
k ∈ Yn, u[1−n,0]

k ,u[1,n]∗
k ∈ Un for all

k ∈ Z+. Suppose Assumption V.2 holds and (9) is strongly
locally observable on domain X. Then, the z-error dynamics
(24a) is ISS with respect to e[1,n]

u,k in Eeu as input and initial
conditions ez,0 in Ez � {ez,0 ∈ Rn | |ez,0| ≤

εz
1−η Lfz εeu}, i.e. for

all e[1,n]
u,k ∈ Eeu , ez,0 ∈ Ez and k ∈ Z+ it holds that

|ez(k,ez,0,e
[1,n]
u )| ≤ βez(|ez,0|,k)+ γeu

ez
(‖e[1,n]

u ‖), (26)

where βez(|ez,0|,k) � �ηk|ez,0|, γeu
ez

(‖e[1,n]
u ‖) � �

1−η Lfz‖e[1,n]
u ‖.

Moreover, the x-error dynamics defined by (24a), (24b) is
locally IOS with respect to e[1,n]

u as input, i.e. for all e[1,n]
u,k ∈Eeu

and ez,0 ∈ Ez we have that for all k ∈ Z+

|ex(k,ez,0,e
[1,n]
u )| ≤ βex(|ez,0|,k)+ γeu

ex
(‖e[1,n]

u ‖), (27)
where βex(|ez,0|,k) � LΞβez(|ez,0|,k), γeu

ex
(‖e[1,n]

u ‖) �

LΞ( �

1−η Lfz + 1)‖e[1,n]
u ‖. Furthermore, x̂k ∈ X ⊕ Ex for

all k ∈ Z+ and for all ez,0 ∈ Ez, e[1,n]
u,k ∈ Eeu and k ∈ Z+

|ex(k,ez,0,e
[1,n]
u )| ≤ LΞεeu((�/(1−η))Lfz(εz + 1)+ 1). (28)

Proof: Due to lack of space we just give a sketch of the
proof. For the full proof, see [14]. Due to the fact that (24a) is
linear in zk, Ae is Schur and fz is Lipschitz continuous w.r.t.
u[1,n]

k the ISS property of (24a) follows. IOS and boundedness

of ex(k,ez,0,e
[1,n]
u ) follows since e[1,n]

u,k lives in a compact set
and Ξ is well defined for all x̂k ∈ X⊕Ex ⊆ X and xk ∈ X

such that (25) holds.

VI. MAIN RESULTS ON THE INTERCONNECTION

So far, we have separately designed an NMPC controller
which is robust (ISS) to estimation errors (ex) and obtained
an observer for which the error dynamics is robust (IOS)
with respect to prediction errors e[1,n]

u present in the predicted
future input sequence u[1,n]∗ injected to the observer. In this
section we investigate the properties of the IOS observer
error dynamics interconnected with the ISS NMPC system
(14), i.e.

⎧⎨
⎩ez,k+1 = Aeez,k + ∆ fz(·, ·, ·,e

[1,n]
u,k )

ex,k = ∆Ξ(ez,k, ·, ·, ·, ·,e
[1,n]
u,k )

(29a)

xk+1 = f (xk,κMPC(xk + ex,k)), (29b)

where [ez,k,xk]
� ∈ R2n and e[1,n]

u,k ∈ Rn is the state and the
input of the interconnection, respectively. For the intercon-
nection in (29), with ”external” input e[1,n]

u,k having certain
properties, we want to prove (local) asymptotic stability.
Assumption VI.1 i) The NMPC controller admits a reg-

ularity property, i.e. ∃ θ1,θ2 > 0 s.t. |uk|k| ≤ θ1|x̂k| and
|uk+i|k| ≤ θ2|x̂k| for i = 1,2, ...,n;

ii) Lipschitz continuity of fz with respect to u[1,n]
k on the

domain Yn ×Un ×Un; iii) f ,g ∈C1.
Regularity can be imposed by simply including |uk|k| ≤
θ1|x̂k| and |uk+i|k| ≤ θ2|x̂k| for i = 1,2, ...,n as an additional
constrained to the NMPC problem (Problem II.3), for a priori
fixed θ1,θ2. For ease of exposition we assume the ISS gain
of the NMPC controller, i.e. γex

x , is linear in its argument.

Theorem VI.2 Let Ex � {ex ∈ Rn | ‖ex‖ ≤
LΞεeu(

�

1−η Lfz(εz +1)+1)} with εz > 0. Suppose Assumption
VI.1 holds and (9) is strongly locally observable on domain
X. Furthermore, let κMPC be an NMPC control law, obtained
using the result in Theorem V.1 with N ≥ n, which renders
(14) ISS w.r.t. input ex,k in Ex for initial conditions x0 in
X̃ e

f (N). Then, if
γex

eu
γeu

ex
(γex

x + 1) < 1 (30)
with γx

eu
γeu

ex
(γex

x + 1) = (θ1 + θ2)LΞ( �

1−η Lfz + 1)(γex
x + 1),

system (29) is asymptotically stable, for initial conditions
[ez,0,x0]

� in Ez × X̃ e
f (N) with Ez � {ez,0 ∈ R

n
∣∣ |ez,0| ≤

εz
1−η Lfzεeu}, for εz > 0.
To prove the theorem, we first formulate a technical lemma.
Lemma VI.3 Suppose N ≥ n and Assumption VI.1 holds.
Then, the signal e[1,n]

u,k satisfies
|e[1,n]

u (k,x,ex)| ≤ γx
eu
‖x‖+ γex

eu
‖ex‖, ∀k ∈ Z+, (31)

where the gains γx
eu

,γex
eu are defined as γx

eu
= γex

eu � (θ1 + θ2).
Proof: Using regularity (Assumption VI.1 (iii)) and

the triangle inequality, the induced norm of the difference
between the predicted future inputs and the real inputs can
be upper bounded for all k ∈ Z+ and i = 1, . . . ,n, i.e.
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|uk+i −uk+i|k| ≤ |uk+i|+ |uk+i|k| ≤ θ1|x̂k+i|+ θ2|x̂k|. (32)
Since, (32) holds ∀k ∈ Z+, i = 1, ..,n the result follows.
Regularity thus leads to property (31). Employing this prop-
erty we can prove the statement in Theorem VI.2.
Proof: The first part of the proof consists of proving that the
ISS (IOS) properties of subsystems (29a), (29b), as proven
in the previous sections, are preserved when they are inter-
connected into the cascade as described by (29). Secondly
stability, i.e. property (4), is proven for (29). The last part of
the proof consists in proving attraction of (29), i.e. property
(5). Part 1) Due to the hypothesis of Theorem VI.2 X̃ e

f (N)
is RPI for (29b). This implies that Assumption V.2 holds
with X = X̃ e

f (N) such that the results of Theorem V.3 hold.

This implies that the trajectory ex(k,ez,0,e
[1,n]
u ), satisfying the

dynamics of subsystem (29a), remains for each k ∈ Z+ and
initial conditions ez,0 in Ez in the set Ex, which implies
that the ISS property of subsystem (29b) as stated in the
hypothesis of Theorem VI.2 in preserved for all k ∈ Z+ and
initial conditions x0 in X̃ e

f (N).
Part 2) We can now conclude that property (16) and (26),

(27) of Theorem V.1 and V.3, respectively, hold. Property
(16), (26) and (27) imply that for all k ∈Z+ |x(k,x0,e

[1,n]
u )| ≤

≤ βx(|x0|,0)+ γex
x (βex(|ez,0|,0)+ γeu

ex
(‖e[1,n]

u ‖)), (33a)

|ez(k,ez,0,e
[1,n]
u )| ≤ βez(|ez,0|,0)+ γeu

ez
(‖e[1,n]

u ‖), (33b)

|ex(k,ez,0,e
[1,n]
u )| ≤ βex(|ez,0|,0)+ γeu

ex
(‖e[1,n]

u ‖). (33c)

Employing property (31), (33a) and (33c) yields

‖e[1,n]
u ‖≤γx

eu
βx(|x0|,0)+γx

eu
γex

x βex(|ez,0|,0)+γx
eu

γex
x γeu

ex
(‖e[1,n]

u ‖)

+ γex
eu

βex(|ez,0|,0)+ γex
eu

γeu
ex

(‖e[1,n]
u ‖).

(34)
Since γx

eu
= γex

eu we have

‖e[1,n]
u ‖≤γex

eu
βx(|x0|,0)+γex

eu
γex

x βex(|ez,0|,0)+γex
eu

βex(|ez,0|,0)

+ γex
eu

γeu
ex

(γex
x + 1)‖e[1,n]

u ‖, or

‖e[1,n]
u ‖≤(1− γex

eu
γeu

ex
(γex

x + 1))−1(γex
eu

βx(|x0|,0)

+ γex
eu

βex(|ez,0|,0)+ γex
eu

βex(|ez,0|,0)) � χ(|ez,0|, |x0|).
(35)

Then, from the expressions obtained by substituting (35)
into (33a) and (33b) one can conclude that there exists a
K -function ϕ(|[ez,0,x0]

�|) such that property (4) in Defini-
tion II.2 holds for (29) ∀e[1,n]

u ∈MEeu
, where MEeu

= {e[1,n]
u :

Z+ → Eeu | ‖e[1,n]
u ‖ ≤ χ(|ez,0|, |x0|)}.

Part 3) Property (16), (27) and (31) of Theorem V.1, V.3
and Lemma VI.3, respectively, imply

lim
k→∞

|x(k,x0,ex)|≤γex
x

(
lim
k→∞

|ex,k|

)
, (36a)

lim
k→∞

|ex(k,ez,0,e
[1,n]
u )|≤γeu

ex

(
lim
k→∞

|e[1,n]
u,k |

)
, (36b)

lim
k→∞

|e[1,n]
u (k,x,ex)|≤γx

eu

(
lim
k→∞

|xk|

)
+γex

eu

(
lim
k→∞

|ex,k|

)
. (36c)

Substitution of (36a) and (36b) in (36c) and subsequently
substituting (36a) in the obtained expression and using the
fact that γx

eu
= γex

eu , yields

lim
k→∞

|e[1,n]
u (k,x,ex)| ≤ γex

eu
γeu

ex
(γex

x + 1)

(
lim
k→∞

|e[1,n]
u,k |

)
. (37)

Due to the small gain property (30) in the hypothesis of
Theorem VI.2 and the fact that limk→∞|e

[1,n]
u,k | is well defined

(due to compactness of U we know that limk→∞|e
[1,n]
u,k | is

finite) we have that (37) is true only if
lim
k→∞

|e[1,n]
u (k,x,ex)| = 0. (38)

Property (38) together with (36a), and property (26) imply
lim
k→∞

|[ez(k,ez,0,e
[1,n]
u ),x(k,x0,e

[1,n]
u )]�| = 0. (39)

VII. CONCLUSIONS
We proposed an observer based nonlinear predictive con-

trol scheme for the class of strongly observable nonlinear
discrete-time systems. It is proven that a separately designed
NMPC state feedback controller, ISS w.r.t. observer errors,
and an extended observer in closed-loop with the system
results in a (locally) asymptotically stable closed-loop system
under the satisfaction of a small gain argument. Furthermore,
for the design of an NMPC state feedback controller that is
ISS w.r.t. observer errors a result is obtained which enables
one to employ state feedback NMPC controllers, designed
for rendering the closed-loop system ISS with respect to
additive disturbances, in a scenario where the closed-loop
system has to be rendered ISS w.r.t. observer errors.
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