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A STABLE ALGORITHM FOR FLAT RADIAL BASIS FUNCTIONS
ON A SPHERE∗

BENGT FORNBERG† AND CÉCILE PIRET†

Abstract. When radial basis functions (RBFs) are made increasingly flat, the interpolation
error typically decreases steadily until some point when Runge-type oscillations either halt or reverse
this trend. Because the most obvious method to calculate an RBF interpolant becomes a numerically
unstable algorithm for a stable problem in the case of near-flat basis functions, there will typically
also be a separate point at which disastrous ill-conditioning enters. We introduce here a new method,
RBF-QR, which entirely eliminates such ill-conditioning, and we apply it in the special case when the
data points are distributed over the surface of a sphere. This algorithm works even for thousands of
node points, and it allows the RBF shape parameter to be optimized without the limitations imposed
by stability concerns. Since interpolation in the flat RBF limit on a sphere is found to coincide with
spherical harmonics interpolation, new insights are gained as to why the RBF approach (with nonflat
basis functions) often is the more accurate of the two methods.
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1. Introduction. Numerical computations in spherical geometries are ubiqui-
tous in many application areas, such as geophysics (including weather and climate
modeling), astrophysics, and quantum mechanics. The apparent simplicity of such
geometries can be very deceptive. The impossibility to place more than 20 nodes
in a completely uniform pattern on a spherical surface severely complicates most
high-order numerical methods, which usually rely on highly regular lattice-type node
layouts. Although double Fourier methods [12], [29], [30], [39], spherical harmon-
ics methods [2], [18], [40], [42], and spectral element methods [17], [41], [43] all can
achieve spectral accuracy (meaning that errors decay faster than algebraically with
an increasing number of node points), all of these approaches suffer from different
computational limitations, as noted in [7].

Radial basis functions (RBFs), when used as a basis for spectral methods in
general geometries or on curved surfaces, feature a striking algebraic simplicity. They
have recently been used very successfully by Flyer and Wright for purely convection-
type problems on a spherical surface [7], with an implementation for the shallow
water equations forthcoming [8]. However, challenges include numerical conditioning
and computational speed. The purpose of the present study is to introduce a new
computational algorithm, which successfully addresses the first of these two issues.
Our presentation of this RBF-QR algorithm does not imply that we always recommend
the use of very flat basis functions. It will depend entirely on the application whether
the best value of the shape parameter falls inside or outside the range that was already
previously available. What the RBF-QR algorithm achieves is that it makes also
the flat basis function range fully available for exploration (and, if appropriate, for
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FLAT RADIAL BASIS FUNCTIONS ON A SPHERE 61

exploitation). For the convection-type test problem just mentioned, this has already
been investigated [13].

The essential concept behind the RBF-QR algorithm is that a finite set of near-flat
RBFs, although forming a terrible base, nevertheless span an excellent approximation
space. The RBF-QR algorithm creates a completely different and very well condi-
tioned base within exactly this same space. Using instead this new base will thus lead
to identical results for interpolation, etc., apart from the fact that all ill-conditioning
now has been eliminated. In order to carry out this base change in a stable way, the
RBFs are first reexpressed as certain truncated infinite sums, after which it transpires
that the ill-conditioning can be eliminated analytically, before any actual numerics is
performed. The latter includes, among other steps, a QR factorization.

This paper starts with a very brief introduction to RBF interpolation, and we
then quote some relevant results from the literature, such as the potential significance
of the flat basis function limit. The subsequent sections include an introduction to the
RBF-QR method, a discussion of computational issues related to it, and numerical
test results. The ability to compute stably for all values of the shape parameter leads
to novel comparisons between RBFs and spherical harmonics (SPH) interpolations
(since the latter are found to arise in the limit of flat RBF). The main observations
are summarized in a concluding section.

2. RBF methodology. In order to explain and to motivate the RBF-QR algo-
rithm, we first give a brief introduction to RBFs and then note how they can be used
for solving PDEs.

2.1. The form of an RBF interpolant. In the case of interpolating data
values fi at scattered distinct node locations xi, i = 1, 2, . . . n, in d dimensions, the
basic RBF interpolant takes the form

(2.1) s(x) =

n∑
i=1

λi φ(‖x− xi‖),

where || · || denotes the Euclidean norm. The expansion coefficients λi are determined
by the interpolation conditions s(xi) = fi; i.e., they can be obtained by solving a
linear system A λ = f. Written out in more detail:

(2.2)

⎡
⎢⎢⎢⎣

φ(‖x1 − x1‖) φ(‖x1 − x2‖) · · · φ(‖x1 − xn‖)
φ(‖x2 − x1‖) φ(‖x2 − x2‖) · · · φ(‖x2 − xn‖)
...

...
...

φ(‖xn − x1‖) φ(‖xn − x2‖) · · · φ(‖xn − xn‖)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

λ1

λ2

...
λn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

f1

f2

...
fn

⎤
⎥⎥⎥⎦ .

In this study, we will limit our attention to the radial functions φ(r) listed in Table
2.1. The parameter ε is known as the shape parameter. As ε → 0, the basis functions
become increasingly flat.

On domains with boundaries, polynomial terms are sometimes added to (2.1),
together with some constraints on the coefficients [33]. On a spherical surface, the
most natural counterpart is to include some low-order SPH [20]. We will not explore
such variations here.

2.2. RBFs for interpolation and for solving PDEs. For about two decades
following the introduction of RBFs by Hardy in 1971 [19], they were mainly used for
multivariate data interpolation in a rapidly expanding range of applications. In 1990,
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62 BENGT FORNBERG AND CÉCILE PIRET

Table 2.1

Definitions of some infinitely differentiable radial functions. The shape parameter ε controls
their “flatness.”

Name of RBF Abbreviation Definition

Multiquadric MQ
√

1 + (εr)2

Inverse multiquadric IMQ
1√

1 + (εr)2

Inverse quadratic IQ
1

1 + (εr)2

Gaussian GA e−(εr)2

Kansa introduced a meshless collocation method to solve PDEs using RBF inter-
polants [21], [22]. In this method, a smooth RBF interpolant to the scattered data is
differentiated analytically in order to approximate partial derivatives. Kansa used this
approach to solve parabolic, elliptic, and viscously damped hyperbolic PDEs. This
approach is typically spectrally accurate (when boundary conditions are implemented
appropriately). Another notable advantage lies in the fact that it does not require any
kind of a mesh, as opposed to the case with most other types of PDE solvers, such as
finite difference, finite element, and finite volume methods. Creating a suitable mesh
over an irregular domain in several dimensions can be highly challenging.

The flat basis function limit ε → 0 would appear to be severely ill-conditioned,
since all of the basis functions then become constant, and thus linearly dependent.
The expansion coefficients λi will then diverge to plus or minus infinity, causing large
numbers of cancellations to arise both when solving (2.2) and when evaluating (2.1).
The first indication that the limit nevertheless could be of some interest arose in
connection with analysis of interpolants on infinite equispaced lattices, as summa-
rized in [3, Chapter 4]. However, especially after the apparent ill-conditioning was
expressed in 1993 as a fundamental “uncertainty principle” [37], the limit was not
considered seriously for numerical use for almost a decade. This started to change in
2002 when Driscoll and Fornberg [6] proved that, in this flat basis function limit, a
one-dimensional (1-D) RBF interpolant in general reduces to Lagrange’s interpolation
polynomial. For extensions of this result to more dimensions, see [26], [38]. Already
the 1-D result led to the realization that the complete task, going from data to in-
terpolant, is well-conditioned even though the separate steps of going from data to
RBF expansion coefficients and then from RBF expansion coefficients to interpolant
both can be ill-conditioned. Interpolation with near-flat RBFs has in much of the
RBF literature been mistaken as an ill-conditioned problem partly because the most
obvious numerical method then is unstable.

As noted further in [15], and used to great advantage for solving elliptic PDEs
in [24], the polynomial limit results imply that the RBF approach for PDEs can be
viewed as a generalization (to irregular domains and scattered nodes) of the pseu-
dospectral (PS) method [1], [10], [44].

Another apparent contradiction is the following: Why would we ever consider
nearly (or totally) flat basis functions when solving convective-type PDEs, for which
the solutions might not be smooth at all—maybe even discontinuous? The RBF-QR
algorithm shows that, as ε → 0, the flat basis functions span exactly the same space
as do the (distinctly nonflat, but still very smooth) SPH. We can then draw a parallel
to the very successful Fourier-PS methods which, for long-time integration, perform
excellently even in cases of nonsmooth solutions ([10, section 4.2]).
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FLAT RADIAL BASIS FUNCTIONS ON A SPHERE 63

Closed form expressions for RBF interpolation and differentiation errors in 1-D
periodic settings are given in [11]. The errors for smooth data are found to not only de-
crease exponentially fast with an increasing number of nodes but also decrease rapidly
in this ε → 0 limit (unless potentially adverse effects due to the Runge phenomenon
are present, as discussed in [16]). These observations all agree very well both with
theoretical analysis [27], [47] and with computational experience in multidimensional
settings with irregular node layouts [24].

The contour-Padé method [14], based on contour integration in a complex ε-plane,
confirmed that RBF interpolants s(x) can be computed in a stable way, using standard
precision arithmetic, even in the limit of ε → 0. Although this algorithm formed a
very successful tool for discovering and further exploring several key features of RBF
approximations [15], [24], [46], it was limited to a relatively low number of data points
(n � 200 in 2-D). This algorithm demonstrated explicitly that there is no fundamental
barrier against stable computation in the flat basis function limit. It thus confirmed
that use of (2.2) followed by (2.1) can be viewed merely as a potentially ill-conditioned
approach for computing something that is intrinsically well-conditioned.

Spherical geometries are of particular interest in many geophysical and astrophys-
ical applications. As noted in the introduction, Flyer and Wright [7] were the first
to use RBFs to solve purely convective (i.e., nondissipative) PDEs over a spherical
surface. Their implementation followed what we here denote by “RBF-Direct,” i.e.,
direct use of (2.2) followed by (2.1).

The comments above set the context which motivates the present work. We intro-
duce here a new computational algorithm RBF-QR, which, for RBF computations on
a sphere, eliminates the ill-conditioning of RBF-Direct for small values of ε (at least
for up to several thousands of points). However, it will still depend on the application
whether the low ε regime, now made computationally available, is advantageous or
not.

3. The RBF-QR method. Compared to the contour-Padé method, the RBF-
QR method is faster and algorithmically simpler and it can be used for much larger
numbers of points. Although we introduce it here only for the special case of nodes
located on the surface of a sphere, it is being developed also for general domains in a
parallel research effort [25]. In this present case with nodes on a sphere, we measure
all distances that appear in (2.1) and in (2.2) as is customary between points in a 3-D
space and not geodesically along great circle arcs.

3.1. The concept of an equivalent basis. The key idea behind the RBF-QR
method is to replace, in the case of small ε, the extremely ill-conditioned RBF basis
with a well-conditioned one that spans exactly the same space. It turns out to be
possible to do this in a way that does not at any stage involve numerical cancellations.
The concept of the base change is somewhat reminiscent of how {1, x, x2, . . . , xn}
forms a very ill-conditioned basis over [−1, 1], whereas the Chebyshev basis {T0(x),
T1(x), T2(x), . . . , Tn(x)} is much better conditioned. Since the spaces spanned by the
two bases are identical, the results of interpolation using the two bases will also be
identical, except for the fact that computations with the latter are vastly more stable
with respect to the influence of truncation and rounding errors.

In the present case of RBF-QR applied on the surface of a sphere, the new equiv-
alent bases that we introduce will be seen to converge to the spherical harmonics basis
as ε → 0. We therefore next give a brief introduction to spherical harmonics.D
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64 BENGT FORNBERG AND CÉCILE PIRET

Fig. 3.1. Spherical harmonics basis functions of the first five orders (cf. the functional forms
for the first three orders, given in Table 3.1). The shades of gray reflect numerical values; dashed
lines mark zero contours.

3.2. SPH. These functions are the counterparts on the surface of the unit sphere
S2 (defined by x2+y2+z2 = 1) to Fourier modes around the periphery of the unit circle
S1 (defined by x2 + y2 = 1). Although both of these function sets form orthonormal
bases, they differ significantly when used numerically, especially when it is needed
to switch between spectral coefficients and node values. A Fourier expansion with n
coefficients corresponds naturally to node values at n equispaced points. In numerical
SPH calculations, it is most common to use in physical space latitude-longitude–type
node sets involving about three times as many nodes as there are SPH coefficients
and then rely on least squares when transferring data from node values to coefficients.
Although no direct counterpart to the FFT algorithm is available, several relatively
fast algorithms for large numbers of modes have been proposed, e.g., [5], [31], [32], [34].

Closed form expressions for the SPH basis functions tend to be fairly complicated.
The definition that we adhere to here agrees for (x, y, z) ∈ S2 with
(3.1)

Y ν
μ (x, y, z) =

⎧⎨
⎩

√
2μ+1
4π

√
(μ−ν)!
(μ+ν)!P

ν
μ (z) cos(ν tan−1( yx )), ν = 0, 1, . . . , μ,√

2μ+1
4π

√
(μ+ν)!
(μ−ν)!P

−ν
μ (z) sin(−ν tan−1( yx )), ν = −μ, . . . ,−1.

Here P ν
μ (z) are the associated Legendre functions. The functions Y ν

μ (x) corresponding
to μ = 0, 1, . . . , 4 are illustrated in Figure 3.1.

As indicated in Table 3.1, the SPH can alternatively be viewed as simple polyno-
mials restricted to (x, y, z) ∈ S2. For each value of μ, the μ2 SPH of that and lower
orders span the space of all independent polynomials in (x, y, z) of degree μ (after the
dependence x2 + y2 + z2 = 1 has been accounted for).
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FLAT RADIAL BASIS FUNCTIONS ON A SPHERE 65

Table 3.1

SPH basis functions of the first few orders, expressed as low degree polynomials in x, y, z, which
are then evaluated over the unit sphere (x, y, z) ∈ S2, i.e., x2 + y2 + z2 = 1.

Y ν
μ (x) ν = −2 ν = −1 ν = 0 ν = 1 ν = 2

μ = 0 1
2
√
π

μ = 1 - 1
2

√
3
2π

y 1
2

√
3
π
z - 1

2

√
3
2π

x

μ = 2 1
2

√
15
2π

xy - 1
2

√
15
2π

zy 1
4

√
5
π

(3z2 − 1) - 1
2

√
15
2π

zx 1
4

√
15
2π

(x2 − y2)

Table 3.2

SPH expansion coefficients corresponding to different choices of smooth RBFs.

Radial function Expansion coefficients cμ,ε

MQ
−2π(2ε2+1+(μ+1/2)

√
1+4ε2)

(μ+3/2)(μ+1/2)(μ−1/2)

(
2

1+
√

4ε2+1

)2μ+1

IMQ 4π
(μ+1/2)

(
2

1+
√

4ε2+1

)2μ+1

IQ 4 π3/2μ!

Γ(μ+ 3
2
)(1+4ε2)μ+1 2F1(μ + 1, μ + 1; 2μ + 2; 4ε2

1+4ε2
)

GA 4π3/2

ε2μ+1 e
−2ε2Iμ+1/2(2ε2)

A SPH expansion of a function defined over the unit sphere takes the form

(3.2) s(x, y, z) =

∞∑
μ=0

μ∑
ν=−μ

cμ,ν Y ν
μ (x, y, z).

Truncated SPH expansions (μ ≤ μmax) feature a completely uniform resolution over
the surface of the sphere. As was noted in the introduction, truncated SPH expansions
provide one of the main approaches for reaching spectral accuracy when numerically
solving PDEs on a sphere [2], [18], [40], [42]; see especially [7] for a comparison between
this and other methodologies (including RBFs).

3.3. Expansion formulas for RBFs in terms of SPH. We next quote some
formulas that can be used to transform a basis made up of RBFs to one based on
SPH. Hubbert and Baxter [20] give expressions for the coefficients cμ,ε in expansions
of the form

(3.3) φ(‖x− xi‖) =

∞∑
μ=0

μ∑
ν=−μ

′

{cμ,ε ε2μ Y ν
μ (xi)} Y ν

μ (x),

where the symbol
∑′

implies halving the ν = 0 term of the sum. The results for the
radial functions in Table 2.1 are shown in Table 3.2 (including IQ, not given in [20]).
A key feature of these formulas is that, even for vanishingly small ε, all coefficients can
be calculated without any loss of significant digits caused by numerical cancellations.
Below are some notes on these expansions:

• In the formula for IQ, 2F1(. . . ) denotes the (Gauss) hypergeometric function.
• In the formula for GA, Iμ+1/2 denotes a Bessel function of the second kind.

It follows from the identity
Iμ+1/2(2ε

2)

ε2μ+1 = 1
Γ(μ+1)

√
π

∫ 1

−1
e2ε2t(1 − t2)kdt that

the apparent singularity of cμ,ε at ε = 0 is a removable one.
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Table 3.3

Expansion coefficients for two cases of piecewise smooth radial functions.

Radial function Definition Expansion coefficients cμ

Cubic |r|3 36π
(μ+ 5

2
)(μ+ 3

2
)(μ+ 1

2
)(μ− 1

2
)(μ− 3

2
)

Thin plate splines (TPS) r2 log |r| 16π
(μ+2)(μ+1)μ(μ−1)

• In practice, we truncate the infinite outer sum in (3.3) after a finite number
of terms. This process is explained in more detail in section 3.5.2.

• The shape parameter ε appears in (3.3) both in the factors ε2μ and also inside
the expansion coefficients cμ,ε. Because the matrix algebra in the RBF-QR
algorithm requires numerical values of cμ,ε, we need to give a numerical value
to ε at the beginning of our algorithm. However, to eliminate any danger of
numerical underflow, we wait until the very end to introduce the ε2μ factors
seen in (3.3) (at which point they can be factored out and discarded).

• Expansions are possible also for piecewise smooth RBFs. The expansions
then take the form

φ(‖x− xi‖) =

∞∑
μ=0

μ∑
ν=−μ

′

{cμ Y ν
μ (xi)} Y ν

μ (x),

with some examples of expansion coefficients given in Table 3.3. Since such
RBFs do not give spectral accuracy, and also have no ε dependence (and
therefore no flat limit), these cases are of less interest in the present context.

3.4. Matrix representation and QR factorization.

3.4.1. Change of basis. Following (3.3), we rewrite the original ill-conditioned
basis as expansions in terms of successive SPH as
(3.4)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(‖x− x1‖) =
c0,ε
2 Y 0

0 (x1)Y
0
0 (x)

+ε2c1,ε{Y −1
1 (x1)Y

−1
1 (x) + 1

2Y
0
1 (x1)Y

0
1 (x) + Y 1

1 (x1)Y
1
1 (x)}

+ε4c2,ε{......} + ε6c3,ε{.........} + ε8c4,ε{............} + · · · ,

φ(‖x− x2‖) =
c0,ε
2 Y 0

0 (x2)Y
0
0 (x)

+ε2c1,ε{Y −1
1 (x2)Y

−1
1 (x) + 1

2Y
0
1 (x2)Y

0
1 (x) + Y 1

1 (x2)Y
1
1 (x)}

+ε4c2,ε{......} + ε6c3,ε{.........} + ε8c4,ε{............} + · · · ,
...

...

φ(‖x− xn‖) =
c0,ε
2 Y 0

0 (xn)Y 0
0 (x)

+ε2c1,ε{Y −1
1 (xn)Y −1

1 (x) + 1
2Y

0
1 (xn)Y 0

1 (x) + Y 1
1 (xn)Y 1

1 (x)}

+ε4c2,ε{......} + ε6c3,ε{.........} + ε8c4,ε{............} + · · · .
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This can be rewritten in matrix×vector form as follows:

⎡
⎢⎢⎢⎢⎣

φ(‖x− x1‖)
φ(‖x− x2‖)
...

φ(‖x− xn‖)

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

c0,ε
2 Y 0

0 (x1)
ε2c1,ε

1 Y −1
1 (x1)

ε2c1,ε
2 Y 0

1 (x1)
ε2c1,ε

1 Y 1
1 (x1) · · ·

c0,ε
2 Y 0

0 (x2)
ε2c1,ε

1 Y −1
1 (x2)

ε2c1,ε
2 Y 0

1 (x2)
ε2c1,ε

1 Y 1
1 (x2) · · ·

· · · · · · · · · · · · · · ·
c0,ε
2 Y 0

0 (xn)
ε2c1,ε

1 Y −1
1 (xn)

ε2c1,ε
2 Y 0

1 (xn)
ε2c1,ε

1 Y 1
1 (xn) · · ·

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y 0
0 (x)

Y −1
1 (x)

Y 0
1 (x)

Y 1
1 (x)

Y −2
2 (x)

Y −1
2 (x)

Y 0
2 (x)

Y 1
2 (x)

Y 2
2 (x)
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.5)

= B · Y (x).

The key observation in what follows is that, if we multiply both sides of (3.5)
with any nonsingular matrix from the left, the effect will be that we have formed new
linear combinations of existing basis functions; i.e., the space that the functions span
has not changed.

A QR factorization of B creates in the upper triangular matrix new linear com-
binations of the rows of B. In this process, elements in different columns are never
combined with each other. Powers of ε will appear in the same pattern in the result-
ing upper triangular matrix as they did in the B-matrix, and no mixing of large and
small elements will occur, no matter the value of ε. We thus factor B into a product
B = Q · E · R, where Q is unitary, E is diagonal, and R is upper triangular. From
the observations above, B · Y (x) and R · Y (x) will then span the same space. We
will do this factorization in such a way that the ill-conditioning issue becomes entirely
confined to the E-matrix and thus has disappeared from the numerical problem when
using R · Y (x) in place of the original basis B · Y (x). The essential point that makes
the RBF-QR algorithm work is that the ill-conditioning of the original base given in
the left-hand side of (3.5) and (3.6) has become entirely confined to the E-matrix.
This matrix both enters and disappears from the calculation analytically ; i.e., it never
enters into the numerical calculation of the R · Y (x).

Written in equation form:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ(‖x− x1‖)
φ(‖x− x2‖)
φ(‖x− x3‖)
φ(‖x− x4‖)
...

φ(‖x− xn‖)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

Q

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
ε2

ε2

ε2

ε4

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦D
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×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ . . . . . . . . . . . .
∗ ∗ ∗ . . . . . . . . .

∗ ∗ . . . . . . . . .
∗ . . . . . . . . .

∗ ∗ ∗ ∗ ∗ . . . .
∗ ∗ ∗ ∗ . . . .

. . . . . . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y 0
0 (x)

Y −1
1 (x)

Y 0
1 (x)

Y 1
1 (x)

Y −2
2 (x)

Y −1
2 (x)

Y 0
2 (x)

Y 1
2 (x)

Y 2
2 (x)

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.6)

= (Q · E ·R) · Y (x),

where Q is a unitary n× n matrix, E is a n× n diagonal matrix, and R is an upper
triangular n × m matrix (where the value for m will be discussed shortly in section
3.5.2). The entries marked as “∗” in the matrix R are of size ε0. These appear only in
upper triangular square blocks along the main diagonal, of sizes 1×1, 3×3, 5×5, etc.
All of the other nonzero entries of R, marked as “·”, contain a higher-order leading
power of the form ε2k, k = 1, 2, . . . ; i.e., they vanish in significance when ε → 0. As
noted already, the entries in the matrix×vector product R · Y (x) form a basis which
spans exactly the same space as the original (as ε → 0, extremely ill-conditioned)
RBF basis.

Another way to arrive at the same R · Y (x) representation is described next.
Noting the structure of B from (3.5), we can factor it

B =

⎡
⎣ Y 0

0 (x1) Y −1
1 (x1) · · ·

Y 0
0 (x2) Y −1

1 (x2) · · ·
· · · · · · · · ·

⎤
⎦
⎡
⎢⎣

ε0

ε2

. . .

⎤
⎥⎦
⎡
⎢⎣

c0,ε
2

c1,ε
. . .

⎤
⎥⎦ .

After QR decomposing the first factor

⎡
⎣ Y 0

0 (x1) Y −1
1 (x1) · · ·

Y 0
0 (x2) Y −1

1 (x2) · · ·
· · · · · · · · ·

⎤
⎦ =

⎡
⎣ Q

⎤
⎦
⎡
⎢⎣

r11 r12 · · ·
r22 · · ·

. . .

⎤
⎥⎦ ,

we have

⎡
⎣ B

⎤
⎦ =

⎡
⎣ Q

⎤
⎦
⎡
⎢⎣

r11 r12 · · ·
r22 · · ·

. . .

⎤
⎥⎦
⎡
⎢⎣

ε0

ε2

. . .

⎤
⎥⎦
⎡
⎢⎣

c0,ε
2

c1,ε
. . .

⎤
⎥⎦ .

Transferring the diagonal matrix with powers of ε from the right-hand side to the left-
hand side of the upper triangular matrix gives exactly the same result as shown in
(3.6). An advantage of this second description (followed in the code in the appendix)
is that it more clearly conveys that the QR decomposition can be carried out in a way
that is completely independent of the choice of RBF (and of the value of ε).

In the computational algorithm, we make a minor additional base modification.
The matrix R can be represented as [R1|R2], where R1 is a square upper triangular
matrix. Therefore, assuming that the diagonal entries in R are nonzero, we can further
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factor R = R1[ I |(R1)
−1R2]. This produces the new basis [ I |(R1)

−1R2] · Y, which
we will be using:
(3.7)

[ I |(R1)
−1R2]·Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 . . . .
1 . . . .

1 . . . .
1 . . . .

1 . . . .
1 . . . .

1 . . . .
1 . . . .

1 . . . .
1 . . . .

. . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y 0
0 (x)

Y −1
1 (x)

Y 0
1 (x)

Y 1
1 (x)

Y −2
2 (x)

Y −1
2 (x)

Y 0
2 (x)

Y 1
2 (x)

Y 2
2 (x)

...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Each new basis function is now a SPH, with a perturbation. These perturbations
fade away as ε → 0 because all of the entries denoted with “·” are of size O(ε2) or
smaller. With the previous assumption that the diagonal entries of R are nonzero,
this shows that, as ε → 0, the terms of the new basis converge to the successive
SPH. If the number of nodes (i.e., the number of rows and columns in the collocation
matrix A) is a perfect square n = μ2

0, then the RBF interpolants converge to a
unique SPH expansion (3.2) with μ < μ0. The computational procedure of using the
new (but mathematically equivalent) basis remains stable as ε → 0 on the further
assumption that the nodes are distributed in such a way that SPH interpolation is
nonsingular. Although this is very likely in any practical case, it follows from a simple
argument that no node-independent basis functions can exist in more than 1-D such
that nonsingularity is assured for all distinct node locations [28].

3.5. Computational considerations. In this section, we discuss the two issues
of code complexity and the truncation strategy for the infinite expansions in (3.7).

3.5.1. Code complexity. A Matlab code for the RBF-QR algorithm is pre-
sented in the appendix. The cost is dominated by the QR factorization, and it will
therefore have an O(n3) operation count, just as the RBF-Direct method (for which
the work is dominated by one matrix inversion). Figure 3.2 displays the computa-
tional times of both methods versus the number of nodes n. The trends appear as
slightly more favorable than O(n3), since Matlab’s data handling becomes more effi-
cient as matrices become larger. The figure also shows that the computational time
diminishes with ε. This is due to the fact that a smaller ε allows for earlier truncation
in the expansions (3.4) and fewer columns need to be retained, at first in R and then
in R−1

1 R2. This truncation procedure is described in more detail below.

3.5.2. Truncation. The matrix B in (3.5) features from the left 1 column with
elements of size O(ε0), 3 columns of size O(ε2), 5 columns of size O(ε4), etc., corre-
sponding to μ = 0, 1, 2, . . . , respectively, in (3.3). With n data points, the matrix B
will have n rows. We construct this matrix B as {B0, B1, B2, . . . } where the matrix
block Bμ is of size n × (2μ + 1). To ensure that all of the new basis functions are
obtained to machine precision (16 significant digits), we include enough blocks that
the max norm of the last included one is less than 10−16 of the max norm of the block
that contains the nth column of B.
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RBF−QR
RBF−Direct

O(n3)

Fig. 3.2. Plot of the computational time for the RBF-QR method versus the number of nodes
for ε = 0.5, 0.1, and 0.001. These are compared against the times for RBF-Direct and with a line
showing the slope corresponding to O(n3). The times are given for a Matlab implementation running
under Windows on a 1.86 GHz PC.

4. Numerical tests for interpolation on a sphere. We initially consider
two different node distributions, both containing n = 1849 nodes: (a) near-uniform
distribution, obtained as the solution to a minimum energy problem—as would arise
from the equilibrium of freely moving and mutually repelling equal electric charges
[45] and (b) uniformly random distribution, as generated, for example, by the Matlab
statements

n = 1849

z = 2*rand(1,n)-1;

r = sqrt(1-z.^2);

theta = 2*pi*rand(1,n);

x = r.*cos(theta);

y = r.*sin(theta);

(the number n = 1849 = 432 gives the same number of nodes as there are coefficients
in a SPH expansion that is truncated to μ ≤ 42, as commonly used in SPH tests, and
then denoted “T42” [41]). The two types of node distributions are shown in Figure
4.1. We consider the following two test functions:

(4.1)
Gaussian bell: g(x, y, z) = e−( 2.25

R arccos x)2 ,

Cosine bell: c(x, y, z) =

{
1
2 (1 + cos( π

R arccosx)) x > cosR,
0 x ≤ cosR,

of smoothness C∞ and C1, respectively. R is here a parameter which controls how
peaked the bells are, going from spikelike at R = 0 to flat for increasing R. The cosine
bell features a jump in the second derivative at the edge of its region of support. An
equivalent way to describe the two bells is to replace arccosx by ω, where ω is the
angle, as seen from the center of the sphere, between a point on the sphere and the
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b. Random node distributiona. Near uniform node distribution

Fig. 4.1. Different point distributions for n = 1849 node points on the unit sphere S2.

Fig. 4.2. Three illustrations of the Gaussian bell (a) as a function of x, according to (4.1), (b)
gray scale on a sphere surface, viewed from the positive x-direction, and (c) unrolled on a spherical
coordinate ϕ, θ-plane (with the n = 1849 near-uniform node locations also marked).

center of the respective bell. The support of the cosine bell is then given by ω < R.
Figures 4.2 and 4.3 show each of these two test functions in three different ways. In
parts (c) of these figures, as well as in the rest of this paper, we adhere to the standard
definition of spherical coordinates

⎧⎨
⎩

x = ρ sinϕ cos θ,
y = ρ sinϕ sin θ,
z = ρ cosϕ

and restrict this to ρ = 1 for the unit sphere. The angle ϕ is the colatitude and is
measured from the z-axis.
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72 BENGT FORNBERG AND CÉCILE PIRET

Fig. 4.3. Cosine bell, displayed in the same manner as the Gaussian bell in Figure 4.2.

The test functions are sampled over the two node sets, and the max norm errors
of the MQ RBF interpolants are then evaluated (by dense sampling over the sphere)
for different values of ε, using both RBF-Direct (based on (2.2) and (2.1)) and the
new RBF-QR method.

4.1. Results for the Gaussian bell. Figure 4.4 shows the interpolation errors
as functions of ε. Near-uniform node distributions are seen to give 2–3 orders of mag-
nitude higher accuracy than random node distributions. Even with ill-conditioning
issues eliminated, it is still detrimental to the overall accuracy that some small areas,
purely by chance, have become much less resolved than others. We will thus not
consider the random node case any further in this study.

When ε is decreased, RBF-Direct fails around ε = 1, whereas the RBF-QR
method can be used for the remaining interval 0 ≤ ε ≤ 1. The rapid improvement in
accuracy as ε is lowered from 102 to 100 is similar to what is described analytically
(in a simplified setting) in [11]. This improvement trend ceases around ε = 1. In the
case of the wide bell (R = 0.6), this is due to the limited precision available in 64-bit
floating point. In the case of the narrower bell (R = 0.4), the machine rounding level
is not reached. The errors increase slightly as ε approaches the SPH case of ε = 0.
Figure 4.5 displays in more detail how the interpolation error over the sphere varies
with both ε and R. We have here run RBF-Direct to as low ε-values as possible before
it breaks down due to ill-conditioning and used RBF-QR for the remaining ε-range.
The large flat region for large R and small ε is a direct consequence of the 10−16

precision of standard floating point. The lower ε-limit for RBF-Direct is imposed by
ill-conditioning. There is no equally sharp upper limit for RBF-QR, but the conver-
gence in (3.4) degrades severely when ε increases above one. In the present case of
n = 1849, both methods work well in a narrow overlap region for ε slightly larger
than one. For lower values of n, the overlap becomes wider, whereas it may vanish for
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Fig. 4.4. Log-log plots of the max norm error vs. values of ε for the Gaussian bells of two
different widths. The subplots in the top row show the results with nearly uniform nodes and the
bottom row with random nodes. In both cases, the number of nodes was n = 1849. Note that the
vertical scales are different between the R = 0.6 and R = 0.4 plots.
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Fig. 4.5. Gaussian bell interpolation error for different values of the bell width R and MQ
shape parameter ε, in the case of n = 1849 near-uniform nodes. The dark line at an ε-value slightly
larger than one marks where we changed the algorithm in the calculation.

higher values of n (leaving some gap in the ε-range in which neither of the methods
will be practical unless the arithmetic precision is increased beyond standard double
precision).

D
ow

nl
oa

de
d 

02
/2

4/
16

 to
 1

41
.2

19
.4

4.
39

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

74 BENGT FORNBERG AND CÉCILE PIRET
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Fig. 4.6. Log-log plot of the max norm errors in the cosine bell test case, using MQ, with
n = 1849 nodes.
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Fig. 4.7. Cosine bell interpolation error for different values of the bell width R and MQ shape
parameter ε, in the case of n = 1849 near-uniform nodes.

4.2. Results for the cosine bell. Figure 4.6 shows that the lack of smooth-
ness of the cosine bell (featuring a discontinuous second derivative around its edge)
somehow causes much larger errors than in the Gaussian bell case, with especially
large errors arising as ε → 0 (the SPH case). Figure 4.7 displays, in the same style as
used earlier in the Gaussian bell case, the interpolation error as a function of ε and
R. In the Gaussian bell case, errors decrease very rapidly with increasing R (note
the different vertical scales in the two columns of subplots in Figure 4.4). The cosine
bell case is fundamentally different in that errors drop only weakly with increasing R
and also grow significantly as ε → 0. A more detailed discussion of this seemingly less
favorable situation (and two remedies that greatly improve the accuracy at small ε)
can be found in [13].

5. Some comments on the choice of “optimal” ε. By using RBF-Direct for
large ε and RBF-QR for small ε, we have the capability to compute RBF interpolants
(and also to solve PDEs) over a sphere for all values of ε (at least for up to a few
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thousands of nodes when using standard double precision). This offers new opportu-
nities for exploring issues such as determining an “optimal” ε and assessing whether
truncated SPH expansions (i.e., RBF in the ε → 0 limit) provide a “best possible”
representation of functions on a sphere.

As Figures 4.4 and 4.6 illustrated (and which has been seen in many earlier cal-
culations, e.g., [4], [9], [23], [35], [36]), the interpolation error when using RBF-Direct
often decreases monotonically with decreasing ε until some point ε = εic when dis-
astrous ill-conditioning kicks in. This has frequently raised the question of whether
still much better accuracy would be attained if the ill-conditioning somehow could be
eliminated. Previous results using the contour-Padé algorithm [14], [24] have shown
that this sometimes can be the case. With RBF-QR, we can now extend such tests to
much larger numbers of nodes. What the results in Figures 4.4 and 4.6 show is that the
trend of accuracy improvement (with decreasing ε) can get broken even without ill-
conditioning playing a role, although typically in a less abrupt way. There will often be
a quite well defined error minimum at some location εopt. In the presently chosen test
cases for interpolation, it so happened that εic ≈ εopt, whereas in other contexts, e.g.,
solving elliptic equations [24] or generating scattered-node finite-difference-type sten-
cils [46], it often happened that εic > εopt. Major improvements were then achieved
by computing well into a regime that was not reachable with RBF-Direct.

6. Conclusions. The recent work by Flyer and Wright [7] clearly demonstrated
the strengths of RBF methods for solving convective-type PDEs over spherical geome-
tries (computationally, the most difficult type of PDEs since they are dissipation-free;
also the most important case for many geophysical applications). The best accuracy
was then obtained when the basis functions were so flat (condition number for the
RBF-Direct approach often around or above 108) that the possibility of adverse effects
from ill-conditioning could not be ignored.

We have here presented a new computational algorithm RBF-QR that can over-
come this ill-conditioning even in the ε → 0 limit, thereby allowing a more extensive
study of how the choice of this shape parameter will affect computational accuracy.
The present test cases for interpolation have been followed up by tests for both short-
and long-time integration of a convective PDE [13]. While RBF-QR is the second
algorithm (following contour-Padé [14]) that allows stable computations when ε → 0,
it is the first one which is practical in the case of thousands of data points on the
surface of the sphere.

It follows from the RBF-QR algorithm that ε → 0 leads to the same results as
when using SPH basis functions. One might therefore ask why not just use SPH as a
computational basis on the sphere. There are several reasons for not doing that:

• The limit of ε → 0 is often not the best parameter choice.
• RBF can combine spectral accuracy with local refinement wherever this is

needed (cf. discussion on RBF Runge phenomenon in [16]); SPH offers no
such opportunities.

• Nonsingularity is guaranteed whenever ε > 0 but not for all node sets if ε = 0.

7. Appendix: A Matlab code for the RBF-QR algorithm. The test code
below computes and then plots the RBF interpolant to n data points. These data
are obtained from evaluating a test function at n random locations, marked as black
dots in Figure 7.1. The test function and the error (difference between it and the
interpolant) are also plotted. The shape parameter ε, the radial function, the number
of data points to interpolate, the resolution of the grid, and the test function can all
be easily modified in the initial driver part of the code. In the code listings below, the

D
ow

nl
oa

de
d 

02
/2

4/
16

 to
 1

41
.2

19
.4

4.
39

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

76 BENGT FORNBERG AND CÉCILE PIRET
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Fig. 7.1. The graphical outout of the demo code, showing the interpolation error to be of the
order 10−6 when ε = 10−8 in the n = 100 node test problem.

driver code is given first, followed by the main function RBF-QR and two supporting
functions, named COEF and SPH. The function COEF evaluates expansion coeffi-
cients according to the formulas in Table 3.2, and the routine SPH evaluates spherical
harmonics basis functions at specified locations. The code produces the output shown
in Figure 7.1.

% =============================== DRIVER CODE ======================================

clear all; close all

epsilon = 10^-6;

rbf = ’IQ’; % Basis function; valid choices: ’MQ’,’IMQ’,’IQ’,’GA’

n = 100; % Number of points to interpolate

rand(’seed’,4078) % Create n random node locations

theta = 2*pi*rand(1,n); randCos = 2*rand(1,n)-1; phi = acos(randCos);

[x,y,z] = sph2cart(theta,phi-pi/2,1);

fi = @(x,y,z) x.*exp(y-z); % Test function to interpolate

res = 50; m = res^2; % Resolution of the grid for evaluating the interpolant

f = fi(x,y,z); % Evaluate the data values to interpolate

% ___________________ Evaluation of the interpolant by RBF-QR ______________________

[theta_grid,phi_grid] = meshgrid(linspace(0,2*pi,res),linspace(0,pi,res));

theta_eval = reshape(theta_grid,1,res^2); phi_eval = reshape(phi_grid,1,res^2);

[xe,ye,ze] = sph2cart(theta_eval,phi_eval-pi/2,1);fe = fi(xe,ye,ze);

[beta R] = RBFQR(theta,phi,epsilon,f,rbf); index = 1;
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for mu = 0:sqrt(size(R,1))-1 % Each loop adds a block of columns of SPH of order mu

% to Y, evaluated at the grid points

Y(:,index:2*mu+index) = SPH(mu,theta_eval,phi_eval);

index = index + 2*mu + 1;

end

f_RBFQR = (Y*R*beta)’; % Call to RBFQR routine

% __________________ Plot of the interpolant and of the error ______________________

colormap(gray);

subplot(2,1,1)

surf(theta_grid,phi_grid,reshape(f_RBFQR,res,res),’FaceColor’,’none’,’LineWidth’,0.05)

axis([0 2*pi 0 pi min(f_RBFQR) max(f_RBFQR)]); hold on;

plot3(theta,phi,f,’k.’,’MarkerSize’,10); title(’Plot of the interpolant’);

view([-10,50]);xlabel(’\phi’); ylabel(’\theta’); set(gca,’ydir’,’reverse’);

subplot(2,1,2)

surf(theta_grid,phi_grid,reshape((f_RBFQR-fe),res,res),’FaceColor’,’none’,...

’LineWidth’,0.05)

axis([0 2*pi 0 pi min((f_RBFQR-fe)) max((f_RBFQR-fe))]); hold on;

plot3(theta,phi,zeros(size(f)),’k.’,’MarkerSize’,10); title(’Plot of the error’);

view([-10,50]); xlabel(’\phi’); ylabel(’\theta’); set(gca,’ydir’,’reverse’);

% ============================== FUNCTION RBFQR ====================================

function [beta, R_new] = RBFQR(theta,phi,epsilon,f,rbf)

% This function finds the RBF interpolant, with shape parameter epsilon, through the

% n node points (theta,phi) with function values f. It outputs beta, the expansion

% coefficients of the interpolant with respect to the RBF_QR basis. It calls the

% functions SPH(), which gives spherical harmonic values and COEF() which provides the

% expansion coefficients.

n = length(theta); Y = zeros(n); B = zeros(n);

mu = 0; index = 1; orderDifference = 0;

mu_n = ceil(sqrt(n))-1; %the order of the n_th spherical harmonic

while orderDifference < -log10(eps) %eps is the machine precision

% Each loop adds a block of columns of SPH of order mu to Y and to B.

% Compute the spherical harmonics matrix

Y(:,index:2*mu+index) = SPH(mu,theta,phi);

% Compute the expansion coefficients matrix

B(:,index:2*mu+index) = Y(:,index:2*mu+index)*COEF(mu,epsilon,rbf);

B(:,index+mu) = B(:,index+mu)/2;

% Truncation criterion

if mu > mu_n-1

orderDifference = log10(norm(B(:,[mu_n^2+1:(mu_n+1)^2]),inf)/...

norm(B(:,(mu+1)^2),inf)*epsilon^(2*(mu_n-mu)));

end

index = index+2*mu+1; mu = mu+1; % Calculate column index of next block

end

[Q,R] = qr(B); % QR-factorization to find the RBF_QR basis

E = epsilon.^(2*(repmat(ceil(sqrt(n+1:mu^2))-1,n,1) - ... % Introduce the

repmat(ceil(sqrt(1:n))-1,mu^2-n,1)’)); % powers of epsilon
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%Solve the interpolation linear system

R_new = [eye(n),E.*(R(1:n,1:n)\R(1:n,n+1:end))]’; beta = Y*R_new\f’;

% ================================ FUNCTION COEF ======================================

function c_mu = COEF(mu,epsilon,rbf)

% Returns the expansion coefficients in the cases of MQ, IMQ and GA radial functions.

switch rbf

case ’MQ’

c_mu = -2*pi*(2*epsilon^2+1+(mu+1/2)*sqrt(1+4*epsilon^2))/...

(mu+1/2)/(mu+3/2)/(mu-1/2)*(2/(1+sqrt(4*epsilon^2+1)))^(2*mu+1);

case ’IMQ’

c_mu = 4*pi/(mu+1/2)*(2/(1+sqrt(4*epsilon^2+1)))^(2*mu+1);

case ’IQ’

c_mu = 4*pi^(3/2)*factorial(mu)/gamma(mu+3/2)/(1+4*epsilon^2)^(mu+1)*...

hypergeom([mu+1,mu+1],2*mu+2,4*epsilon^2/(1+4*epsilon^2));

case ’GA’

c_mu = 4*pi^(3/2)*exp(-2*epsilon^2)*besseli(mu+1/2,2*epsilon^2)/...

epsilon^(2*mu+1);

end

% =============================== FUNCTION SPH =====================================

function SPHBlockMu = SPH(mu,theta,phi)

% Returns a matrix containing the spherical harmonics of order mu, evaluated at the

% (theta,phi) node points.

n = length(theta);L_mu_nu(:,1:mu+1) = legendre(mu,cos(phi))’; a = 0:mu;

t = repmat(sqrt(factorial(1+mu-a-1)./factorial(1+mu+a-1)),n,1) ...

.*L_mu_nu(:,a+1).*exp(i*repmat(a,n,1).*repmat(theta’,1,mu+1));

SPHBlockMu = sqrt((2*mu+1)/(4*pi))*[imag(t(:,end:-1:2)),real(t)];
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REFERENCES

[1] J. P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd ed., Dover, New York, 2001.
[2] G. L. Browning, P. N. Hack, and A. Swarztrauber, A comparison of three different nu-

merical methods for solving differential equations on the sphere, Monthly Weather Review,
117 (1989), pp. 1058–1075.

[3] M. D. Buhmann, Radial Basis Functions: Theory and Implementations, Cambridge University
Press, London, 2003.

[4] R. Carlson and T. A. Foley, The parameter R2 in multiquadric interpolation, Comput.
Math. Appl., 21 (1991), pp. 29–42.

[5] J. R. Driscoll and D. M. Healy, Computing Fourier transforms and convolutions on the
2-sphere, Adv. Appl. Math., 15 (1994), pp. 202–250.

[6] T. A. Driscoll and B. Fornberg, Interpolation in the limit of increasingly flat radial basis
functions, Comput. Math. Appl., 43 (2002), pp. 413–422.

[7] N. Flyer and G. Wright, Transport schemes on a sphere using radial basis functions, J.
Comput. Phys., 226 (2007), pp. 1059–1084.

[8] N. Flyer and G. Wright, Solving the Nonlinear Shallow Water Wave Equations Using Radial
Basis Functions, manuscript.

[9] T. A. Foley, Near optimal parameter selection for multiquadric interpolation, J. Appl. Sci.
Comput., 1 (1994), pp. 54–69.

[10] B. Fornberg, A Practical Guide to Pseudospectral Methods, Cambridge University Press,
Cambridge, 1996.

[11] B. Fornberg and N. Flyer, Accuracy of radial basis function interpolation and derivative
approximations on 1-D infinite grids, Adv. Comput. Math., 23 (2005), pp. 5–20.

D
ow

nl
oa

de
d 

02
/2

4/
16

 to
 1

41
.2

19
.4

4.
39

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FLAT RADIAL BASIS FUNCTIONS ON A SPHERE 79

[12] B. Fornberg and D. Merrill, Comparison of finite difference and pseudospectral methods
for convective flow over a sphere, Geophys. Res. Lett., 24 (1997), pp. 3245–3248.

[13] B. Fornberg and C. Piret, On choosing a radial basis function and a shape parameter when
solving a convective PDE on a sphere, J. Comput. Phys., to appear.

[14] B. Fornberg and G. Wright, Stable computation of multiquadric interpolants for all values
of the shape parameter, Comput. Math. Appl., 48 (2004), pp. 853–867.

[15] B. Fornberg, G. Wright, and E. Larsson, Some observations regarding interpolants in the
limit of flat radial basis functions, Comput. Math. Appl., 47 (2004), pp. 37–55.

[16] B. Fornberg and J. Zuev, The Runge phenomenon and spatially variable shape parameters
in RBF interpolation, Comput. Math. Appl., 54 (2007), pp. 379–398.

[17] F. X. Giraldo and T. E. Rosmond, A scalable spectral element Eulerian atmospheric model
(SEE-AM) for NWP: Dynamical core tests, Monthly Weather Review, 132 (2004), pp. 133–
153.

[18] J. J. Hack and R. Jakob, Description of a Global Shallow Water Model Based on the Spectral
Transform Method, Technical note TN 343 STR NCAR, 1992.

[19] R. L. Hardy, Multiquadric equations of topography and other irregular surfaces, J. Geophys.
Res., 76 (1971), pp, 1905–1915.

[20] S. Hubbert and B. Baxter, Radial basis functions for the sphere, in Progress in Multivariate
Approximation, Internat. Ser. Numer. Math. 137, Birkhauser, Boston, 2001, pp. 33–47.

[21] E. J. Kansa, Multiquadrics - A scattered data approximation scheme with applications to
computational fluid-dynamics. I. Surface approximations and partial derivative estimates,
Comput. Math. Appl., 19 (1990), pp. 127–145.

[22] E. J. Kansa, Multiquadrics - A scattered data approximation scheme with applications to
computational fluid-dynamics. II. Solutions to parabolic, hyperbolic and elliptic partial
differential equations, Comput. Math. Appl., 19 (1990), pp. 147–161.

[23] E. J. Kansa and Y. Hon, Circumventing the ill-conditioning problem with multiquadric ra-
dial basis functions: Applications to elliptic partial differential equations, Comput. Math.
Appl., 39 (2000), pp. 123–137.

[24] E. Larsson and B. Fornberg, A numerical study of radial basis function based solution
methods for elliptic PDEs, Comput. Math. Appl., 46 (2003), pp. 891–902.

[25] E. Larsson and B. Fornberg, A Stable Algorithm for Flat Radial Basis Functions,
manuscript.

[26] E. Larsson and B. Fornberg, Theoretical and computational aspects of multivariate inter-
polation with increasingly flat radial basis functions, Comput. Math. Appl., 49 (2005),
pp. 103–130.

[27] W. R. Madych and S. A. Nelson, Bounds on multivariate polynomials and exponential error
estimates for multiquadric interpolation, J. Approx. Theory, 70 (1992), pp. 94–114.

[28] J. Y. McLeod and M. L. Baart, Geometry and Interpolation of Curves and Surfaces, Cam-
bridge University Press, Cambridge, 1998.

[29] P. E. Merilees, The pseudospectral approximation applied to the shallow water equation on a
sphere, Atmosphere, 11 (1973), pp. 13–20.

[30] P. E. Merilees, Numerical experiments with the pseudospectral method in spherical coordi-
nates, Atmosphere, 12 (1974), pp. 77–96.

[31] M. Mohlenkamp, A fast transform for spherical harmonics, J. Fourier Anal. Appl., 5 (1999),
pp. 159–184.

[32] D. Potts, G. Steidl, and M. Tasche, Fast and stable algorithms for discrete spherical Fourier
transforms, Linear Algebra Appl., 275–276 (1998), pp. 433–450.

[33] M. J. D. Powell, The theory of radial basis function approximation in 1990, in Advances in
Numerical Analysis, Vol. II: Wavelets, Subdivision Algorithms and Radial Functions, W.
Light, ed., Oxford University Press, Oxford, 1990, pp. 105–210.

[34] V. Rokhlin and M. Tygert, Fast algorithms for spherical harmonic expansions, SIAM J. Sci.
Comput., 27 (2005), pp. 1903–1928.

[35] C. Shu, H. Ding, and K. S. Yeo, Local radial basis function-based differential quadrature
method and its application to solve two-dimensional incompressible Navier-Stokes equa-
tions, Comput. Methods Appl. Mech. Engrg., 192 (2003), pp. 941–954.

[36] S. Rippa, An algorithm for selecting a good value for the parameter c in radial basis function
interpolation, Adv. Comput. Math., 11 (1999), pp. 193–210.

[37] R. Schaback, Comparisons of radial basis function interpolants, in Multivariate Approxi-
mation: From CAGD to Wavelets, K. Jetter and F. I. Utreras, eds., World Scientific,
Singapore, 1993, pp. 293–305.

[38] R. Schaback, Multivariate interpolation by polynomials and radial basis functions, Constr.
Approx., 21 (2005), pp. 293–317.

D
ow

nl
oa

de
d 

02
/2

4/
16

 to
 1

41
.2

19
.4

4.
39

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

80 BENGT FORNBERG AND CÉCILE PIRET
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