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ABSTRACT

The extrapolation of +the amplitude
out of its physical region being mathematically
an "improper problem", it is mnot sufficient to
have convergen’ expansiondy, one has to be also
sure that the results are stable against small
perturbations (experimental errors)e

In the present paper, this problem is
solved by means of semi-convergent expansions
in terms of coanformal mappings of double con-
nected domains. An optimization problem leads
to an optimal mapping function, whose erplicit
form ig then derived. Although a good deal of
the paper is devoted to the mathematical side
of this problem, ihe results can be used direct-
ly in the anaglysis of experimental data.
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1., INTRODUCTION

The usual and almost exclusive way one can take advantage of the
analyticity of the scattering amplitude is tc compute the amplitude by
mesns of a Cauchy integral (dispersion relation) over its absorptive parts.
The reverse procedure, i.e., the computation of the discontinuities along
the cuts, starting from some region of the complex energy or cosine plane
where the amplitude is known, is also possible, at least in principle.
Indeed, an analytic function, including the position of its singularities
and the discontinuities along them, is completely determined by the values
taken by this function along some continua -~ wherever this continuum would
be placed — and the Regge pole formalism as well as the analytic extra-—
polations, using conformal mappings discussed below, are good examples of
such reverse problems. Nevertheless, the words "at least in principle"
had to be used to warn that such snalytical continuations although possible
represent typical examples of what the mathematicians call "improperly
posed problems". TIndeed, as is well known (see Section 2), the form of
the discontinuity obtained by such analytical continuation is very
sensitive to the values taken by the function in that very region from
which one originally starts the analytic continuation, being unstable

against small changes of the initial data.

In spite of these principal difficulties connected with the

mathematical instabilities of the "reverse dispersion relation techniques™

2)-14)

and without trying to solve them, many authors have already tried

to use them tc extrapolate the experimentally found amplitude out of its

physical region.

The basic idea of these works consists in using a suitable function

2)_4) which maps the energy (or cosine) complex cut plane into the

interior of the circle ]W§ < 1 (see Figs. 2 and %), and to expand then

the amplitude (or oross—seotion) in powers of w. Indeed, it can be
|29

)> under reasonable physical assumptions that these series converge

3)

shown
even on the cut (i.e., on the circle lw|:=1)v Originally, Frazer and
Lovelace 4) used these series respectively to enhance the convergence of
the "extrapolation to the poles" or to find directly the form of the
spectral function from the physical cosine dependence of the (pion—nucleon)
amplitude, but afterwards these methods were used in a great variety of
problens.
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i) New effective rsnge formulae

The conformal mapping series can, indeed, be used succegsfully 1o
express the effect of an unkanown cut [?or instance, the left~hand cut of
the partial waves § in terms of some FTew numerical constants. 1In a

obtained an effective range formula for Regge
7)

similar way, Islam
trajectories. Purther, Bowcock and 3toddard used these series to

expand the phase integral for pion-pion scattering, in order to evaluate
the influence of the pion—pion-— nucleon-antinucleon channel or pion-nuclecn

scattering.

ii) BExtrapolations to_the cuts

4)

Besides the spectral function computations of Lovelace , a fruit-
ful field of applications was offered by the "discrepancy function'" intro—
duced by the Hamilton group 8)_10), deTined 1o be the difference between
the actual piom—-nucleon amplitude and the dispersion integral over the
right-hand cut, sur..arizing hence the influence of the crossed channel

cuts. Expanding the discrepancy function for backward scattering in powers

. - . . 11 . .
of the conformal variable, Atkinson ) was able to obtain the absorptive

part of the pion-picn — nucleon-antinucleon channel and the pion-pion phases
from the experimental pron-nucieon data., Dater, using a similar extra-
polation of the backward scattering amplitude up to its left—hand cut,
Tovelace, Heiaz and Dcnnachie ! found a strong evidence for the existence

of the sigma meson.

13),14)

An analogcus problem was that of Levinger, Peierls and Wong
" which expressed the nucleon form factor in its timelike region (on the cut)
starting from the known spacelike values extracted from scattering experi-

ments.

iii)
In some cases one could be inverested to extrapolate the amplitude
not as far as the cut, but to some other regiocn of interest, lying within

3)

the holomorphy domain, the "extrapolation to the olesg" being an example
9 )
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15)

of such problems. A continuation of the CGLN type of the nearby
forward scattering amplitude in the rest of the physical region, for
instance in order to project partial waves, falls in the same class of
interest. Although there are no singularities in the physical region,
the circle of counvergence of pure momentum transfer power series is
drastically limited by the singularities existing at non-physical

cosines 2 , and some suiltable conformal mapping technique is to be used.
Of course the result can be checked experimentally, and it is worth while
to note 16) the cloge relationship between the range of convergence and

the regions of reliable prediction.

iii—O) Among these last items, a separate mention will be made for
these very problems for which the extension of the continua out
of which the extrapolation starts reduces to zero. A typical
example is provided by the use of the amplitude together with all
its derivatives at +t=0 1o express it in the whole physical
region, [@his was the exact programme of the CGLN paper 15)3
Although such a question has little semiphenomenological interest,
as an experiment could never be accurate enough to provide infor-
mation about the higher derivatives, case iii—O) is of speci=al
interest in deriving dynamical integral equations starting from
forward scattering dispersion relations for the amplitude and its
momentum derivatives : a sultable convergent conformal series
allows then to express the unitarilty condition in terms of forward
scattering quantities and the set of equations can then be derived

. . 2),17
in a straightforward way )’ >o

In the present note we shall analyze critically these extrapolation
procedures (Section 2), and then try to give a more rigorous mathematical
basis to this subject of growing interest. Although no objection could be
made to the few parameters effective range formulae of type i), convergence
problems of a special type (sce Section 3), as well as instabilities
towards small experimental errors, arise when one tries to increase t@e
number of adjustable parameters, in order toc fit the experimental data

along some non-vanishing continua [ﬁroblems ii) and iiiI],
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Although very sciious, these difficulties are not at all insur-
mountable. Indeed, contrary to a common superstition, "improperly posed
problems" (unstable problems) arc not intractable, and classical physics
provides a great deal of examples in which such problems are studied and

)

even applied for practical purposes .
*)

information is required, mainly in the form of a smoothness condition for

As ie usual with improper problems, supplementary physical
the amplitude on the cut., To he more specific, one needs (on the cuts) a
H81lder condition
. of
(P) . 7-2,}
ey %“‘ | ottt (1.1)
for some pth derivative of the amplitude. p can also be zero, but
the larger, the better. One can really guarantee such a H8lder condition
for the amplitude or for some suitable combination f(z) with some suit—
able function [éee Ref. 52]7 as the single singularities met along the
cuts are the threshold singularities, or, if one is interested to extra-
polate in the spectral function region, the singularities along the

5)

Landau curves o

5)=14)

However, in clear-cut contrast to the papers s in order to
handle the convergence problems related to the non-vanishing length of
the physical region and to control the developing instabilities conformal
mappings of double connected domains have to be used (see Sections 3 and 4)?
together with some given prescription {(see Section 5) which limits the
number of terms in the series in funciion of the magunitude & of the
errors affecting the data to be extrapolated. The cxplicit form for the

optimal conformal mapping will be then derived in Section 6.

*) Ore prospccting by seilsmic wave reflection is a typical example of
such an improper problem; however, i1f some geophysical information
on the smoothness, etc., of the layers is supplemented, the
seismologist is able to yield with great accuracy the thickness

of the glaciers or the position of the ore beds !
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THE NEVANLINNA PRINCIPTE AND THE PROBLEM OF THE STABILITY OF ANALYTIC

ONTINUATIONS

It is often argued that the Regge extrapolation "is possible" *)
because although one has to go very far in the non-physical cosine direction
(great s), one is happy to use the conjuncturc that the s dependence is
enclosed only in the argument of the Legendre function Po((t)(1—2s/t—4)
(which, of course, is a well-defined mathematical object) and that the
incertitudes affect only some functions of t - the residue of the Regge
pole and its trajectory. Being interested only in a limited range of
values of t, it is supposed that these not well-known +t functions will

have only little influence on the correctitude of the extrapolation.

To dissipate the confidence in this a priori stability of such proce-
dures, in what follows we will prove a theorem which could be interpreted 1>
as a partial failure of the program in using analytical continuations for
physical purposes. Indeed, all observation being subjected to small errors,
a physical theory has to be stable against these errors, in the sense that

the outcome has to tend to a well-defined limit when the errors tend to zero.
We shall first prove a lemma (the Nevanlinna principle).
Tet T(z) be holomorphic and bounded in some domain (.0)

%¥:(1>\ < M (2.12)

Tet the boundary of (&) be formed by two disjoint curves (2 and
[7 and let F(z) satisfy
| Fayl < m o [T (2.1b)

!

(See Fig. 1 : the double comnectivity of (;5) is not a necessary condition,
but this will actually be the situation for the problems we will be interest-

ed ing)

*
) The word "possible" stands here for "stable", but being aware of the
mathematical implication of the word "stable"™, one usually avoids

to use it !
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6.

Tet us now define the harmonic measure u)(xgy) to be that (real)

function of x and y (z = x+iy) which is harmonic in (éb)

Vo =0 tn zel) (2.2)

and which is equal t0 one on {7 and venishcs on r:

Wwyr= 4 ko zel (2.3a)

! -

U= 0O oozel

Woyy=0 T =Yy (2.3b)
Being harmonic, in the interior of (;D) is a non-vanishing positive

W
function, smaller than one, for «ll =z ¢ D.

Let us suppose for a while — this conditicn will be relaxed after-
wards — that the holomorphic function ¥(z) has no zeros in (&3). Then
QnF(z) will also be holomorphic in (;ﬁ), [énd hence Re EnF(Z>?

harmonic! and one can build the following harmonic function
o

Fioy| - (-ot) & om {F0T

Zy = U=WE) oy — W7 ¢

Lw \ VBK s {Z.) {m. 40 Gk,n (2.4)
[ﬁhese inequalities follow from inegualities (2,1) and (203):] The left—

[S]
hand gide of 4) being a harmonic function, the inequality (2.4) 4s valid

(2.
throughout (&) and hence, (the Tevanlinna prineciple),

“:(‘zﬂé /W\:\‘LJCL) W Cz)

P (t "

%@1 7€ fI)UTqUP (2.5)

If now F{(z) has some zeros in (D), they can be isolated by small circles
which can be added to the boundary of the new defined domain of holomorphy
for 1m F(z); |F(z)| being very small in the neighbourhoods of its
zeros, the condition (2.4) is fulfilled in thesc circles as well as in

their interiors and hence (2.5) remains valid.
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Tet us now epply the lemma to the difference

E’u) = ’Q(M"‘geu‘\ (2.6)

of the amplitude (or some combination of it with some known given function)

f(z) and some of its spproximants %_(z) on the physical region Fj .

f:‘ . \ -
2kl L zen o)

£ is some numerical quantity describing the approximation, which is
intended to be reduced afterwards to zero. We supposc that the approxima-
tion function L (z) has (at least) the same domain of analyticity with
the amplitude and that, as well as f(z) *), is bounded in (;3) by some
constant M/2

Q| < Mg el (2.82)

\gﬁmk M zel (2.8b)
i.e., using Schwartz inequality, also
0 {
H(z\,“ 3?’:@)‘”< M (2.9)
Applying to T¢ (z) the Nevanlinna principle (2.5) one gets

A_LQ[Z)quJ(I) JLE 0 (2.10)

!%a;‘ﬁgz)§<.a

*) If the (polynomial) behaviour of the amplitude at infinity is known
(as well as the position of the bound states) we are always in the
position to produce some standard bounded function f(z) ;3 as it will
casily be seen further, this can simply be achieved in the conformal

mapping by placing the poles on non-physical sheets.
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It is clear that the expression (2,10) tends to zero with & in all
intericr points of (&), i.e., the boundedness of f(z) is sufficient for
the gtabiliity of the approximation. However, this is no more the case on
the boundary F s as C)(z) is here [éee (Z,BaI] equal to one, the diffe-

rence lf(z) - T¢ (z)l is now insensitive to the smallness of £ .

Of course, the failure of the Nevanlinna principle (2.5) to ensure
the stability of the approximations on the cuts (on r )s by no means
means that we have to give up the hope of finding some correct approxima-
tion. On the contrary, the aim of the present paper is to prove that using
a suitable conformal mapping such & stable approximation procedure can

actually be obtained.

The idea to use conformal mapping continuations comes in a natural
way if one analyzes the reason of the break-down of the previous stability
theorem on the cuts, i.e., the coincidence of () with the physical cut
plane which entails the vanishing of the exponént of & in (2,5) on the
cuts. If now one uses a conformal mapping (sec Sections 3 and 5) which
maps the physical cut plane into the ring 1 élhfj:sfi and 1if one takes
approximants in form of polynomials in the positive and negative powers
of this new variable, their holomorphy domain extends far outside (&D):
the idea of the proof consists now in applying the Nevanlinna principle
to the difference between such an approximant and the truncated exact
Laurent series of the amplitude (which - sece Section % — is known to
converge to it on the cuts !) into a much larger ring (Eﬁ’) .go that
the cut | becomes an interior curve of (5&') and, therefore, the new

—

harmonic measure Ebf (Zﬁ'lj will be different from one on it !

68/939/5



%, THE CONVERGENCE OF POTYNOMIAL APPROXIMATIONS AND THE NECESSITY
OF USING CONFORMAL MAPPINGS OF DOUBLE CONNECTED REGIONS

Prior to studying the stability problem, we shall be faced with

a convergence problem specific to polynomial approximations of an analytic
™

function, along some given continua 11.

To give an insight into the kind of problem we will be faced with,
we shall remember that the radius of convergence — and therefore the domain
of validity of a Taylor series ~ depends in an cssentlal way on the location

of the point around which the expansion is performed. In our case, we have

not to expand around some given point, but around some given curve §41
of the complex plane, the "physical regicn". Indeed, we are intercsted in
finding the nth order polynomial for which the uniform norm on T; of

the error function

def.

H ‘{) {(zy— f_h (‘?“)HU ) == %"’;O;Z‘ U‘E(U -—*"Lh(z\\ (3, 1a)

or the L2 norm
; &@, A . Qd, }
Iy sl , = { (SR CIRENCIItCY (5.2a)

is the least. Owing to the fact that, in general, the experimental
information is not given with the same realibility in the different points
of the physical region r%, in some cases it would be perhaps preferable

to use weighted norms

HJ%Q) ~t-h(~7’-)(ku A&m: f?’fvr N l%(‘r‘)’tﬁ(")\ (3.1b)

and

£

Ho-sall, =4 - o, @) Naylda]

A
L

=
—
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10.

where N(z) is a non—vanishing positive (continuous) welght function
defined on Sﬂq. The polynomials tn(z) which minimizes the uniform
norm (3.1a) or (3.1b) and the polynomials sn(z> which minimize the L2
norm (3.2a) or (%3.2b) of the error function are called, respectively,

*
Tchebycheff and Szegd approximants. For the latter, owing to a well—

**)

known theorem , a closed form expression can be provided in the form

of a linear combination

S, =Y 0, Peld) (3.2¢)

of the first n+1 orthogonsl polynomials p,(z) on F1

%\ﬂ C=) ?:(Z)HQZJ ldz\ = Oy (3.24)

where the coefficients a, are the "partial waves'" of the function f(z)

with respect to the orthogonal set pk(z)

b, & p »* ‘
a. = | 4@ PN \de (3.2¢)
r

The "best fitting" methods of the experimental data lead to
K%
Tchebycheff or Szegld sequences ), whose domains of convergence, as

expected, depend strongly on the shape of the physical region rr and

1

*
) Not %o be confused with the Tchebycheff polynomials,
*%
) If sh(z) = ﬁ%_ akpk(z) (a& = arbitrary) is a general nth degree

5

polynomial, then
y w

, R " o . _.‘:L' ot o X - ¥R N ~
4z~ sl = BF‘H‘(Z) Lo, PrEF - 2 A ey @) dd=

i,

=, - Tia P T e -a
L o )

obviously is least when all aﬂ are cqual to the "partial waves" By e

XRK¥
) The least squares method leads to Szeg?d approximants while an

optimization in terms of uniform norm leads to Tchbycheff ones.
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11,

therefore differs congsiderably from that of a simple Taylor series : 1in
a complete ununderstandable way, this fact was overlooked in all previous
papers using W(z) conformal mappings (see Figs. 2 and 3) for amplitude
extrapolations. Indeed, both Tchebycheff and Szegd approximants are
"maximal convergent polynomials" on r?, and, according to the theorem
of maximal convergent polynomials (see Appendix A), their complete domain
of convergence can be found in the following way 18)-20)

3%

Tet EB(Z) / ve that conformal mapping which maps the physical
region curve r; on the unit circle and the point from infinity at infi-
nity [éee Pigs. 3 and 4 : here the w plane can be understood as being the
z plane, however, if we are interested in the maximal convergence of poly-
nomials in s, the transformation és(z) has to be applied directly to
the wvariable é]o For instance (Fig. %), if the physical region extends

along the real axis between z=2a and 7z =Db, then

3(2):‘2’+L\1*x~zl whene 7' 2z-(atl) (3.3)

o

i,e., it is a Jukowsky mapping.

Further, let the first gingularity of f(z) be placed at a distance

Y -~
| 3Eal=®~ (5.4)
from the origin of the ég (z) complex plane. If now 18)-20) the pth
derivative of f(z) satisfics on the circle r% defined by (3.4) a
Holder condition of order o€
L () 5 (P) . .
(%(23“ i 2! < eansl. [ 2-Z0) (3.5)

*) Prom now on we shall use Gothic symbols for all the conformal
functions which, as é%(z), map the physical region ‘Fq on
the unit circumference. This will be the case also for the confor-
mal mepping of double connected domains in terms of which the
amplitude will be expanded (see following). Nevertheless we shall
keep the notations as close as possible with those uged in paper 21)
on which Tepeated reference will be made, especially with regard

to the properties of the function C(z) introduced here.

68/939/5



12.

[éuch a condition can always 5> be provided, if not for the amplitude
itself, then always for some combination with a suitably known function),

then the maximum convergence theorem tells that the maximum convergent sed

of polynomials tn(z) or sn(z) converge on F1 as 3 (see Appendix A)
— A PN
[tarv-ta@| < w787 (5.6)

where R was defined in (304) and A is some constant. The rate of
convergence of the polynomial sequence in some given point P of the

z Pplane (or w for Fig. 3) is given by

A g\
l%(z)—tmwj(é e T (3.7)

where

V.
g - iék“ﬁ?}\ (3.8)

is the distance in the <§ plane (see Tig. 4) betwecen the point P and
the E} plane origin (if P é'r1, then ? = 1). The inequality (3.7)
remains valid also in the limiting case when P is placed on the image
of the circle Y7R [hefined by (BQ4I] in the =z plane, where the

sequences tn(z) or sn(z) are still convergent.

Outside PR [if F1 is a straight line as in the example
(3.3), [13 ig, in the 2z plane, an ellipse] there is po continuum..

*
where the sequences tn(z) or sn(z) would still converge ),

Of course, this does not mean that there do not exist, in general,
polynomial sets which will converge on larger areas — a counterexample 1is
provided by the Jacobi series

2

\ S TN N 2
)= Gem+ i@ pel + PP (3.9)

*
) Convergence could occur outside PR only exceptionally, in some

isolated points.
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13.

where
L) s EoBa) - (2 ) (5.10)

is a polynomial of order A and qi(z) are (X-1) degree polynomials
chosen in such a way that the sum of +the first n terms will coincide
with f(z) m  times in the points ﬁﬁ“ The Jacobl series are in some
respect a generalization of the Taylor series, and their domain of con-

vergence extends to the largest lemniscate
i A { - -
l\\?_‘{%i}-.-kl—g)\i\ﬁj CEnal . (3011>

which does not include some singularity of f(z). Choosing in a suitable
way the polynomial (3.10), the lemniscate could be made large enough,

but the series (309) will not converge maximally on Vq' In other

words, if the coefficients of the expansion are obtained on the basis of

a best fit, in uniform or in any P norm, one has to rearrange continously

all the "coefficients" qi(z), not only the last one.

One could, of course, renounce 1o the best fit philosophy and,
at each step, determine the last qn(z) only; an alternate way of
solving this problem would be to find some new variable which would

. . i
provide maximal convergence on { and an acceptable boundary N

1
for the convergence area. This can be achieved by mapping the desired

domain of convergence cut alonz the physical region l 4 into a ring

in the new variable complex plane, r; corresponding to the inner

P

circle of radius equal to one, in order %0 make the mapping % super—
f Iy

fluous.
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14.

4.

AN OPTIMIZATION PROBLEM

Tet wa(z) be some (arbitrary} conformal mapping of the =z cut
plane. As 1t was emphasized in the przceding section, the rate of convergence
of the expansion of the amplitude in powers of wa(z) - the coefficient of
the series being determined by a best fii (in uniform or i norm) on the
physical region r - is the same as those of the maximal convergence

1
polynomials in the variable

o (z) (W @)) (4.1)

which maps rz and F; (see Fig. 5) in the unit circle and the circle

of radius Ra of the ’Eié plane (Pig. 6). Thus, to ensure the convergence
in some given point P, it is sufficient to find a function which maps

the domain (D a) which includes both, the point P and F1, into a
ring. As many such domains exist, a natural question arises, namely if
there exists some optimal mapping which would provide the quickest convergence
in P. As we sghall now prove below; the answer is really fortunate, in the
sense that this mapping is independent of the position of the point P, i.e.,
there exists and optimal mapping for which the best converging polynomials

on F,]

mapping) simultaneously for =ll the points of the =z cut plane..

have the greatest rate of convergence (comparatively to the other

Let QX%KZ) and Q%%(z) map the domains (]Da) and ( Db) whera
(see Fig. 5)

(D=0
(4.2)

respectively in the rings of Migs. 6 and 7. To compare the rates of conver-
gence yielded by the two mappings, it is sufficient to compare the ratios

*)
g i/Ri where

* . o .
) By construction, the *irst singularitics of £(z) are already met

on the exterior frontiers Y;‘ and (% of (JDa) and (D b)'

68/939/5



15,

‘ [k ) \‘\\
ot S L {2
3 L gl
o, = i g g9 | (4.3)
and B.r1 and Rb are the radii of the circles T;{ and T; respectively
< , =
) } 0% 0 , . -
in the complex planes LW& and 'u%f It can be shown by means of conformal
e -

invariants (the principle of Groetzsech, see Appendix B) that if (4.2) holds
LD
R, SR, (4.4)

Let us now define in the 2z plane the harmonic functions Zzh (D biz

Wger= G ([ U, @ /R, (4.5)
0 @)= bl @l ) (4.6)

By definition, on r; we have

1™, )

n = )y = (4.7)

2y ‘:‘-——Elwﬁ o, S
5&@,\ Ra, el =- bR, (zeT) (4.8)

.
v, v

and hence, owing to the principle of Groetzsch (4.4)

&

2,

N
N
(s

fY 3

EEN (4.9)

Let us check now the two harmonic functions on T

a
g2y =0
aa | (4.10)
Ay 1zy = O (zel)
i.e.; again
Aizyy A (zely) (4.11)
(/@' has to be negative on r’, as it is a harmonic function which is

b a
zero on Fb and negative on r1).
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16.

,Cé(z) and Af%(z) being both harmonic, the inequalities (4.9) and
(4.11) holding on the whole boundary of (I)a), remain valid also in the

interior points (also in the point P) and hence

§s fa
= .ﬁ\ - .
R, . (4.12)

(4.12) tells that the larger the holomorphy domain of f(z) mapped into the
ring (whose interior circle corresponds to the physical region) is, the better
the convergence. The besgt convergence is thus attained for the function

& = o(z) *) which maps the whole =z cut plane in the ring of Pig. 8,

the convergence being secured, according to (%.7), even on the cut. The

explicit form of these mappings will be derived in Section 6.

Before proceeding to the study of the stability problem (Section 5,
let us derive two simple but important properties of f£(z) as a function of

the new variable C? .

In most extrapolation problems one extrpolates either the discrepancy
function (see Introduction) in the cunergy complex plane (z=s), or the real
part, the imsginary part of the amplifude or even the differential cross-~
section as function of the cosine {; Z c). In all these cases, f(z) is
real on F; as well as along the segments ZSi of the real axis outside
the physical region where there are no :uts. The Cf images of Z&i being

also real axls segments

;o L .qi" 3¢
FE&) =17 (2.13)
while the reality condition on the unit circle q from Fig. 8, yields

Fley= 7@ (4.14)

1)

* . . 2 .
) We maintain here the notations of paper where the properties of

this function were studied.
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17.

or, combining (4.13%) with {4.14)
In other words the power expansions of f{z) have necessarily the form
fzy= ot @, (E+ ™+ 0 (CT+ E v (4.16)

where a; are real coefficients to be determined from theory or experiment.
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18.

I
5. THE STABILITY OF THE \*(Z) MAXTMAL CONVERGING EXPANSIONS

To find an expansion procedure whose results would be stable against
the small experimental errors & of the histogram h(z) which expresses
the results of the experimental measurements on f(z) in the physical

region r

19
_ 13 .
l%@%—&@ﬂﬁji czel,
(5.1)
we shall apply the Nevanlinna principle (2.5) not to the difference
n(z)-f(z) itself, but to the difference of two best (sz) and

Cf-1(z) ntP degree interpolations t, r(z) and % n(z) to f(z)

g 44 b
and h(z). As it was pointed out at the end of Section 2., taking
tf,n and th,n as
positive and negative power polynomials (4.16) of the function (& (z),

advantage of the fact that the rational functions

extend their holomorphy far outside the image of the first Riemam
sheet of the 2z variable, could prevent the failure of the stability

proof at the cuts.

Let us define the yet unknown polynomials tf "
b

Ty, =Q, +aQ, (v N a & =™
07 Qo Tl R N (s (5.2)

as the best n'> degree approximation, in the Tchebycheff's (3.1a)

sense, t0 the yet unknown amplitude f(z), on F}. According to

(3.6) ™)
’A‘/Q' = D /
o =Tl = Semge = 00 (5.3

T v o P A8 . . A T S W N P e U N Mue e S e NS S i TR S et e e Wb SRS G N S g A S S BN G e e Gmr S e S M e e o e

*
) The fact that tf a
9

Laurent series is immaterial, as, owing to (5.2), they are

are not really polynomials but truncated

nevertheless polynomials in the variable (T-+Cf'1.
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where R i1s the radius of the rings of Fig., 8 . |see also (6-3)1
p and ©& are d

e
constant. From (5.1) =2nd (5.%) one gets
N ; / =

(5.4)

Although the coefficients are unknown, the very existence of tf n(z)
g

proves that the pelynomial ¢ (z) whose ccefficients can be found

;
hyn
explicitly through o Tchebycheff optimal interpolation condition of the

experimental data

ALOM, \ 'g\ (z) «‘tﬁ w2 —> AN A AdaA A

has to approximate the experimental histogram at least as well as tf (=

o = B o | 2 /o
i e (5.6)

Applying once more the Schwartz inequality one “'inds

A +el
. A‘+-2fn? ™
l\ —ti‘, ,ﬂ-(_Z) “Tgfx 1(Z\l é\ &+ "2“:: ——— -
17 ] [’:‘ ] R I
(5.7)
Of course, the inequality (5.6) remaing valid also for the difference
A + PR Yol + (r
be’ﬁween bhyn(Z) and tf,n-l—'] \z_.>
?‘“\ - + 4 /Z:\ + S:,, AH. K
l t-¥ \’L.Mk ! \“‘(«“(‘?’)\\V g ST @~ ‘
v g { /“ e e
1 (5.71)

% . Iy
) R ig a conformal invariant.
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which; on the other hand can easily be calculated on a circle J

(see Fig. 8) of very large radius R
) A/
5o o= R , =0
(5.8)

where, %‘11 (z ) being by definition the exact Tchebycheff's polynomial
9

of f(z), +the highest degree term of tp .4 behaves as (J{’/R)IH1
9
l””ﬂ)(%%ﬂ)
[L” & -1 m\ <A R
Y y ye—=>0
(5.9)
We now apply the Nevanlinna principle to the difference t n(z)—tf n+1(z)
9 ?
between the circles TH and |, , the harmonic measure being
. e
n(@) = 93.1_‘;_!, Lo bl €Y
bt o R (5.10)

-
which yields for z€ \ R’ in the very small M 1limit (i.e., for
very large R,)

Ptol oy
At+rem =

lt, @ —1t, @) <R
\ {x\%( ! 1)%-\«1 \!“R %P*}bt (5.11)

As (3.7) the exact Tchebycheff approximants comverge to f£(z) also on
the cut

H ) JU %M \ e < 24

m e
(5.12)
one gets the final result
R prx o™
. . 4 e B Pre o
\%LZ)”J%M,LZ){, < B '
e rp P (5.13)

where B is a new constant, B=A(R+S).,
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Tet us Lock at formula (5.13) which accounts for the error on the
cuts between the exact amplitude and the polynomials n(z) which
g
extrapolate the experimental data. If ER /B  is small, the higher =n
AY

the smaller the right-hend side of (5.13) gets, When n reaches the

critical value defined by

pratrd M B e
Y B = e .
\ LR B R (5.14)
\
e K R (P p+ ol
N [ B [ VA Ll N
fth ‘L‘f.-) = K R ( E{‘Z' ‘QJ\»\. R} / {/\4\—' ( R “Jl‘?]] )
the right-hand side of (5.13) reaches its lowest value
A < w2 P
\%L&j tg\_ﬂ_‘ckzﬂr S B Ar —— D TR /“VL "
R (5.15)
increasing then again 1f one takes more terms in 1, than the allowed

47
critical value: we say that instabilities begin tc develop, and the
recipe to keep them down is never to interpolate the physical data with
th " polyrnomizals with more than nc(i ) terms. Nevertheless, and
n,r

this proves the stability of the t. )(z) extrapolation procedure,

e
as one sees immediately from (5.14), nc(é,) increases monotonously
when the experimental errcer & decreases, and thus the right-hand side

of the inequality (5.1%) goes down with & .

* o /o . 3
) Ass for infeger n's, n / 18 bounded by V3 .
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EXPLICIT FORM OF THE OPTIMAL MAPPING

We shall derive now the explici®t form of the function C?‘(z) which,
according to Section 4, maps the first Riemann sheet of the amplitude intc
a ring (the inner circle, of radius 1, corresponding to the physical

regilon P 1).

We start from a standard =z cut plane, the physical region extending
from -1 +to +1 while the cuts are placed symmetrically between -® and
-1/ (k is a positive subunitary ccnstant) and between +1/k and +®
(Fig, 9). If we are interested in analytical continuation in the s plane;
or, if in the cosine plane the cuts are not gymmetrical (unequal mass case),
one can always, by means of elementary transformation, transform s or

cos® in the standard form of PFig. 9.

Tet us fix our attention to the upper 2z half plane and, as a first

step, let us perform the mapping (Pig. 10) :

Z

t

wiz) = S S S (6.1)

5 V-2 ](4- e 15

the cuts of the square root being taken along (; and V% (Pig. 9),
and let the square root be positive above T;9 negative imaginary at
+1 < z { +1/k and negative above Tﬁa

If 2 is small and increases along the real axis (containing an
infinitesimal positive imaginary part, as the path proceeds along the upper

half plane), wu(z) increases from zero to the positive constant

4
&t
K= ) e (6.2)

when 2z reaches the point z=1.
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Further, if <z < 1/k, one can write

. — —\2—».&{_.“ o Aoy + z M‘;“%ﬁi_
WZy= 3 N Uk 2 N (6.3)

where, since the square root is negaltive imaginary for 1 <+< 1/k, the
second integral from the right—hend side of {(6.%) is a pure positive imaginary

function, increasing with =z, For sz=1/%, u reaches the value XK+ikK!'

where
Vi,
. ./JM ) dt
A Ko lR) T ) TS
=) X \!G_,-LL)(‘,‘_.QRZ.LZ) (604)

K(k) and K'(k) are called the complete elliptical integrals, and are
tabulated functions.

If =z proceeds further along the upper side of r%9 the real part
of u will decrease monotonically, as the square root is negative. TFor
z=w, u equals 1K', Performing the same study in the negative direction,

one finds that the whole upper plane maps into the rectangle of Fig. 10.

The second and final step consists in transiorming the u pluae

rectangle in the upper half ring of the (fd(z) plane (Fig. 1)
Mz = 4 oex P ‘i\; LT W (2,‘/2 ;{} (6.5)

The peint u=0 transforms into &= +i, u=X into C =1 and u=X+ik!

into & = exp(TTK'/2K) which defines the value of R :
. ) b e
R = wxp (WK /Q.V\) (6.6)

which depends hence only on %the position (i1/k) of the branching points

of the 2z cut plane,

X
A firnsl remark : the physical region R is not actually a cut
i
. . - . g
line for the amplitude f(z), however, the function ‘= (z) has such a

cut; nevertheless, this cut disappears in f(z), owing to the fact that
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the positive and negative frequencies (4016) have the same coefficients.
Indeed, (4.15) is =2 continuation relation inside the unit circle of Fig. 8;

+ill the circle of radius 1/R, which is thc image (on the unit circle)

of V

R
To conclude, as it was pointed in Section 5, the semiconvergent

approximation

— d ‘1 7 -"¥L
@)= a&)ﬁam T+ ")+ ..+ %@,k(fﬁff‘ ) (6.7)

how

T

where the coefficients ah,i are to be found by a-?chebycheff best fit
(5.5) of the experimental data [%he histogram h(zlJ and where the number
of terms has to be limited by nc(g,) (5014), to converge to the amplitude
f(z), even on the cuts. Indeed, the dependence on the cuts of the modulus
of the difference f(z)—ta,nc(ggz) with the experimental errors £ in

f}, is given by the joint cxpressions (5.14) and (5,15).

The condition nAé:nC<£.) is somewhat academic, as the right-hand
side of (5°14) depends on a constant B, which - in principle — could be
determined from the smoothness conditions, but in practice would be hard to
find. Neverthelcss, (5013) proves at least the cxistence of such an optimal
number (5v14)9 beyond which instabilities develop. Therefore, for practical
pUrpoOses, nc(i ) could simply be evaluated on a computer as the critical
number of terms beyond which the different fits (6,7) begin to diverge

between them when calculated on ijc

We feel that the uniform norm procedure (5,5) to determine the
coefficients of the expansion (6.7) ig not very suited, as the experiment
is usually analyzed by least squarc methods, which, as was stated at the
beginning of Section 3, led to Szegl approximants, not to the Tchebycheff
ones. Of course, the method of Section 5 based on the Nevanlinna principle
does not apply also to the ¥ norm, neverthcless we shall try in a sub—
sequent paver to study also the stability of these approximants constructed

2
on F1 by L~ norm minimization procedure.
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APPREDIX A

MAXIMAL CONVERGENCE POLYNOMIALS

. . 20) .
We shall give here the nlassical =¥/ proof for the existence of

maximal convergence polynomials (for definitions, see further, Theorem A.1)
because this proof has its own interest for the physicist as it makes use of
a set of polynomials {Jacobi polynomials} which interpolate the function

f(z) on a discrete set of points along the "physical region! T}. At the
end of the precent Appendix two other theorems will be stated (without proof);,
relating the convergence rate on the smoothness conditions satisfied by the

amplitude on the cut.

EQUIPOTENTIAL CURVES OF THE GREEN FUNCTION

Let P1 be the boundary of a closed limited set of points in the
z complex plane, whose complement, with regpect to the extended complex plane
is connected and regular, in the sense that it possesses a Green's function

a(x,y) with pole at infinity. The function 23(2)::exp{\G+iH} , where H

ig conjugated to ¢, maps the exterior of fﬂj conformally but not necessarily
unifdfmly to the exterior of the unit circle. [if the complement of V1 is
not simple connected, the function é%(z) cannot be more single valued, but

its modulus exp G(x,y) still remains single valued.| Further, we denote by

r% the equipotentials

el @ Gy = U R (R>4)
(A1)

and we shall now show that they can be arbitrarily well approximated by some

conveniently chegen lemniscate

V= lz-2)z-22)-- | = connt . ,,
Szl \ -

(z,eT,)

A

| W
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Indeed, G(x,y) being the Green's function with pole at infinity, let us

VVI‘lbe l't in 'bhe form
Cq»(.. /b_‘)) ?‘M’ (\X ) 3 + ueI‘mS Vaﬂl%‘ﬂlng db ll’lflnl'ty (A.D)

and let ’' be a very large cirele, The Green's theorem for the angular

domain between F1 and ['' yields

Clon o6 - i 1 h (g 23 - 2 )4e
CJ ) = 9% S \QMH”D w O J7s +2tr S’\MT‘L’”} SN
% F (4.4)

Being a Green's function G 1s zero on F‘; further one can replace, in the
integrands, G with G-lnr= gt+terms vanishing at infinity, obtaining in

the limit t—=w

.v—\"‘;
A : J™ ot
G+ O - ALl —— 'j‘;
G(X ))"i’% (:,:L-IT \,‘ b Lr':}!'y\_
% (4.5)
FDG/?)n being positive along F19 one can define a new variable
o(%)
A [N
bxk (\)7) - -:'; \/ f,:_.:l- fk'\ ,
o (A.6)
well defined in all points of N ’ and increasing monotonously from u=0
'tO u=19 as
= G . AR
B \dz,a
9T " M 0w
!\ l‘rl
4
which, in the limit of very large (' is equal to
i ¢ ’D’éfh“r&
- :?.7r~\ TV
{-«l
(A.5) can thus be written as
A
Guay +9 7 )
(A7)
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r being, we recall, the distance between the point 2z =x+ly and the different

points 2. of r%.

The integral can now be approximated by a Darboux series

, A R
|Glat 40, Ll vl v b ) <8

1) 4
S
(A.8)
where
; . A L o= A
QL::]Z-—f(uJ\ , WE R uq%~?§> - T
If the point =z =x+iy 1lies now on the lemniscate Lg defined by
se ™t on = R e gk
e 42 7T N Y3
(1.9)
then (A.8) becomes
| Gy - WRI<E
(A.81)

Owing to the definition (4.1) of the equipotential " as well as to the

R
continuity of the Green's function, (A.8') tells that, if N is sufficiently
large (small & ), the lemniscates Lg (4.9) approximate arbitrarily well

the curves ‘jq'

MAXIMAL CONVERGENCE OF INTERPOLATING POLYNOMIALS

If n=mi+j (j<N), wec should like to write down the (n—1)th

degree polynomial Pn(z), which interpolates (m+1) times the function £(z)

in the, points zj, 22,...2. and m ‘times in the other N-j centres

2y,qveezy OF the lemniscate (A.9) (all z, 1lie on F1). Thus, if
hl%:{zfzﬁ--(z-z}\ (A:10)
Dy =i - A2eTy) |
(A.2)

68/939/5



30,

and

(FSRY o
vy = W, () Z)
W) e (4.11)
then, as one sees, the function
P éﬂ A we -f(t At
{Zm - = 9 5 ©iy t-e (A.12)

vanishes the desired number of times at the points Z5 while the function

W~ W) o, dx
- \7'—)" z ‘\7-”' = — i {t A 13
P‘\( % " ) iTL &C W {t-2) fl\ ’ ( )

is really a polynomial, the integrand having no more poles at t=2. If the
first singularities of f(z) are situated on PB, for each R' (1{ R'<{R)

the curves F‘R, will be embedded in the holomorphy domain of f(z) as well

as the lemniscates Lg, g Ré: R'+€,; which contain the curve r‘R', but
approximate it as well as one likes. Integrating thelintegrals of (A.12) and

N . N
(A.13) along LR:E, if z GL? (1< S: < R'g)

( w:’id P ( g} )md‘{ | _}1_ \"M- )ﬂ/

W Re M (A.142)
and, as J 1is always bounded by N one can define M1 such that
Wy (2 My b
CTIRET
Wt K o R . (A+14D)

(the second inequality being also trivial, as 1<y{< R ) one gets finally

- B, ail<

o [

‘;mz'wd/t e\
TFX‘ {(t‘ )i\\ M\(T{;\ (A.15)
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As L% approximates arbitrarily well nj (or TH for § =1) one can
state the following theorem.

Theorem A-1

-

Let F’l be a closed limited point set whose complement is connected

and regular. If the function f(z) is single valued and analytic on F1’
there exists a greater number R (finite or infirite) such that £(z) is
analytic and single valued in every point interior to PR' If R'<R is
arbitrary, there exist polynomials Pn(z) of respective degrees 0, 1, 2,40

such that (1£% < R')

P

<

N.?;J )
‘¥(z} e (A.16)

- (or on F19 for § =1); but there exist no
polynomials Pn(z) such that (A.16) is valid for z € Y& with R'>R.

>3

ig valid for 2z on i

-

The last sentence of the theorem follows immediately from the following

lemma :

If a polynomial pn(z) satisfies

pn(z)/ 3n(z> being a holomorphic function in the complement of r1 (the

pole at z=0wm has disappeared) and on F,' the modulus of 8 7(z) being

equal to one, we have on an arbitrary ’T’l (1 <R)
] P :z;//r;:{ \;z‘;l < %‘

and hence
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the inequality (A.17) following then from the Schwartz inequality. If now
R' were larger then R, in virtue of (A.18) the norm of pn(z) will tend
to zero also on the Ei with R<f${ { R' and hence the sequence Pn(z)
would converge here to f(z), which would be in contradiction with the

assumed analytical properties of £(z).

We state without proof the following theorem, [Eee 20), page 37{1.

Theorem A-2
Let F1 be a Jordan curve, and for some R{>1) let £(z) De
analytic in the interior of FR and continuous in the closed interior of
PR' If the pth derivative £'P/(z) exists and satisfies on FR a
Hbdler condition of order d.g 0 { %€ 1, then there exist polynomials

pn(z) of respective degrees n such that

- FUR 2 o S i 5 AT
[ ] € M/ T
| {4 AN L M a7+ 5 -
]%m“ﬁh“”é"f“ A

(A.20)

If there exist polynomials such that (A.20) is valid, then f(p)(z) exists
on T1R and satisfies here o HBlder condition of order o . The Szegd

as well as the Tchebycheff approximants to f£(z) on r?1 are such maximal

convergence polynomials satisfying Theorem A-2.
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APPENDIX B

THE PRINCIPLE OF GROBTZSCH

We shall now prove, making use of the theory of conformal invariants,
& theorem (the principle of Groetzach) which we needed in Section 4 in order
to find the optimal conformal mapping. Namely, ii the double connected domains
(Da> and (Db) EZDa) being incliuded in <Db2j are mapped into rings of

unit inner radii and outer radii & and Rb’ then

P
a

(B.1)

Let g (Z)~'dz‘ be a conformal invariant metric; i.e.,

1) § ()0

2) é}? (z)|dz| exists (being finite or infinite), if ¢ 1is &
rectifiable Jordan arc, and, for each pair of local uniformizing para-
meters =z and 2z', we have therc, where the respective neighbourhoods

around some given point intersect

'Y

3) g'(z'): ?(z)idz/dz'

Further, if (L) is some family of rectifiable curves defined on
the Riemann surface (D), le® <PI) be the class of all invariant metrics
i

such that if

o)
L \L.} SNTAN \;

(B.2)

we should have

P
e ( )
o
[}

[oT
™

',)»
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while the integral

¢ b {
— ! Jixodw
A @ P) - .y:; yLE \,
’ (oY (B.4)

would have a meaning.

We shall then say that the number

peih) (B.5
is the modulus of the family (1), and the metric Y C/(PT) (if it exists)

for which this minimum is realized

| A ity A { by e ¢
(1)

the "extremal metric,

If it cxists the extremal metric is unique. Indeed, 1f 61 and

§2 were both extremal

A ¥ \,)
X (B.7)
as
?'*gi : 1
§ 5 YRS % vy 4
¢
(B.8)

the metric ( §1+ %2)/2 would be also a permitted metric, and therefore,

owing to the definition (B.5)

(L) € /.\ 948, (B \
2 (B.9)

(5 4+ §2)2/4+( £q- 62)2/4 one gets

but, as ( §f+§ g)/z

>

{ r-\‘ . ,,.,: Coin L " . . N
mo(L)= ) Q’:i \ Ax d») + ‘S\ s\('__t_ ﬁ,) dy .,L;,
wy o)

(B.10)
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which is absurd unless the lagt integral from the right-hand side of this

inequality does not vanish, i,e., unless ?1 = ?2.

Let (D) be double connected and (’IJ) the family of curves which
separate the two frontiers of (D). To prove now the principle of Groetzsch,
it is sufficient to recognize that the metric which, aftcr mapping (D) dinto

a ring (D') takes the form 1/20| 2" |

_ . lda 1
[ . S
QL \d it VAL \«l‘;} (B"11 )
ig extremal; indeed, first of all
2
i . L ._,'?«» ol Z X
\ S | e T e e i
o |2 e I oo T

o P B i A L i i
P g -

(B.12)
and hence 1/27 |z'| is [see (B.3)] a permitted metric. On the other
hand, if -§'(z') were a permitted metric too, one has, on the circles of

the family (L), be definition

candda L medlg
and hence
\ Ekf'}’k*; 2 “17
b i
2o e (B.13)

Further,

) , (B.14)
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which shows that

Lo NG
; Tty > A 4 LD
A )
5 28T

(B.15)
which proves that 1/277 z‘l is extremal and that
. ALy
v LY = oo w K
Y ) 97
(B.16)

Being a module, (B.16) is first of all a conformal invariant and secondly

‘owing to the positiveness of the integrand of (Boa)], if
’\D \ o \b{ }
(B.17)

it follows that

fﬂtb{L) S;fo%iL>
% (R.18)

which proves the assertion (B.1).
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