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A stable and efficient approach of inverse Q filtering

Yanghua Wang∗

ABSTRACT

Stability and efficiency are two issues of general con-
cern in inverse Q filtering. This paper presents a sta-
ble, efficient approach to inverse Q filtering, based on
the theory of wavefield downward continuation. It is
implemented in a layered manner, assuming a depth-
dependent, layered-earth Q model. For each individual
constant Q layer, the seismic wavefield recorded at the
surface is first extrapolated down to the top of the current
layer and a constant Q inverse filter is then applied to
the current layer. When extrapolating within the over-
burden, instead of applying wavefield downward con-
tinuation directly, a reversed, upward continuation sys-
tem is solved to obtain a stabilized solution. Within the
current constant Q layer, the amplitude compensation
operator, which is a 2-D function of traveltime and fre-
quency, is approximated optimally as the product of two
1-D functions depending, respectively, on time and fre-
quency. The constant Q inverse filter that compensates
simultaneously for phase and amplitude effects is then
implemented efficiently in the Fourier domain.

INTRODUCTION

Two fundamental properties associated with wave propa-
gation through subsurface materials are energy dissipation
of plane waves with high frequency and velocity dispersion,
by which high-frequency plane waves travel faster than
low-frequency waves. These effects may be represented
mathematically as the earth Q filter, defined in terms of a
specified Q model of the earth (e.g., Futterman, 1962; Strick,
1967, 1970). In seismic data processing where the earth Q
model is often assumed to be frequency independent (e.g.,
Kjartansson, 1979), inverse Q filtering attempts to compensate
recorded seismic signals for these wave propagation effects.
Inverse Q filtering is a reverse processing of forward wave
propagation (Robinson, 1979) and thus may be accomplished
by a method similar to seismic deconvolution (Bickel and
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Natarajan, 1985) or migration (Hargreaves and Calvert,
1991).

Stability and efficiency are two general concerns in any
scheme for inverse Q filtering. Considering computational ef-
ficiency, Hargreaves and Calvert (1991) propose an algorithm
akin to Stolt frequency-wavenumber migration (Stolt, 1978).
This algorithm, valid for a constant Q medium, can efficiently
correct for the phase distortion from dispersion but neglects
amplitude effect. The amplitude compensation operator is
an exponential function of the frequency, and including it in
the inverse Q filter may cause instability and generate un-
desirable artifacts in the solution. Therefore, an efficient in-
verse Q filter algorithm that can compensate simultaneously
for both phase and amplitude effects without instability is
desirable.

I describe the development of such an algorithm based on
the theory of wavefield downward continuation. The earth Q
model is assumed to be a multilayered structure, and inverse
Q filtering is implemented in a layered manner. For each indi-
vidual constant Q layer, inverse Q filtering is accomplished in
two steps: (1) the surface-recorded wavefield is extrapolated
to the top of the current layer and (2) a constant Q inverse
filter is performed across that layer. In the first step, the ex-
trapolated wavefield at the top of the current layer may be
estimated by solving an inversion system to the downward con-
tinuation within the overburden. The solution is stabilized by
incorporating a stabilization factor. In the second step, the am-
plitude operator of the inverse Q filter, which is a 2-D function
of traveltime and frequency, is approximated optimally as the
product of two 1-D functions depending, respectively, on time
and frequency. The inverse Q filter within the constant Q layer
is then implemented efficiently by resampling and rescaling in
the Fourier domain.

THE INVERSE Q FILTER AND NUMERICAL INSTABILITY

Basics of the inverse Q filter

The basics of inverse Q filtering are summarized to explain
the new development in this paper. Inverse Q filtering can be
based on the 1-D (two-way propagation) wave equation
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∂2U(r, ω)
∂r 2

+ k2U(r, ω) = 0, (1)

where U(r, ω) is the plane wave of radial frequency ω at travel
distance r and k is the wavenumber. Equation (1) has an
analytic solution for one-way propagation, given by

U(r +1r, ω) = U(r, ω) exp( jk1r ), (2)

where j is the imaginary unit. Reflection seismograms record
the reflection wave along the propagation path r from the
source to the reflector and back to the surface. The distance
increment 1r can be replaced by

1r = v(ω0)1T, (3)

where v(ω0) is the phase velocity at the dominant frequency
ω0 and 1T is the traveltime increment. The earth Q effect is
introduced in the definition of the wavenumber k:

k = ω

v(ω)

(
1− j

2Q

)
, (4)

where v(ω) is the frequency-dependent phase velocity and Q
is the medium quality factor, which is assumed to be frequency
independent. Substituting the complex-valued wavenumber k
into solution (2), we have the expression of inverse Q filter,

U(T +1T, ω) = U(T, ω) exp
(

jωv(ω0)
v(ω)

1T

)
× exp

(
ωv(ω0)
2Qv(ω)

1T

)
. (5)

The two exponential operators compensate for, respectively,
the phase effect (i.e., velocity dispersion) and the amplitude
effect (i.e., energy absorption) of the earth Q filter.

In the following computation, I use a model for the phase
velocity v(ω) defined by

v(ω) = v(ω0)
∣∣∣∣ ωω0

∣∣∣∣γ , (6)

where

γ = 2
π

tan−1
(

1
2Q

)
≈ 1
πQ

(7)

(Kjartansson, 1979). Inverse Q filter (5) is then rewritten as

U(T +1T, ω) = U(T, ω) exp

(
j

∣∣∣∣ ωω0

∣∣∣∣−γ ω1T

)

× exp

(∣∣∣∣ ωω0

∣∣∣∣−γ ω1T

2Q

)
. (8)

Equation (8) is the basis for an inverse Q filter in which down-
ward continuation is performed on all plane waves in the fre-
quency domain. The sum of these plane waves then gives the
time-domain seismic signal,

u(T +1T) = 1
2π

∫
U(T +1T, ω) dω. (9)

Equations (8) and (9) must be applied successively to each
time sample with sampling interval1T , producing u(T) at each
level.

Numerical instability

The basic downward continuation scheme described above is
now tested on noise-free synthetic seismic traces, which clearly
show the numerical instability of the inverse Q filter.

A synthetic trace is built by

u(t) = <
{

1
π

∫ ∞
0

S(ω) exp[ j (ωt − kr)] dω

}
, (10)

where S(ω) is the Fourier transform of a source waveform s(t)
defined as the real-valued Ricker wavelet,

s(t) =
(

1− 1
2
ω2

0t2
)

exp
(
−1

4
ω2

0t2
)
, (11)

with the dominant radial frequencyω0= 100π (i.e., 50 Hz). The
Ricker wavelet is a symmetric, noncausal wavelet. I use this
symmetric wavelet to conveniently examine the phase change
visually after the inverse Q filter is applied, although a min-
imum phase wavelet such as the Berlage wavelet (Aldridge,
1990) would be more realistic for the source function.

Given the travel distance r = v(ω0)tr for traveltime tr of the
plane wave with dominant frequencyω0, equation (4) provides
the term kr used in equation (10):

kr =
(

1− j

2Q

)∣∣∣∣ ωω0

∣∣∣∣−γ ωtr , (12)

independent of the velocity v(ω0). In the example, I consider
the signal to consist of a sequence of Ricker wavelets with
tr = 100, 400, . . . , 1900 ms (increment of 300 ms). Figure 1a

FIG. 1. The earth Q filter and the inverse Q filter. (a) Synthetic
traces show the effect of the earth Q filter with Q= 400, 200,
100, 50, and 25. (b) The inverse Q filtering (compensating for
both phase and amplitude) result, which clearly indicates nu-
merical instability. (c) The phase-only inverse Q filtering result.



Inverse Q Filtering 659

shows five synthetic traces with different Q values (Q= 400,
200, 100, 50, and 25) constant with depth in each case.

The result of applying the inverse Q filter to the synthetic sig-
nals is displayed in Figure 1b. For traces with Q= 400 and 200,
the process restores the Ricker wavelet with correct phase and
amplitude. However, there are strong artifacts as the Q value
decreases and the imaging time T increases, even though the
input signal is noise free. The appearance of noise in the output
signal is a natural consequence of the downward continuation
procedure: A plane wave is attenuated gradually, but beyond a
certain distance the signal is below the ambient noise level. The
amplification required to recover the signal amplifies the am-
bient noise. In the data-noise-free case here, the background
noise is the machine errors relative to working precision. The
cause of strong artifacts is referred to as the numerical insta-
bility of the inverse Q filter.

The stability condition may be stated as

3(ω) ≡ exp

(∣∣∣∣ ωω0

∣∣∣∣−γ ω1T

2Q

)
≤ 1, (13)

where 3(ω) is the amplitude compensation operator in equa-
tion (8). If we set 3(ω)= 1, the inverse Q filter for phase-only
compensation is unconditionally stable, as shown in Figure 1c.

The artifacts caused by numerical instability can be sup-
pressed by a low-pass filter. Based on experiments, I have found
the following empirical stability condition:

exp

(∣∣∣∣ ωω0

∣∣∣∣−γ ω2Q

∑
1T

)
≤ e, (14)

that is, the (accumulated) exponent of the amplitude factor is
not greater than 1. Equation (14) thus suggests an upper limit
on the frequencies that could be included in the amplitude
compensation,

ω ≤ 2Q

T
≡ ωq, (15)

which has a time-varying frequency limit. I test this low-pass
filter in the following three alternative ways:

1. Both phase and amplitude compensation are truncated
at frequency ωq with cosine-squared tapering;

2. Phase compensation is performed on the full frequency
band but with amplitude compensation only within the
band limit [0, ωq);

3. Both phase and amplitude are compensated on the full-
frequency band with the amplitude operator defined
by

3(ω) =


exp

(∣∣∣∣ ωω0

∣∣∣∣−γ ω1T

2Q

)
, ω ≤ ωq

3(ωq), ω > ωq

. (16)

The results of these three schemes applied to the synthetic data
set of Figure 1a are shown in Figures 2a, 2b, and 2c, respectively.
Figure 2b shows improvement over Figure 2a, but Figure 2c is
superior to both because the amplitudes for the traces Q≤ 200
are better compensated. In each case the numerical instability
evident in Figure 1b is successfully suppressed. The third test
scheme (Figure 2c) is called a gain-limited inverse Q filter.

THE STABLE, EFFICIENT APPROACH

Layered implementation

In the basic inverse Q filtering scheme above, the extrapo-
lation step1T is the sample rate of the digitized seismic trace,
while the output at each sample point is required. The compu-
tational demands of this samplewise downward continuation
render it impractical for routine prestack seismic processing.
Since the inverse Q filter works on individual traces, it is rea-
sonable to divide the depth-dependent earth Q model into a
series of constant Q layers and to implement the inverse Q filter
in a layered manner. This procedure is shown in Figure 3.

The idea behind the layered model algorithm is to treat the
top of the current layer as a new recording surface and thereby
apply a fast algorithm of inverse Q filter to the constant Q layer.
Lowering the recording surface to the level of the top of the
current layer is accomplished by the downward continuation
of expression (8). This step is very fast since equation (8) is
applied in one step for the traveltime across each layer in the
overburden.

Suppose we divide the earth Q model into N layers defined
by interfaces at two-way traveltimes Tn for n= 1, . . . , N − 1,
with T0= 0 and TN being the maximum record time. The plane-
wave downward continuation from the surface to the top of
the nth layer can be implemented recursively:

U(T0, ω)→ U(T1, ω)→ · · · → U(Tn−1, ω). (17)

Each step is given explicitly by

FIG. 2. Inverse Q filter using three distinct methods: (a) with a
low-pass filter, ω≤ωq; (b) with full-band phase compensation
but band-limited amplitude compensation; (c) with full-band
phase compensation and modified full-band amplitude com-
pensation, i.e., the gain-limited inverse Q filter. The input signal
in each case is as shown in Figure 1a.
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U(Tn−1, ω) = U(Tn−2, ω) exp

(
j

∣∣∣∣ ωω0

∣∣∣∣−γn−1

ω1Tn−1

)

× exp

(∣∣∣∣ ωω0

∣∣∣∣−γn−1 ω1Tn−1

2Qn−1

)
, (18)

where 1Tn−1= Tn−1− Tn−2 is the thickness of the (n− 1)th
layer, in which Qn−1 is constant, and γn−1= 1/(πQn−1). Down-
ward continuation using equation (18), performed on all fre-
quencies, compensates accurately for the effect of earth Q filter
between the surface and the top of the current layer.

The extrapolated wavefield U(Tn−1, ω) is then used as the
input of the inverse Q filter within the nth layer. For clarity, I
refer to Tn−1 as the origin of a reduced time coordinate τ and
denote the wavefield recorded at level Tn−1 as

M(τ = 0, ω) ≡ U(Tn−1, ω). (19)

Blending expressions (8) and (9) into one form, the inverse
Q-filtered seismic trace may be presented in the time-shifted
domain:

m(τ ) = 1
2π

∫
M(0, ω) exp

(
j

∣∣∣∣ ωω0

∣∣∣∣−γ ωτ
)

× exp

(∣∣∣∣ ωω0

∣∣∣∣−γ ωτ2Q

)
dω, (20)

where the layer subscript to parameter Q is dropped. As de-
picted in Figure 3, only the front portion of m(τ ) is stored into
output u(T),

u(Tn−1 + τ ) = m(τ ), (21)

FIG. 3. Earth Q model divided into N layers with the base of
layer n at two-way times Tn. The inverse Q filtering is imple-
mented in a layered manner. The double wave symbol repre-
sents the plane wave U ; the vertical arrow indicates the down-
ward continuation. The result of inverse Q filtering within a
constant Q layer is the portion of m(τ ) for τ ∈ [0, 1Tn], which
is stored to the output trace u(T) for T ∈ [Tn−1, Tn].

where τ ∈ [0,1Tn] and 1Tn= Tn− Tn−1 is the thickness of the
nth layer.

Stabilized downward continuation

In the downward continuation step across the overburden
[equation (18)], the gain-limited inverse Q filtering scheme
with the amplitude operator given by expression (16) could
be applied. However, to further improve the performance, I
propose a stabilized approach to the wavefield extrapolation
within the overburden.

Instead of directly applying the downward continuation, I
establish a reversed system and solve it to obtain the extrap-
olated wavefield. Suppose the wavefield U(Tn−1, ω) at the top
of the nth layer is obtained from the recursive downward con-
tinuation using equation (17). That is,

U(Tn−1, ω) = α(ω)U(T0, ω), (22)

where α(ω) is the extrapolation operator. The reversed, up-
ward continuation system

U(Tn−1, ω)→ · · · → U(T1, ω)→ U(T0, ω) (23)

is represented by

U(T0, ω) = β(ω)U(Tn−1, ω), (24)

where β(ω) is the operator of the upward continuation system.
Wavefield U(Tn−1, ω) is then estimated by

U(Tn−1, ω) = β∗(ω)
β∗(ω)β(ω)+ σ 2

U(T0, ω), (25)

where β∗ is the conjugate of β and σ 2 is a real positive constant
used to stabilize the solution.

The operator β(ω) of the reversed upward continuation sys-
tem, which is in fact the forward earth Q filter, may be given
explicitly as

β(ω) = exp

[
−

n−1∑
`=1

(
1

2Q`

+ j

)∣∣∣∣ ωω0

∣∣∣∣−γ`ω1T̀

]
. (26)

The sum in the exponent is also calculated recursively.

Inverse Q filtering within a constant Q layer

I now describe how to implement inverse Q filtering within
a constant Q layer. To obtain computational efficiency, three
different approximations to the amplitude operator are tested.

Using a new variable

ω′ = ω
∣∣∣∣ ωω0

∣∣∣∣−γ , (27)

equation (20) is rewritten as

m(τ ) = 1
2π

∫
M(0, ω′)J3(τ, ω′) exp( jω′τ ) dω′, (28)

where M(0, ω′)≡M(0, ω(ω′)) is resampled from M(0, ω) to
M(0, ω′), J is the Jacobian

J ≡
∥∥∥∥ dω

dω′

∥∥∥∥ = 1
1− γ

∣∣∣∣ω′ω0

∣∣∣∣γ /(1−γ )

, (29)
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and 3 is the amplitude compensation operator

3(τ, ω′) = exp
(
ω′τ
2Q

)
. (30)

The amplitude compensation operator is omitted by
Hargreaves and Calvert (1991), and their phase-only compen-
sation algorithm is implemented using interpolation and scal-
ing in the Fourier domain. Their method is fast because it is
based on the fast Fourier transform. I retain the amplitude op-
erator3(τ, ω′) in equation (28) but use an approximation to it
so the fast Fourier transform can still be used.

Given a layer with moderate thickness indicated by two-way
traveltime1T , one can approximate3(τ, ω′) by averaging over
this time window:

31(ω′) = 1
1T

∫ 1T

0
exp

(
ω′τ
2Q

)
dτ

≈ 1+ ω
′1T

4Q
+ 1

6

(
ω′1T

2Q

)2

. (31)

Expression (28) is then written as

m(τ ) = 1
2π

∫
M(0, ω′)J31(ω′) exp( jω′τ ) dω′. (32)

The evaluation of equation (32) thus involves the following
steps: interpolating M(0, ω) to M(0, ω′) with evenly spaced val-
ues of ω′, scaling with the Jacobian J, amplitude compensation
31(ω′), and finally the inverse Fourier transform. If one sets
31(ω′)= 1, expression (32) represents the phase-only inverse
filter. Thus, the amplitude operator 31(ω′) acts as a band-pass
filter applied to the phase-corrected seismic trace. The band-
width is the useful frequency range of the seismic signal. Al-
though there is no need for a low cutoff frequency definition,
tapering is required at the high cutoff frequency edge.

Instead of averaging over the time window, one can alterna-
tively replace the 2-D amplitude operator in equation (28) by
its average over the frequency band:

32(τ ) = 1
1ω′

∫ ω′c+1ω′/2

ω′c−1ω′/2
exp

(
ω′τ
2Q

)
dω′

≈
[

1+ 1
6

(
1ω′τ
4Q

)2
]

exp
(
ω′cτ
2Q

)
, (33)

where ω′c is the center frequency of the frequency band and
1ω′ is the bandwidth. Both ω′c and 1ω′ may vary with time.
Expression (28) then becomes

m(τ ) = 32(τ )
[

1
2π

∫
M(0, ω′)J exp( jω′τ ) dω′

]
, (34)

where the band-limited gain32(τ ) is applied to the phase-only
corrected seismic trace. This gain compensation can be used
in conjunction with the compensation of the offset-dependent
spherical divergence to remove the need for any trace equaliza-
tion or automatic gain control prior to, for example, an energy-
preserving deconvolution.

The function 31 is a 1-D function of the frequency, whereas
32 depends on the traveltime. In a third method, I approximate
the 2-D amplitude operator as a product of two 1-D functions

33(τ, ω′) = 331(τ )332(ω′). (35)

Splitting the exact amplitude operator (30) into

3(τ, ω′) = exp
(
ω′c
2Q

τ

)
exp

(
ω′ − ω′c

2Q
τ

)
, (36)

I define the time-dependent term at the central frequency ωc,

331(τ ) = exp
(
ω′c
2Q

τ

)
, (37)

and the frequency-dependent term based on the average over
the time interval 1T ,

332(ω′) = 1
1T

∫ 1T

0
exp

(
ω′ − ω′c

2Q
τ

)
dτ

≈ 1+ 1T

4Q
(ω′ − ω′c)+ 1T2

24Q2
(ω′ − ω′c)2. (38)

The inverse Q filter [equation (28)] is then

m(τ ) = 331(τ )
[

1
2π

∫
M(0, ω′)J332(ω′)

× exp( jω′τ ) dω′
]
, (39)

where the time gain function 331 is applied following the in-
verse Fourier transform.

Figure 4 compares numeric errors of the three approxima-
tions (31, 32, and 33) against the exact amplitude operator
3. The radius of the circles indicates the magnitude of the er-
rors. These errors are estimated based on an example model
of Q= 50 within the 300-ms time window and the 10- to 90-Hz
frequency band. Errors (ε values) on the upper boundaries are
given explicitly in the figure. The best alternative among these
three is 33=331332, which is used in the following examples.

Summary

The stabilized layered inverse Q filtering method uses equa-
tion (25) to extrapolate the surface-recorded wavefield to the
top of the current layer, and then equation (39) within the cur-
rent constant Q layer, to produce the Q compensated output
across the layer. The procedure is repeated for all constant Q
layers.

This layered implementation is akin to recursive migration,
a name that emphasizes the recursive calculation of the down-
ward continuation (Kim et al., 1989). I refer to this procedure
as the layered method because the result of a specific layer is in-
dependent of the output within the overburden. This property
also contrasts with a layer-stripping implementation.

APPLICATION AND DISCUSSION

Example results

To demonstrate the effectiveness of this algorithm, Figure 5
displays three sets of results for the layered inverse Q filter: (a)
phase compensation only; (b) compensation for both phase and
amplitude, but the downward continuation within the overbur-
den using the gain-limited inverse Q filter with the amplitude
operator defined in expression (16); and (c) the stabilized so-
lution based on equations (25) and (39) with σ 2= 10−4.

Figures 5a and 5b, the results for phase only and for
both phase and amplitude, are similar to Figures 1c and 2c,
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respectively. The accuracy of this layered scheme is very close
to that of the basic sample scheme. But the layered method
is much faster than the latter. For this particular example,
the sample rate of the synthetic traces is 2 ms, whereas the
thickness used in the layered scheme is 300 ms. That is, seven
layers are involved in the computation.

FIG. 4. Numerical errors of the three approximations31 [equa-
tion (31)], 32 [equation (33)], and 33 [equation (35)], relative
to the exact amplitude operator3 [equation (30)]: (a)3−31,
(b) 3−32, and (c) 3−33. These errors are estimated based
on an example model of Q= 50 within the 300-ms time window
and the 10–90-Hz frequency band. The radius of each circle is
proportional to the absolute value of the error, where specific
error values (ε) are indicated on the upper boundaries.

From Figure 5c, we see clearly that the amplitudes of more
high-frequency components are compensated by using the sta-
bilized computation scheme. We have recovered all compo-
nents that in principle are recoverable, if we compare Figures 5c
and 1b. The stabilized solution intelligently limits the attempt to
compensate the highly attenuated high-frequency plane waves
propagating through a low Q medium.

Discussion

When the inverse Q filter is applied to real seismic data, high-
frequency noise is also amplified since the amplitude compen-
sation operator is an exponential function of the frequency. To
overcome this problem, I use spatial linear prediction theory,
prior to the inverse Q filtering, to extract coherent signal from
the seismic data (Wang, 1999). Noise traces, given by the differ-
ence between the original traces and predicted traces, could be
mixed back to the resultant traces after the inverse Q filtering
on predicted noise-free traces.

For a seismic gather, inverse Q filtering working on each
single trace takes the offset effect into account. Suppose the
multilayered Q model is a 1-D function defined at zero offset,
Q(T, 0). The Q function for a nonzero offset trace is approxi-
mated by

Q(T, x) = Q

(√
T2 − x2

v2
nmo

, 0

)
, (40)

where x is the source–receiver offset and vnmo is the NMO
velocity.

FIG. 5. Layered inverse Q filtering: (a) compensating for phase
only; (b) compensating for both phase and amplitude, where
the extrapolation through the overburden uses the gain-limited
inverse Q filter scheme; (c) compensating for both phase and
amplitude, where wavefield extrapolation uses the stabilized
algorithm, which recovers all components that in principle are
recoverable.
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Inverse Q filtering for marine seismic data normally should
start from the water bottom. The downward continuation
method presented here, starting from the surface, includes the
water layer, in which 1/Q= 0. The effective Q function below
the water is generally assumed to be proportional to the layer
velocity. It would be better to overestimate Q than to under-
estimate Q, according to the sensitivity analysis by Duren and
Trantham (1997).

CONCLUSION

A stable, efficient approach to inverse Q filtering is pre-
sented for a multilayered-earth Q model. For each constant Q
layer, the stabilized solution to the wavefield downward con-
tinuation within the overburden combined with the optimal
approximation to the compensation operator within the cur-
rent layer characterize this elegant algorithm for the inverse Q
filter.
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