
A STABLE AND EFFICIENT METHOD FOR TREATING SURFACE
TENSION IN INCOMPRESSIBLE TWO-PHASE FLOW ∗

M. SUSSMAN† AND M. OHTA‡

This paper is dedicated to Diane Ohlhaber.

Abstract. A new approach based on volume preserving motion by mean curvature for treating
surface tension in two-phase flows is introduced. Many numerical tests and a theoretical justification
are included which provide evidence regarding the efficacy of the new approach. For many flows,
which exhibit stiff surface tension effects, the new approach gives a factor of at least three and
sometimes five or more speed-up for a given accuracy. The new method is easy to implement in
the context of (1) level set methods, or coupled level set and volume-of-fluid methods, (2) compli-
cated interfaces separating gas from liquid, and (3) three dimensional axisymmetric, or fully three
dimensional adaptive mesh refinement.

Key words. surface tension, level set method, volume-of-fluid method, two-phase flow, motion
by mean curvature, numerical methods

AMS subject classifications. 65M06, 76D05, 76T05

1. Introduction. Explicit treatments of surface tension have a stringent stabil-
ity constraint on the time step given by,

∆t ≤
√

ρL + ρG

(2π)3σ
∆x3/2,(1)

where ρL is the liquid density, ρG is the gas density, ∆x is the size of a grid cell, and
σ is the surface tension coefficient. In this paper, we shall introduce a new method
for treating surface tension, based on volume preserving motion by mean curvature,
which replaces the above time step constraint with the following, much more lenient,
time step constraint:

∆t ≤ ∆x(ρL + ρG)
2π

.(2)

Observe that our new constraint does not depend on the surface tension coefficient
σ and our new constraint is restricted by O(∆x) instead of O(∆x3/2). If one further
considers the CFL constraint,

U∆t < ∆x,(3)

then one can appropriately scale the Navier-Stokes equations so that U and 2π
ρL+ρG

have comparable magnitudes. In this case, there is effectively no time step constraint
due to surface tension. In other words, given any surface tension coefficient σ, one
can always find an appropriate scaling of the Navier-Stokes equations so that our
treatment for surface tension is unconditionally stable.

There have been efforts in the past to remove this surface tension time step con-
straint. For example Hou et al.[7] introduced a treatment for removing the stiff time

∗ Work supported in part by the National Science Foundation under contract DMS 0713256
† Department of Mathematics, Florida State University, Tallahassee, FL (sussman@math.fsu.edu).

Questions, comments, or corrections to this document may be directed to that email address.
‡Department of Applied Chemistry, Muroran Institute of Technology, Muroran, Hokkaido, Japan

1

2 M. Sussman and M. Ohta

step constraint in the context of the boundary integral method for inviscid flows and
Slikkerveer et al.[13] introduced an implicit surface tension treatment in which body
fitted grids were used. A generalization of these approaches to problems with complex
interfaces is not straightforward. Hochstein and Williams[6] derived an expression for
the predicted time advanced curvature in order to remove the stiffness from the sur-
face tension term; but their approach is not complete as in order to truly predict the
time advanced curvature in an implicit fashion, one must also take into account the
time advanced pressure gradient, which these authors did not do. A similar oversight
was made by Cohen and Molemaker[1] who introduced a temporal sub-cycling pro-
cedure in which the stringent time step constraint was only applied to the surface
tension force term. As with [6], Cohen and Molemaker only applied their treatment
to the surface tension force term, while the pressure gradient term used the larger
time step. While the methods proposed by [6] and [1] might work on some simple
test problems, there is little numerical evidence or theoretical justification that these
methods would work in a general context. Finally, an implicit level set treatment for
surface tension was introduced by Hysing[8] and used by Raessi et al.[11], but only
very simple test cases in two dimensions were attempted in which the interface did
not merge or break up. The robustness of Hysing’s approach to three dimensions,
adaptive mesh refinement, or complex interfaces is unknown.

What distinguishes our approach from previous approaches is that we do not at-
tempt to derive some kind of implicit or semi-implicit formulation for surface tension.
Such a formulation is inevitably complicated since a coupling relation must be derived
between velocity and the location of the interface. Instead, we show that one can sim-
ply replace σκ, where σ is the surface tension coefficient, and κ is the curvature, by
the quantity,

d(∆t)− d(0)
∆t

where d(τ) is the solution for volume preserving motion by mean curvature,

dτ = σ(κ− κavg)|∇d|.(4)

So, instead of trying to derive efficient implicit/semi-implicit surface tension tech-
niques, we have reduced the problem of stiff surface tension to the problem of trying
to efficiently solve the much simpler problem of volume preserving motion by mean
curvature (4).

2. Method for removing the stiff surface tension time step constraint .
The surface tension force term appears in the Navier Stokes equations for two phase
flow:

ρ
DU

Dt
= ∇ · (−pI + 2µD) + ρgẑ − σκ∇H(1)

∇ ·U = 0

Dφ

Dt
= 0(2)

DF

Dt
= 0(3)

stable and efficient, surface tension 3

ρ = ρLH(φ) + ρG(1−H(φ))

µ = µLH(φ) + µG(1−H(φ))

κ(φ) = ∇ · ∇φ

|∇φ|
(4)

H(φ) =
{

1 φ ≥ 0
0 φ < 0(5)

The force term due to surface tension is given by,

−σκ(φ)∇H(φ)
ρ(φ)

,(6)

where κ(φ) is the curvature, H(φ) is the Heaviside function (5), φ is a level set function
which is positive in the liquid and negative in the gas, F is a volume-of-fluid function
which represents the volume fraction of liquid in each computational cell, σ is the
surface tension coefficient, and ρ(φ) is the density.

Our new numerical method for treating (6) is the same as that proposed by the
“ghost fluid” treatments of Kang et al[9] or Sussman et al[19] except that we treat
the term σκ(φ) differently. In our new approach, we determine σκ(φ) by solving the
volume preserving motion by mean curvature problem,

dτ = σ(κ(d)− κavg(d)), d(x, 0) = φ(x)(7)

for fictitious time τ = 0, . . . ,∆t and then taking

σκ(φ) ≡ d(x,∆t)− d(x, 0)
∆t

.

∆t is the overall time step for integrating (1). In other words we implement the
following algorithm for finding σκ(φ):
1. define a temporary level set function d(x, 0) = φ(x).
2. define ∆τ so that ∆τ < ∆x2

4σ (in two dimensions) and N∆τ = ∆t.
3. for k = 0, . . . , N − 1,
4. find κ(dk) in computational cells (I, J) where φI,JφI′,J ′ ≤ 0 and |φI,J | ≤ |φI′,J ′ |.

Cell (I ′, J ′) is within the 5 point “star” stencil (in 2d) about cell (I, J).
5. Determine a “color field” C(dk); C is zero away from the zero level set of dk and

where the level set function changes sign, C equals a unique “color” for each
connected interfacial segment. For each unique color C, we determine the
average curvature κavg and define κ̃ = κ(dk) − κavg. In other words, each
connected interfacial segment has its own associated average curvature κavg.

6. Extend κ̃ in a narrow band about the zero level set of dk. κ̃ approximately satisfies
∇κ̃ · ∇d = 0.

7. dk+1 = dk + ∆τσκ̃.
8. extrapolate dk+1 in a narrow band about the zero level set of dk+1 without dis-

turbing the zero level set of dk+1.
9. endfor
10. Assign σκ(φ) to be dN−d0

∆t .

4 M. Sussman and M. Ohta

Remarks:
• Since ∆τ can be smaller than the original explicit surface tension time step

constraint (1), it is important that the above steps be very efficient. In
particular, step (5) above requires one to determine the color field C(dk) for
a general “complicated” interface. We present an algorithm in section 5 that
requires just a few sweeps of the grid, even for a block structured AMR grid
on a parallel computer, in order to determine the color field C(dk).

• For the level set extension in step (8), we update the level set function dk+1

in such a way that we do not perturb the zero level set of dk+1 (i.e. we do
not change dk+1 at cells in which dk+1 changes sign). When k = N − 1, the
thickness of the extended narrow band must be large enough to contain the
zero level set of d0. See section 6 for the details of our level-set extension
procedure.

• In previous work [15, 19, 17], we have computed curvature using the height
function technique directly from the volume-of-fluid function F . In this pa-
per, we introduce a height function technique for computing curvature from
the level set function. We find our new approach, in terms of ease of imple-
mentation, and accuracy, to be superior to using the volume-of-fluid based
height function approach. In section 4 we describe the details for how we dis-
cretize κ(φ) and in section 5.2 we describe the details for how we extrapolate
κ− κavg in a narrow band about the zero level set of φ.

• A theoretical justification, derived from linear stability analysis, for why our
algorithm works is given in section 3. We remark, that our analysis also
shows that one can replace our explicit (forward Euler) volume preserving
motion by mean curvature algorithm (which uses a relatively small ∆τ) with
an implicit (backward Euler) volume preserving motion by mean curvature
algorithm (which can use a significantly larger ∆τ) and still preserve the same
stability properties.

3. Theoretical justification for removing surface tension stiffness . We
consider the linearized equations of (1) for deriving the time step stability constraint
for our new algorithm. We assume zero viscosity and linearize about the trivial
solution in which the velocity is identically zero, the free surface is located along the
line y = 0, the gas region consists of the points y > 0 and the liquid region consists
of the points y < 0. The linearized equations are:

dUG

dt
= −∇pG

ρG
y > 0(1)

∇ ·UG = 0 y > 0

dUL

dt
= −∇pL

ρL
y < 0(2)

∇ ·UL = 0 y < 0

1
ρL

∂pL

∂y
=

1
ρG

∂pG

∂y
y = 0

stable and efficient, surface tension 5

pL − pG = −σκ(η) y = 0(3)

dη

dt
= v y = 0

lim
y→±∞

U = 0

We assume the perturbed interfacial location is given by,

y = η(x, t) = f(t)eikx,

the perturbed liquid pressure is

pL(x, y, t) = ρLg(t)eikx+ky,

and the perturbed gas pressure is

pG(x, y, t) = −ρGg(t)eikx−ky.

The standard approach to treating surface tension would be to replace σκ(η) with
σηxx = −σk2η. This results in the following equation for f(t):

f ′(t) = ±iAf(t)(4)

where

A = k3/2

√
σ

ρL + ρG
.

If one uses the forward Euler approach for solving (4) then the region of absolute
stability requires that,

|∆tA| < 1.(5)

In other words,

∆t ≤
√

ρL + ρG

(2π)3σ
∆x3/2,(6)

where we have replaced k with 2π/∆x. We remark, that if the ratio µ
σ is large (e.g.

a fluid that is much more viscous than water), then a relaxed version of (6) has been
derived by Galusinski and Vigneaux[2].

Now, suppose we compute σκ(η) (3) using the volume preserving motion by mean
curvature algorithm described in section 2. In terms of our linearized variables, one
has the following steps:
1. d(x, 0) = η(x, t)
2. solve

dτ = σdxx τ = 0, . . . ,∆t.(7)

Since η(x, t) = f(t)eikx, one can explicitly write the solution for d(x,∆t) in
terms of η: d(x,∆t) = e−k2σ∆tη(x, t).

6 M. Sussman and M. Ohta

3.

σκ(η) =
d(x,∆t)− d(x, 0)

∆t
=

e−k2σ∆t − 1
∆t

η(x, t)(8)

In replacing σκ(η) = −k2ση with σκ(η) = e−k2σ∆t−1
∆t η, our new expression for A in

(4) becomes

A =

√
k

1− e−k2σ∆t

∆t(ρL + ρG)

and the time step constraint becomes

∆t ≤ ∆x(ρL + ρG)
2π

.

Remarks:
• If we replace step 2 above (7) with the backwards Euler method, i.e.,

d(x,∆t)− d(x, 0)
∆t

= σd(x,∆t)xx,

then

σκ(η) =
d(x,∆t)− d(x, 0)

∆t
= − σk2

1 + σk2∆t
η(x, t)(9)

and the resulting time step constraint becomes identical to (2). This indicates
that one can accelerate the computation of surface tension driven flows if
one had an efficient approach to solving volume preserving motion by mean
curvature using the backward Euler time stepping scheme.

• Our proposed algorithm for evaluating the surface tension force is consistent
with the equations for surface tension and introduces an O(∆t) error to the
numerical solution. Suppose one could solve (7) exactly and that κ̃ = κ(d)−
κavg(d) is defined off of the zero level set of d in such a way so that ∇κ̃·∇d = 0
is always satisfied. In other words, κ̃(xij , τ) is the curvature of the interface
at the point on the interface closest to the grid node xij at fictitious time
τ . Also, since d will be a distance function, the curvature on the interface is
defined as the laplacian of d. We integrate (7) with respect to τ in order to
arrive at:

d(xij ,∆t)− d(xij , 0) =
∫ ∆t

0

σκ̃(xij , τ)dτ.(10)

At smooth sections of the interface, we assume that the following relation
holds,

κ̃(xij , τ) = κ̃(xij , 0) + O(τ).(11)

(11) is justified since the linearized version of (7) corresponds to the heat
equation (7) and one can take the second derivative of both sides of (7) in
order to show that the curvature for small values of τ satisfies a heat equation
(7) too. Integrating the heat equation with respect (κ̃τ = σκ̃xx) to τ gives
that κ̃(x, τ) = κ̃(x, 0) + O(τ). After substituting (11) into (10), one has

d(xij ,∆t)− d(xij , 0)
∆t

= σκ̃(xij , 0) + O(∆t).

stable and efficient, surface tension 7

• Relating to the previous remark, we have found in our test calculations that
the O(∆t) temporal error incurred by replacing σκ with d(x,∆t)−d(x,0)

∆t is
insignificant when compared to the spatial error. However, in the test problem
on capillary instability (section 8.4), we have found that the temporal error
associated with our new method can effect the overall accuracy. In these cases,
in which the O(∆t) error associated with our new method is noticeable, we
propose that one could implement a “higher order stable method for treating
surface tension.” The O(∆t2) version of our algorithm would be to use a
second order one-sided difference approximation for dτ rather than the present
first order one-sided difference approximation. The second order method is
carried out by first integrating (7) for τ = 0, . . . , 2∆t and then setting,

σκ =
4d(x,∆t)− 3d(x, 0)− d(x, 2∆t)

2∆t
.

For the second order method, the expression for A that appears in the stability
condition (5), is

A =

√
k

2(1− e−k2σ∆t)− (1/2)(1− e−2k2σ∆t)
∆t(ρL + ρG)

and the time step constraint becomes

∆t ≤ 2
3

∆x(ρL + ρG)
2π

.

4. Level Set, Height function technique for computing curvature . In
[17, 15, 19], the curvature was computed directly from the volume fractions using the
“height function” technique. In this paper, we compute the curvature directly from
the level set function.

For each cell (I, J), consider the 5 point stencil (in 2d) about this cell. If
φI,JφI′,J ′ ≤ 0 and |φI,J | ≤ |φI′,J ′ | where (I ′, J ′) is contained in the 5 point sten-
cil of (I, J), then we compute the curvature as follows (please refer to Figure 4.1):
a. Determine the orientation of the interface based on ∇φI,J . Without loss of gen-

erality, assume the interface is oriented more horizontally than vertically
(|φy| > |φx|).

b. Determine the heights hI−1, hI , hI+1 by looking at where the level set function
changes sign for the columnar 1x7 data. e.g. to find hI−1, one looks at the
values φI−1,K where K = J − 3, . . . , J + 3. One determines the sign change
closest to K = J . If all the values of φI−1,K are negative and φI−1,J+3 >
φI−1,J−3, for example, then hI−1 takes the height of the highest point in the
stencil.

c. Approximate the curvature as

κI,J =
hI+1−2hI+hI−1

∆x2

(1 + (hI+1−hI−1
2∆x)2)3/2

Remarks:
• The coupled level-set and volume-of-fluid reinitialization step replaces the

level set function with the signed distance to the piecewise linear volume-
of-fluid reconstructed interface. The direct calculation of curvature from

8 M. Sussman and M. Ohta

the reinitialized level set function will not converge under grid refinement
as ∆x → 0. In section 8.1, we will show that the curvature does converge
under grid refinement as ∆x → 0 and ∆t → 0 if we compute curvature of
the level set function as a result of (1) reinitialization, and in addition, (2)
applying volume preserving motion by mean curvature for 0 ≤ τ ≤ ∆t.

• In light of the previous remark, it makes no difference whether one computes
curvature directly from the volume fractions, or from the level set function.
Being as such, computing the curvature from the level set function is prefer-
able since it is (1) easier especially in the context of computing on an adaptive
hierarchy of grids, and (2) more accurate in the sense that the position of the
interface is well defined from the level set function especially when two inter-
faces come in close proximity to each other.

• From these authors’ experience, the important thing to consider when dis-
cretizing the curvature for surface tension is that the curvature represent an
approximation to the curvature on the interface. i.e. the height function ap-
proximation, whether one uses the level-set function φ or the volume-of-fluid
function F is preferable to using the formula κ(φ) = ∇ · ∇φ

|∇φ| since the lat-
ter formula is an approximation to the curvature at the cell center, and the
height function techniques approximate the curvature on the interface.

Fig. 4.1. Illustration for calculating the curvature from the level set function. The heights,
hI−1, hI , hI+1 are determined in between cells in which the level set function φ changes sign.

5. Calculating the average curvature on a block structured adaptive
hierarchy of grids . The equation for volume preserving motion by mean curvature
is

φt = (κ(φ)− κavg(φ))

To compute κavg, we first define κ(φ) for cells (I, J) in which φI,JφI′,J ′ ≤ 0 and
|φI,J | ≤ |φI′,J ′ | ((I ′, J ′) is contained in the 5 point stencil of (I, J)) (see section 4).
We define a variable MI,J which satisfies MI,J = 1 where ever κI,J is defined, and
satisfies MI,J = 0 elsewhere. Then, for a general complex interface, we determine a
color field, C(φ) which is zero where φ does not change sign, and C(φ) equals a unique
“color” C in cells where φ does change sign. For each color C, one has an associated
κavg derived by the following discrete quadrature,

κavg =

∑
i,j,Ci,j=C,Mi,j=1 κijVi,j∑

i,j,Ci,j=C,Mi,j=1 Vi,j

stable and efficient, surface tension 9

where Vi,j is the volume of cell (i, j).

5.1. Determining the interfacial color field . In this section we describe
how we initialize a color field C(d) where d is a level set function. In Figure 5.1,
we illustrate an example of air/water interfaces along with the underlying adaptive
hierarchy of grids. Each grid cell (I, J) in which dI,JdI′,J ′ ≤ 0 for some cell (I ′, J ′)
contained in the 5 point stencil (2d) about (I, J) needs to be assigned a “color.” A
unique color is defined for each “connected” interfacial piece. An air/water interface
need not wholly be contained on the finest adaptive level.

The steps for assigning unique colors are as follows:
1. for each level L from finest to coarsest,
2. for each grid G on level L, assign local colors, do not include information from

neighboring grids, and block out cells that lie underneath a finer level L + 1.
3. synchronize colors between grids on the same level L. A matrix A is constructed

in which AI,J = 1 if there are two neighboring grid cells in which color I is
a neighbor of color J . Unique colors are derived, and the coloring scheme on
level L is updated.

4. Transfer color information from level L + 1 to level L cells that were originally
blocked out.

5. Synchronize colors between level L and level L+1 and correct the color numbering
scheme on all levels L, . . . , Lfinest.

6. end for.
In order to assign local colors for each grid G on level L (step 2 above), we follow

these steps:
1. Initialize a local grid color counter c = 0. Initialize CI,J = 0 for all cells (I, J)

in grid G. Initialize MI,J = 1 if cell (I, J) is covered by a level L + 1 cell;
otherwise MI,J = 0.

2. For each cell (I, J) of grid G in which MI,J = 0 and CI,J = 0:
3. if dI,JdI′,J ′ ≤ 0 where (I ′, J ′) is contained within the 5 point stencil of (I, J) then:

a. c = c+1, CI,J = c, initialize a “stack” and push all the cells (I ′, J ′) which
are within the 5 point stencil of (I, J), and satisfy CI′,J ′ = 0, MI′,J ′ = 0,
onto the stack.

b. while the stack is not empty,
c. pop cell (I ′′, J ′′) from the stack
d. if dI′′,J ′′dI′′′,J ′′′ ≤ 0 where (I ′′′, J ′′′) is contained within the 5 point stencil

of (I ′′, J ′′), and CI′′,J ′′ = 0, then:
I. CI′′,J ′′ = c, push all the cells (I ′′′, J ′′′), which are within the 5 point

stencil of (I ′′, J ′′), and have not been pushed before, and satisfy
CI′′′,J ′′′ = 0 and MI′′′,J ′′′ = 0, onto the stack.

e. end while
4. endfor

5.2. Extrapolation algorithm for κ−κavg . After we determine κ̃ = κ−κavg

in cells (I, J) where φI,JφI′,J ′ ≤ 0 and |φI,J | ≤ |φI′,J ′ | ((I ′, J ′) is contained in the
5 point stencil of cell (I, J)), we tag these cells with the number “1” and do the
following steps:
1. Traverse all cells (i, j) in the domain, for each cell (i, j) tagged with the number

“1,” give a new tag (tag equal to the number “2”) to all cell within the 7x7
stencil about (i, j) that were not originally tagged.

2. Traverse all cells (i, j) in the domain, for each newly tagged cell (i, j) (tag equal

10 M. Sussman and M. Ohta

Fig. 5.1. Illustration of the coloring of two separate interfacial segments on an adaptive hier-
archy of grids.

to “2”), assign an extrapolated curvature given by the formula,

κ̃extrap
i,j =

∑3
i′,j′=−3 wi′,j′ κ̃i+i′,j+j′∑3

i′,j′=−3 wi′,j′

wi′,j′ =
{

0 cell (i + i′, j + j) is not originally tagged with tag “1”
1

(i′2+j′2)5 cell (i + i′, j + j) is originally tagged with tag “1”(1)

6. Level set Extrapolation algorithm . Our volume preserving motion by
mean curvature algorithm solves the following equation:

dτ = σ(κ(d)− κavg(d))(1)

(1) is valid so long as d is maintained a distance function and ∇κ̃ ·∇d = 0. After each
iteration of our volume preserving motion by mean curvature algorithm, we reinitialize
d to be a distance function for cells within a narrow band of the zero level set of d,
but without disturbing the position of the zero level set of d. We note that there are
very efficient “fast marching” procedures [12, 3] for carrying out this step, but we
have chosen the following very simple algorithm:
1. For each cell (I, J) in which dI,JdI′,J ′ ≤ 0 for some (I ′, J ′) within the 9 point

stencil about (I, J) (in 2d), tag this cell with the value “1.” All other cells
are initially tagged with the value “0.”

2. For M = 0, . . . 2,
3. For each cell (I, J) that is not tagged with “1,” but has at least one neighbor cell

(within the 5 point stencil) that has a tag other than 0, solve the following
equation for dnew

I,J ,

(
dnew

I,J − a

∆x
)2 + (

dnew
I,J − b

∆y
)2 = 1

a = min
tag 6=0

(|dI−1,J |, |dI+1,J |)

b = min
tag 6=0

(|dI,J−1|, |dI,J+1|)

dnew
I,J = sign(dI,J)dnew

I,J

and set the new tag for cell (I, J) equal to “2.”

stable and efficient, surface tension 11

4. end for each (I, J)
5. end for M

Remark:
• Since σκ(φ) = dN−d0

∆t where d0 is the original level set function that is input
into our volume preserving motion by mean curvature algorithm, and dN is
the output of our volume preserving motion by mean curvature algorithm, it
is necessary that dN be a distance function in a band wide enough that it
contains the zero level set of d0. So, at the very end of our motion by mean
curvature algorithm, i.e. for the very last level set extrapolation step, it may
be necessary to iterate for more than M = 0, . . . , 2 iterations in order that
dN be a distance function that extends out beyond the zero level set of d0.

7. Outline of overall algorithm for computational tests. Our numerical
method is a “sharp interface” [9, 19, 14] method for multiphase flow. The projection
method is used to enforce the divergence free condition for the velocity field. At
a given time step n, we are given a face centered velocity field un

face, cell centered
velocity field un

cell, cell centered level set function φn, and cell centered volume-of-fluid
function Fn. An outline of our overall algorithm is as follows:
1. Advection (gas and liquid velocities treated separately):

u∗cell − un
cell

∆t
= [u · ∇u]n

φn+1 − φn

∆t
= [u · ∇φ]n

Fn+1 − Fn

∆t
= [u · ∇F]n

2. CLSVOF Reinitialization of the level set function; φn+1 is replaced by the signed
distance to the piecewise linear volume-of-fluid reconstructed interface (see
Figure 7.1).

3. Diffusion:
a. define u

(0)
cell = u∗cell.

b. define ∆τ so that,

∆τ < min
i,j

ρi,j∆x2

µi+1/2,j + µi,j+1/2 + µi−1/2,j + µi,j−1/2
N∆τ = ∆t

c. for k = 0, . . . , N − 1,

u
(k+1)
cell = u

(k)
cell + ∆τ

1
ρ(φ)

[∇ · µ(∇u + (∇u)T)](k)

4. extrapolate the cell centered advective force term, F advect
cell = u∗

cell−un
cell

∆t , and dif-

fusion force term, F diffuse
cell = u(N)

cell
−u(0)

cell

∆t from cell centers to cell faces.
5. Construct face centered velocity field to be projected:

V face = un
face + ∆tF advect

face + ∆tF diffuse
face −∆t[σκ

∇H

ρ
]n+1 + ∆tgz

12 M. Sussman and M. Ohta

6. Pressure projection step:

∇ · ∇p

ρ
=

1
∆t

∇ · V face

un+1
face = V face −∆t

∇p

ρ

7. extrapolate the liquid velocity into the gas.
Remarks:
• The result of the nonlinear advection step u∗cell is calculated in two steps:

a. solve ut+un ·∇u = 0 using a 2nd order non-conservative semi-Lagrangian
approach; i.e. find u∗,predict

i,j,cell = Iun
cell(x

∗) where I represents cubic in-
terpolation and x∗ is the solution at τ = ∆t of dx

dτ = −un(x) (x(t =
0) = xij).

b. define

u
∗,n+1/2
cell =

un
cell + u∗,predict

cell

2

u∗cell − un
cell

∆t
=

un
i+1/2,ju

∗,n+1/2
i+1/2,j − un

i−1/2,ju
∗,n+1/2
i−1/2,j

∆x
+

vn
i,j+1/2u

∗,n+1/2
i,j+1/2 − vn

i,j−1/2u
∗,n+1/2
i,j−1/2

∆y

v∗cell − vn
cell

∆t
=

un
i+1/2,jv

∗,n+1/2
i+1/2,j − un

i−1/2,jv
∗,n+1/2
i−1/2,j

∆x
+

vn
i,j+1/2v

∗,n+1/2
i,j+1/2 − vn

i,j−1/2v
∗,n+1/2
i,j−1/2

∆y

• The first and second components of the surface tension term, [σκ∇H
ρ]n+1, are

discretized as,

1
ρLθi+1/2,j + ρG(1− θ)i+1/2,j

σκi+1/2,j
H(φi+1,j)−H(φi,j)

∆x

and
1

ρLθi,j+1/2 + ρG(1− θ)i,j+1/2
σκi,j+1/2

H(φi,j+1)−H(φi,j)
∆y

respectively. H(φ) is defined sharply as in (5). θi+1/2,j is a height fraction
given by,

θi+1/2,j(φ) =

1 φi+1,j ≥ 0 and φi,j ≥ 0
0 φi+1,j < 0 and φi,j < 0

φ+
i+1,j

+φ+
i,j

|φi+1,j |+|φi,j | otherwise

The “+” superscript stands for the “positive part:” i.e., a+ ≡ max(a, 0).
The term σκ is determined at cell centers using our newly proposed volume
preserving motion by mean curvature procedure as described in section 2. σκ
is extrapolated to cell faces as follows:

σκi+1/2,j =
{

σκi,j |φi,j | < |φi+1,j |
σκi+1,j |φi,j | ≥ |φi+1,j |

• Referring to the surface tension stability constraint (2), As long as the Navier-
Stokes equations are scaled appropriately so that the dimensionless velocity
has comparable size as the quantity 2π

ρL+ρG
, then the only stability constraint

for our algorithm is the CFL condition: maxU∆t < ∆x.

stable and efficient, surface tension 13

Fig. 7.1. The CLSVOF reinitialization step replaces the original level set function φ with
the signed distance from the piecewise linear volume-of-fluid reconstructed interface. The volume
fraction of a cell that is shaded corresponds to the volume-of-fluid function F and the slope of the
reconstructed interface corresponds to ∇φ

|∇φ| . The level set function is positive in shaded regions and

negative outside of shaded regions.

Table 8.1
Convergence study for curvature when computed from the level set function after reinitialization

and volume preserving motion by mean curvature for 0 ≤ τ ≤ ∆t. The curvature is measured for a
circle with radius 1/2. Expected curvature is 4. (3d axisymmetric coordinate system)

∆x ∆t minimum curvature maximum curvature
1/32 0.004 3.981 4.010
1/64 0.002 3.993 4.003
1/128 0.001 3.996 4.001

8. Results.

8.1. Numerical validation of computing curvature from the level set
function instead of the volume-of-fluid function . In this section we test our
level set “height function” approach for computing curvature (see section 4). For
our first test, our domain is a 1x2 box and we have a 3d axi-symmetric coordinate
system. We initialize a circle of radius 1/2 at (r, z) = (0, 1). I.e., we initialize the level
set function to be φ(r, z) =

√
r2 − (z − 1)2 − 1/2 and the volume-of-fluid function

F to represent the fraction of volume occupied by liquid in each computational cell.
We then do a grid refinement study for the combination of steps in which we first
reinitialize φ by replacing φ with the signed normal distance to the volume-of-fluid
reconstructed interface, and then we modify φ via our volume preserving motion by
mean curvature algorithm for τ = 0, . . . ,∆t. The results of our first test are in table
8.1 where we measure at least first order convergence for the curvature.

Our second test is the same as the first test except that our domain is a 1x1x1
box and we have a fully 3d coordinate system. We initialize a circle of radius 1/2 at
(x, y, z) = (0, 0, 0). The results of our second test are reported in table 8.2.

8.2. Parasitic Currents . In this section we test our implementation of surface
tension for the problem of a static two-dimensional (2d) drop with unit diameter
D = 1. We assume that the surface tension coefficient is σ = 1.2, the liquid viscosity
is µL = 0.01, the liquid density is ρL = 1, and the density ratio and viscosity ratio are
both one. The exact solution for such a problem is that the velocity u is identically
zero. We remark that our choice of parameters correspond to an Ohnesorge number

14 M. Sussman and M. Ohta

Table 8.2
Convergence study for curvature when computed from the level set function after reinitialization

and volume preserving motion by mean curvature for 0 ≤ τ ≤ ∆t. The curvature is measured for a
circle with radius 1/2. Expected curvature is 4. (fully 3d coordinate system)

∆x ∆t minimum curvature maximum curvature
1/32 0.004 3.979 4.007
1/64 0.002 3.993 4.002
1/128 0.001 3.998 4.001

Oh satisfying 1/Oh2 = 12000. The Ohnesorge number Oh is defined as,

Oh =
µ√
σρD

.

If we were to scale the Navier-Stokes equations by the time scale T = Dµ/σ = 1/120,
and by the velocity scale U = σ/µ = 120, then the non-dimensionalized Navier-Stokes
equations become,

Du

Dt
= −∇p + Oh2∆u−Oh2κ∇H.(1)

We remark that in the context of our stable surface tension algorithm, it would be
a very bad strategy to scale the equations according to (1). This is because it is
important that the equations be scaled in such a way so that the non-dimensionalized
velocity have magnitudes greater than or equal to 2π

ρL+ρG
. Recall that for our stable

surface tension algorithm, the time step constraint associated with surface tension is
given by (2):

∆t ≤ ∆x(ρL + ρG)
2π

.

It is important that this condition be less stringent than the CFL constraint,

U∆t < ∆x.(2)

So, for our tests, we use the unscaled parameters for surface tension (σ = 1.2) and
viscosity (µ = 0.01) instead of scaling velocity by a factor of 120.

The dimensions of our computational grid are 5/2x5/2 with periodic boundary
conditions at the left and right boundaries and reflecting boundary conditions at the
top and bottom boundaries. A drop with unit diameter is initially located at the
center of our domain (5/4, 5/4). Our tolerance for the pressure solver is 1.0E − 12
(the error is measured as an absolute error and is the L2 norm of the residual).

Our first test validates our height function algorithm for computing curvatures
from the level set function φ, instead of from the volume-of-fluid function F . We do
not incorporate our volume preserving motion by mean curvature algorithm into this
first comparison. In Tables 8.3 and 8.4 we display the maximum velocity magnitude
for varying grid resolutions at the time t = 250/120. The first table shows results
using F to compute curvature, and the second table shows results using φ. These
results are comparable with our previous results [19] (taking into account that the
previous results had been scaled the velocity by 120).

Our second test validates our stable surface tension algorithm. In Table 8.5 we
display the maximum velocity magnitude for varying grid resolutions at the time

stable and efficient, surface tension 15

Table 8.3
Convergence study for static droplet with surface tension (parasitic currents test). Curvature

computed using volume-of-fluid height function technique. Stable surface tension algorithm not
implemented. Maximum velocity at t = 250/120 is shown. Oh2 = 1/12000.

∆x ∆t maximum velocity
2.5/16 5.6E-3 1.2E-3
2.5/32 1.9E-3 3.1E-4
2.5/64 7.0E-4 1.5E-5

Table 8.4
Convergence study for static droplet with surface tension (parasitic currents test). Curvature

computed using level set height function technique. Stable surface tension algorithm is not imple-
mented. Maximum velocity at t = 250/120 is shown. Oh2 = 1/12000.

∆x ∆t maximum velocity
2.5/16 5.6E-3 4.9E-3
2.5/32 1.9E-3 1.2E-4
2.5/64 7.0E-4 1.6E-6

t = 250/120. These results demonstrate that our new algorithm enables comparable
accuracy with a factor of 6 improved computation speed. For the case when ∆x =
2.5/64, it took 44 seconds to run to completion when using our new stable surface
tension approach, whereas it took 253 seconds without our new approach.

8.3. Surface tension driven (zero gravity) drop oscillations . In this sec-
tion we compare our new method for treating surface tension to the method proposed
in [19] for the problem of surface tension driven drop oscillations. In section 8.2
(parasitic currents), the density ratio was 1:1 and the viscosity ratio was 1:1; in this
example, the density ratio is 1000:1 and the viscosity ratio is 1000:1.

According to the linearized results derived by Lamb [10] (1932, §275), the position
of the drop interface is

R(θ, t) = a + εPn(cos(θ)) sin(ωnt + π/2),

where

ω2
n = σ

n(n− 1)(n + 1)(n + 2)
a3(ρl(n + 1) + ρgn)

and Pn is the Legendre polynomial of order n. θ runs between 0 and 2π, where θ = 0
corresponds to r = 0 and z = a. If viscosity is present, Lamb (1932, §355) found that
the amplitude is proportional to e−t/τ , where

τ =
a2ρL

µL(2n + 1)(n− 1)
.

We compute the evolution of a drop with a = 1, g = 0, µL = 1/50, µL/µG = 1000,
σ = 1/2, ρL = 1 and ρL/ρG = 1000. The initial interface is given by R(θ, 0), with
ε = .05 and n = 2. With these parameters we find ω2 = 2.0 and τ = 5.0. The fluid
domain is Ω = {(r, z)|0 ≤ r ≤ 1.5 and 0 ≤ z ≤ 1.5}. Symmetric boundary conditions
are imposed at r = 0 and z = 0.

16 M. Sussman and M. Ohta

Table 8.5
Convergence study for static droplet with surface tension (parasitic currents test). Curvature

computed using level set height function technique. Stable surface tension algorithm is implemented.
Maximum velocity at t = 250/120 is shown. Oh2 = 1/12000.

∆x ∆t maximum velocity
2.5/16 0.025 5.9E-4
2.5/32 0.012 9.2E-5
2.5/64 0.006 1.8E-6

In Table 8.6, we display the relative error between succeeding resolutions for the
minor amplitude R∆x(0, t) of the droplet. The average error Eavg

Amplitude is given by

Eavg
amplitude ≡

∫ 3.5

0

|R∆x(0, t)−R2∆x(0, t)|dt,

and the maximum amplitude error Emax
Amplitude is given by

Emax
Amplitude ≡ max

0≤t≤3.5
|R∆x(0, t)−R2∆x(0, t)|.

In Figure 8.1, we plot the minor amplitude computed on an 128x128 grid when
(A) utilizing our stable surface tension algorithm with ∆t = 0.0019, (B) disabling
our stable surface tension algorithm, but still computing curvature from the level
set function ∆t = 0.00018, (C) disabling our stable surface tension algorithm, and
computing curvature directly from the volume-of-fluid function ∆t = 0.00018, and
(D) utilizing our stable surface tension algorithm with ∆t = 0.0019 and also utilizing
adaptive mesh refinement with an effective fine grid resolution equivalent to 128x128
(see Figure 8.2 for an illustration of the adaptive grids for this problem). As can be
seen from Figure 8.1, there is very little difference in the results whether we use the
volume-of-fluid function or the level set function in calculating the curvature, and
there is very little difference in the results whether we use our stable surface tension
algorithm, or if we disable our stable surface tension algorithm. The big difference
is that our new algorithm is much faster. In Table 8.7, we compare the run times
with/without the implementation of our new stable surface tension algorithm.

Remarks:
• When we disable our stable surface tension algorithm, but force ∆t = 0.0019

instead of ∆t = 0.00018, the computations rapidly become unstable.
• In table 8.7 we indicate a slower computation time when using AMR (case

E) versus not using AMR (case B). We speculate that this is because the
blocking factor was 4 therefore restricting the multigrid preconditioner to
only two levels when operating on the finest level.

8.4. Capillary Instability . In this section, we test our stable surface tension
approach on the classical Rayleigh capillary instability problem in which a slightly
perturbed cylindrical column of liquid is driven to break up into droplets by surface
tension (capillary) effects. In this test problem we use physical properties that are
comparable to those found in [18, 19].

We consider an initially perturbed cylindrical column of water in air. The shape
of the initial interface is

r(z) = r0 + ε cos(2πz/λ).(3)

stable and efficient, surface tension 17

Table 8.6
Convergence study for zero gravity drop oscillations σ = 1/2, µL = 1/50, µL/µG = 1000,

ρL/ρG = 1000 and α = 2. Curvature is computed using the level set function. Our stable surface
tension algorithm is used to compute the surface tension force.

∆r ∆t Eavg
Amplitude Emax

amplitude

3/64 0.0075 N/A N/A
3/128 0.0037 0.00174 0.00322
3/256 0.0019 0.00045 0.00114

Table 8.7
CPU time for zero gravity drop oscillations σ = 1/2, µL = 1/50, µL/µG = 1000, ρL/ρG = 1000

and α = 2. CPU times with/without our new stable surface tension algorithm are compared. The
effective fine grid resolution is 128x128 in all cases. Case (A): new method, no AMR. Case (B): old
method, no AMR. Case (C): old method, use VOF for curvature, no AMR. Case (D): new method,
AMR. Case (E): old method, AMR.

case ∆t cells per step CPU time (seconds)
A 0.0019 16384 898
B 0.00018 16384 5379
C 0.00018 16384 5338
D 0.0019 6560 777
E 0.00018 6560 5590

We compute on a 3d-axisymmetric domain Ω = {(r, z)|0 ≤ r ≤ λ/4 and 0 ≤ z ≤ λ/2}.
Symmetric boundary conditions are enforced at r = 0, z = 0 and z = λ/2. Outflow
(pressure equals zero) boundary conditions are enforced at r = λ/4. The relevant
dimensional parameters for this test problem are r0 = 6.52 microns, ε = 1.3 microns,
λ = 60 microns, µL = 1.138 × 10−2g/(cm · s), µG = 1.77 × 10−4g/(cm · s), ρL =
1.0g/cm3, ρG = 0.001225g/cm3, and σ = 72.8dynes/cm. In our computations we
use the following dimensionless parameters: the Reynolds number R = ρLLU/µL =
1/1.138, the Weber number W = ρLLU2/σ = 1.0/72.8, L = 1.0 microns, U = 1.0m/s
and the density and viscosity ratios are 816 and 64, respectively.

In Figures 8.3 and 8.4, we display the results of adaptive computations for the
capillary jet using our stable surface tension approach when ∆t = 0.01 and ∆t = 0.004
respectively. In Figures 8.5 and 8.6 we show results with our stable surface tension
algorithm disabled and the curvature is computed from the level set function and the
volume-of-fluid function respectively. The time step for these cases were ∆t = 0.0013.
In Figure 8.7, we show the minimum jet radius versus time for the four cases: (a)
∆t = 0.01, (b) ∆t = 0.004, (c) ∆t = 0.0013 using φ for curvature, and (d) ∆t = 0.0013
using F for curvature.

The computation time for the adaptive ∆t = 0.01 case was 1016 seconds and
for the adaptive ∆t = 0.004 case was 1435 seconds. On average, 4608 cells were
advanced per time step for the adaptive cases. For the non-adaptive ∆t = 0.01 case,
the computation time was 982 seconds. For the non-adaptive ∆t = 0.0013 case, the
computation time was 2146 seconds.

Remarks:
• if we force the time step to be ∆t = 0.01 and disable our stable surface tension

algorithm, then the 64x128 computation quickly becomes unstable.
• Here we observe a speed-up when using our stable surface tension algorithm,

but the results for ∆t = 0.01 are not equivalent to the ∆t = 0.0013 case; the

18 M. Sussman and M. Ohta

Fig. 8.1. Minor amplitude for zero gravity drop oscillations. Effective fine grid resolution is
128x128. Case A: Stable algorithm enabled, level set function used to calculate curvature, no AMR.
Case B: Stable algorithm disabled, level set function used to calculate curvature, no AMR. Case C:
Stable algorithm disabled, volume-of-fluid function used to calculate curvature, no AMR. Case D:
Stable algorithm enabled, level set function used to calculate curvature, AMR.

Fig. 8.2. Snapshot at t = 1.13 of droplet vibrating due to surface tension induced oscillations.
Effective fine grid resolutions is 128x128. One level of adaptivity overlays a base coarse level.

pinch-off times are different. For this test case, surface tension is the only
force causing break-up of the liquid jet, and therefore it is important to take
small time steps in order to resolve the break-up process.

• Here we observed that the adaptive calculation of this problem took longer
than the non-adaptive calculation. We speculate that this is because the
blocking factor was 8 therefore restricting the multigrid preconditioner to
only three levels when operating on the finest level.

Fig. 8.3. Results for the break-up of a liquid jet due to surface tension. Our stable surface
tension algorithm is enabled and ∆t = 0.01. The effective fine grid resolution is 64x128. One level
of adaptivity overlays a 32x64 coarse level. The dimensionless times for each snapshot, when viewed
from left to right, top to bottom are t = 4.69, t = 9.38, t = 11.72 and t = 12.90.

8.5. Bubble Dynamics. In this section, we compute the steady state shape
of a gas bubble rising in a viscous Newtonian liquid. For comparison, we use the
experimental results found in [5] and computational results in [19].

We test our new stable surface tension algorithm on the bubble problem in Hnat
and Buckmaster [5] corresponding to diameter D = 1.215cm, ρ = 0.876g/cm3, µ =

stable and efficient, surface tension 19

Fig. 8.4. Results for the break-up of a liquid jet due to surface tension. Our stable surface
tension algorithm is enabled and ∆t = 0.004. The effective fine grid resolution is 64x128. One level
of adaptivity overlays a base coarse level. The dimensionless times for each snapshot, when viewed
from left to right, top to bottom are t = 4.69, t = 9.38, t = 11.72 and t = 12.90.

Fig. 8.5. Results for the break-up of a liquid jet due to surface tension. Our stable surface
tension algorithm is disabled and ∆t = 0.0013. The grid resolution is 64x128. The curvature is
computed using the level set height function technique. The dimensionless times for each snapshot,
when viewed from left to right, top to bottom are t = 4.69, t = 9.38, t = 11.72 and t = 12.90.

1.18P , and σ = 32.2dyne/cm. The density ratio and viscosity ratio are 694:1 and
6557:1 respectively.

If one were to scale the Navier-Stokes equations by the diameter of the bubble,
D = 1.215cm, and by the experimentally observed terminal rise speed of the bubble,
U = 21.5cm/s, then the Reynolds number is, R = ρDU

µ = 19.4, the Weber number

is, We = ρDU2

σ = 15.30 and the Froude number is Fr = U2

gD = 0.388. This scaling
would be an inefficient scaling when used together with our stable surface tension
algorithm since the CFL stability condition is determined by the scaled rise speed of
the bubble Udimensionless = 1 which is less than the stable surface tension stability
condition determined by the fictitious speed of Utension = 2π

ρL+ρG
(2). So, for this

test, instead of scaling velocity by U = 21.5cm/s, we instead scale by a velocity of
U = 2.15cm/s. Now, the expected rise speed of the bubble shall be Udimensionless = 10
which dominates Utension which effectively eliminates our need for a surface tension
time step constraint for this problem. In other words, the time step constraint is
completely dictated by the velocity of the flow field instead of by surface tension
effects. In terms of our new scaling, R = 1.94, We = 0.1530, and Fr = 0.00388.

We performed four tests, two tests using a 3d axi-symmetric coordinate system,
and two tests using a fully 3d coordinate system. For our 3d axi-symmetric tests, the
computational domain size was 0 ≤ r ≤ 4 and 0 ≤ z ≤ 6. For our fully 3d tests,
the computational domain size was 0 ≤ x ≤ 4, 0 ≤ y ≤ 4, and 0 ≤ z ≤ 6. The
3d tests assumed symmetry boundary conditions at x = 0 and y = 0. For the 3d
axisymmetric tests, we initialized a spherical bubble at (r, z) = (0, 3) with radius 1/2.
For the 3d tests, we initialized a spherical bubble at (x, y, z) = (0, 0, 3) with radius
1/2. We imposed inflow boundary conditions at the top of our computational domain
corresponding to the expected rise speed of the bubble (expected dimensionless rise
speed is 10). We imposed hydrostatic pressure boundary conditions at all other walls
(except for the symmetry walls).

The computational grid is constructed based on block structured adaptive mesh
refinement in which one has a hierarchy of successively refined overlapping levels. For
our 3d axisymmetric calculations, the base coarse grid has dimensions of 48x72 and
we have 3 added levels of adaptivity. For our fully 3d calculations, the base coarse

20 M. Sussman and M. Ohta

Fig. 8.6. Results for the break-up of a liquid jet due to surface tension. Our stable surface
tension algorithm is disabled and ∆t = 0.0013. The grid resolution is 64x128. The curvature is
computed using the volume-of-fluid height function technique. The dimensionless times for each
snapshot, when viewed from left to right, top to bottom are t = 4.69, t = 9.38, t = 11.72 and
t = 12.90.

Fig. 8.7. Minimum jet radius versus time for four cases: (a) ∆t = 0.01, (b) ∆t = 0.004, (c)
∆t = 0.0013 using φ for curvature, and (d) ∆t = 0.0013 using F for curvature.

grid has dimensions of 32x32x48 and we have 2 added levels of adaptivity.
In all of our calculations we used the level set height function technique (see section

4) for computing the curvature instead of the volume-of-fluid height function technique
as proposed in [19]. We compared results with/without our stable surface tension
algorithm. A comparison of computed terminal bubble rise velocity versus previous
computational and experimental results are reported in Table 8.8. A comparison of
computed terminal bubble shapes with/without our stable surface tension algorithm
are reported in Figures 8.8 and 8.10 corresponding to 3d axisymmetric and 3d results
respectively. A comparison of the computed terminal bubble shape using our stable
surface tension algorithm versus experimental results [5] is shown in Figure 8.9. As
can be seen from our results, there is very little difference in terminal bubble shape
or terminal bubble velocity whether one uses our stable surface tension approach or
not. If one were to compare our results with those reported in [19], there is very
little difference between calculating the curvature using our level set height function
technique vs. the volume-of-fluid height function technique.

What we have found from this test is that it takes a fraction of the time to
compute the same results using our stable surface tension algorithm. For the 3d
axisymmetric test case, our stable surface tension approach took 3120 seconds to
advance to dimensionless time T = 0.84 (∆t = 4.8E − 4) while it took 9678 seconds
to advance to the same time with our stable surface tension algorithm disabled (∆t =
4.14E − 5). For the fully 3d test case, our stable surface tension approach took 312
minutes to advance to dimensionless time T = 1.03 (∆t = 1.4E − 3) while it took
1016 minutes to advance to the same time with our stable surface tension algorithm
disabled (∆t = 2.2E − 4). In both the 3d axisymmetric and fully 3d cases, if we had
disabled our stable surface tension algorithm, but retained the stable surface tension
time step, then the calculation rapidly becomes unstable.

stable and efficient, surface tension 21

Table 8.8
Comparison of computed terminal bubble rise speed (units cm/s) compared with experiments

(Hnat and Buckmaster) and compared with previous calculations (Sussman et al).

case terminal rise speed (cm/s)
Hnat and Buckmaster (D=12.15mm) 21.5
Sussman et al (3d r-z) 21.8
Sussman et al (3d) 21.6
Present method w/Stable Surface Tension (3d r-z) 21.6
Present method w/Stable Surface Tension (3d) 21.6
Present method w/o Stable Surface Tension (3d r-z) 21.8
Present method w/o Stable Surface Tension (3d) 21.6

Fig. 8.8. Terminal bubble shape for a gas bubble rising in a viscous liquid. The density ratio
and viscosity ratio are 694:1 and 6557:1 respectively. Bubbles computed assuming a 3d axisymmetric
coordinate system. The left result corresponds to ∆t = 4.8E − 4, t = 9.5, and the right result
corresponds to ∆t = 4.14E − 5, t = 0.83.

8.6. Bubble Formation. In this section we compute the formation of bubbles
caused by the injection of air into a container of liquid. Our computations use 3d-
axisymmetric r-z coordinates. We enforce inflow boundary conditions at the bottom
of the domain (z = 0),

∇p · n = 0,

U · n =
{

uinflow r < rnozzle

0 otherwise

Symmetry boundary conditions are given at r = 0, free-slip conditions at r = rhigh,
and outflow conditions at the top of the domain (z = zhigh):

p = 0.

Below we compare results using our stable surface tension algorithm with exper-
imental results reported by Helsby and Tuson[4] and with computational results that
we reported in[19]. Our target is Figure 1 (case-e) in [4]. This corresponds with a
nozzle radius of 8.5E − 4m and an inflow velocity of 0.44m/s. Based on the phys-
ical properties of the case-e system, one has the Reynolds number equal to 3.6, the
Weber number equal to 3.06, the density ratio equal to 1015 : 1 and the viscosity
ratio equal to 6923 : 1. We used Adaptive Mesh Refinement[16, 14] to compute the
solutions for the bubble formation problem with a base coarse grid of 32x96 grid cells
and three levels of adaptivity. There were 16 fine grid cells spanning the nozzle ra-
dius. In Figure 8.11 we illustrate our computational results. The bubble diameters
for the 2nd and 3rd bubbles were 4.86E − 3m and 4.91E − 3m respectively which is

22 M. Sussman and M. Ohta

Fig. 8.9. Terminal bubble shape for a gas bubble rising in a viscous liquid. The density ratio
and viscosity ratio are 694:1 and 6557:1 respectively. The left result corresponds to experimental
results from [5]. The right result corresponds to a bubble computed in a 3d axisymmetric coordinate
system with ∆t = 4.8E − 4 (stable surface tension approach enabled).

Fig. 8.10. Terminal bubble shape for a gas bubble rising in a viscous liquid. The density ratio
and viscosity ratio are 694:1 and 6557:1 respectively. Bubbles computed assuming a 3d coordinate
system. The left result corresponds to ∆t = 1.4E − 3, t = 3.5 and the right result corresponds to
∆t = 2.2E − 4, t = 1.0. Plots represent the x-z slice of data at y = 0.

in good agreement with the experimental result of 4.99E− 3m and with our previous
computational results of 4.85E − 3m and 4.90E − 3m respectively.

Fig. 8.11. Bubble formation computed using our stable surface tension algorithm. Results
computed using a 3d r-z coordinate system. The nozzle radius is 8.5E − 4m, the inflow velocity is
0.44m/s, the density ratio is 1015 : 1 and the viscosity ratio is 6923 : 1. From left to right, top to
bottom, results are plotted at dimensionless times of t = 32.7, t = 39.1, t = 63.6, t = 70.0, t = 94.5,
t = 101.4, and t = 102.3.

9. Conclusions. We have developed a method based on volume preserving mo-
tion by mean curvature which stabilizes two-phase computations in which there is

stable and efficient, surface tension 23

surface tension related stiffness. With proper scaling of the Navier-Stokes equations,
our method is unconditionally stable with respect to the surface tension force. Also,
we have introduced a height function level set approach to discretizing curvature,
which performs just as well as the height function volume-of-fluid approach to dis-
cretizing curvature, but avoids difficulties when two interfaces are in close proximity
of each other. Our computational tests demonstrate good agreement between our re-
sults and previous computations and experiments. In particular, we have shown that
for some problems, we can get a factor of 5 or more speed-up for the same accuracy.
Lastly, our method was shown to be robust to complex interfaces which might merge
or pinch-off.

24 M. Sussman and M. Ohta

REFERENCES

[1] J. Cohen and M. Jeroen Molemaker, Practical simulation of surface tension flows, in SIG-
GRAPH 2004 Conference Proceedings, August 2004, pp. SIGGRAPH Sketch, Feasible
fluid, foliage, fog. http://www.siggraph.org/s2004/conference/sketches.

[2] C. Galusinski and P. Vigneaux, On stability condition for bifluid flows with surface tension:
Application to microfluidics, J. Comput. Phys., 227(12) (2008), pp. 6140–6164.

[3] J. Helmsen, P. Colella, and E.G. Puckett, Non-convex profile evolution in two dimensions
using volume of fluids, LBNL technical report LBNL-40693, Lawrence Berkeley National
Laboratory, 1997.

[4] F. W. Helsby and K. R.Tuson, Behaviour of air bubbles in aqueous solutions, Research, 8
(1955), p. 270.

[5] J.G. Hnat and J.D. Buckmaster, Spherical cap bubbles and skirt formation, Physics of Fluids,
19 (2) (1976), pp. 182–194.

[6] J.I. Hochstein and T.L. Williams, An implicit surface tension model, aiaa paper 96-0599,
in Proceedings of the 34th AIAA Aerospace sciences meeting and exhibit, Jan 15-18 1996.
Reno, NV.

[7] T.Y. Hou, J.S. Lowengrub, and M.J. Shelley, Removing the stiffness from interfacial flows
with surface tension, J. Comput. Phys., 114 (1994), p. 312.

[8] S. Hysing, A new implicit surface tension implementation for interfacial flows, Int. J. Numer.
Meth. Fluids, 51(6) (2006), pp. 659–672.

[9] M. Kang, R. Fedkiw, and X.-D. Liu, A boundary condition capturing method for multiphase
incompressible flow, J. Sci. Comput., 15 (2000), pp. 323–360.

[10] H. Lamb, Hydrodynamics, Dover Publications, New York, 1932.
[11] M. Raessi, M. Bussmann, and J. Mostaghimi, A semi-implicit finite volume implementation

of the csf method for treating surface tension in interfacial flows, Int. J. Numer. Meth.
Fluids, to appear, (2008).

[12] J.A. Sethian, Level Set Methods and Fast Marching Methods: Evolving interfaces in Compu-
tational Geometry, Fluid Mechanics, Computer Vision and Science, Cambridge, 1999.

[13] P.J. Slikkerveer, E.P. van Lohuizen, and S.B.G. O’Brien, An implicit surface tension algo-
rithm for Picard solvers of surface-tension-dominated free and moving boundary problems,
International Journal Numerical Methods in Fluids, 22 (1996), pp. 851–865.

[14] P.A. Stewart, N. Lay, M. Sussman, and M. Ohta, An improved sharp interface method for
viscoelastic and viscous two-phase flows, Journal of Scientific Computing, 35(1) (2008),
pp. 43–61.

[15] M. Sussman, A second order coupled levelset and volume of fluid method for computing growth
and collapse of vapor bubbles, Journal of Computational Physics, 187 (2003), pp. 110–136.

[16] , A parallelized, adaptive algorithm for multiphase flows in general geometries, Comput-
ers and Structures, 83 (2005), pp. 435–444.

[17] M. Sussman and M. Ohta, Improvements for calculating two-phase bubble and drop motion
using an adaptive sharp interface method, Fluid Dynamics and Materials Processing, 3(1)
(2007), pp. 21–36.

[18] M. Sussman and E.G. Puckett, A coupled level set and volume of fluid method for computing
3D and axisymmetric incompressible two-phase flows, J. Comp. Phys., 162 (2000), pp. 301–
337.

[19] M. Sussman, K.M. Smith, M.Y. Hussaini, M. Ohta, and R. Zhi-Wei, A sharp interface
method for incompressible two-phase flows, J. Comp. Phys., 221(2) (2007), pp. 469–505.

