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Coarse-mesh finite difference (CMFD) method is a widely used numerical acceleration
method. However, the stability of CMFDmethod is not good for the problems with optically
thick regions. In this paper, a stability rule named the “sign preservation rule” in the field of
numerical heat transfer is extended to the scheme of CMFD. It is required that the
disturbance of neutron current is positively correlated with that of the negative value of
flux gradient. A necessary condition for stability of the CMFD method is derived, an
adaptive diffusion coefficient equation is proposed to improve the stability of CMFD
method, and the corresponding revised CMFD method is called the rCMFD method.
With a few modifications of the code, the rCMFD method was implemented in the
hexagonal-Z nodal SN (discrete-ordinates) solver in the NECP-SARAX code system.
The rCMFD method and other similar acceleration methods were tested by three fast
reactor problemswhich were obtained bymodifying the hexagonal pitches of a benchmark
problem. The numerical results indicated that the rCMFD method showed better stability
than the traditional CMFD method and the artificially diffusive CMFD (adCMFD) method
and a better convergence rate than the adCMFDmethod and the optimally diffusive CMFD
(odCMFD) method for these fast reactor problems.

Keywords: stable condition, adaptive diffusion coefficients, rCMFD, acceleration method, stability, IFDF, nodal SN
method

1 INTRODUCTION

The convergence rate (Kuzmin, 2010) of the source iteration (SI) (Adams and Larsen, 2002; Li et al.,
2015b) is often low when solving the reactor neutron transport problem. Many acceleration methods
(Adams and Larsen, 2002; Willert et al., 2014) have been developed to accelerate the iteration
process, such as the extrapolation methods, the Krylov subspace methods, and the high-order/low-
order (HOLO)methods which are usually found to be the most efficient (Kuzmin, 2010;Willert et al.,
2014). Here, the HOLOmethods refer to a series of acceleration methods with the same internal logic
that employs proper coupling between high-order discretization and low-order discretization to
obtain high-order accuracy and high convergence rate, such as the multigrid method (Wesseling,
1995), the partitioned-matrix (PM) method (Li et al., 2015b), the diffusion synthetic acceleration
(DSA) method (Alcouffe, 1977), the coarse-mesh finite difference (CMFD) method (Smith, 2002),
and so on (Adams and Larsen, 2002; Zhang, et al., 2018). Among them, the CMFDmethod and other
similar methods which employ the neutron diffusion approximation for the low-order discretization
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are widely used in solving the reactor neutron transport problem
(Smith, 2002; Lee et al., 2014; Zhang et al., 2019; Xu et al., 2020;
Hao et al., 2021; Chan and Xiao, 2021; Zhao et al., 2022; Zhou
et al., 2022) in recent years. However, the traditional CMFD
method tends to fail due to iterative divergence for reactors with
optically thick regions.

By reducing the coarse mesh size of the diffusion problem,
increasing the number of transport sweeps, and adding over
relaxation factors (Li et al., 2015a; Jarrett et al., 2016), the stability
(Kuzmin, 2010) of CMFD can be improved to a certain extent.
Compared with the traditional CMFD method, the pCMFD
method and its variants (Yuk and Cho, 2017; Zhang et al.,
2019) have improved stability by using partial neutron
currents to calculate the coupling factors between high-order
discretization and low-order discretization. The artificially
diffusive CMFD (adCMFD) (Jarrett et al., 2016) and the
optimally diffusive CMFD (odCMFD) (Zhu et al., 2016) can
also improve the stability of the traditional CMFD method by
improving the diffusion coefficients. The lpCMFD (Wang and
Xiao, 2018; Wang and Zhu, 2021) method improves the stability
of CMFD by flux prolongation. Some analyses of the variants of
CMFD are available (Zhu, et al., 2017; Wang and Zhu, 2021). The
IFDF (Xu, et al., 2020; Xu, et al., 2022) method adopts a coupling
scheme different from the CMFD method and adaptively adjusts
the diffusion coefficients during the iterative process, which was
found to have better stability than the CMFD and adCMFD.

A stability principle, sign preservation rule (Tao, 2001) also
known as the positive coefficients rule (Patankar, 1980), is
required to obtain a stable discrete scheme in the field of
numerical heat transfer. Its connotation is that the positive
disturbance introduced at any grid should have a positive
impact on other grids, which is physically reasonable.
Considering the CMFD method, we found that the traditional
CMFD equation could not physically reflect the response
relationship between neutron currents and neutron fluxes,
which was believed to be at least one main reason that causes
the divergence of the iterative acceleration process.

In this paper, the condition for diffusion coefficients at the
mesh surface is derived to keep the positive correlation between
the neutron current and the negative values of the flux gradient by
observing the sign preservation rule, the adaptive diffusion
coefficient equation for the CMFD method is proposed, and
the traditional CMFD method is revised as the rCMFD method.
The theoretical derivation is presented in Section 2, the
numerical results of different acceleration methods for three
fast reactor problems obtained by modifying the hexagonal
pitches of a small fast reactor benchmark problem are
presented in Section 3, and the discussion and conclusion of
this work are presented in Section 4.

2 THEORETICAL DERIVATION

2.1 Source Iteration
For high-order discretization, the discrete orders of spatial and
angular dimensions of the neutron transport equation are high
enough to give high accuracy. Taking the SN method based on

hexagonal-Zmeshes as an example, the k-eigenvalue problem can
be written as

Lψ � Sϕ + 1
k
Fϕ, (1)

where L is the neutron leakage matrix, ψ is the angular flux vector
of every energy group, every spatial moment, and every discrete
angle, S is the neutron scattering matrix, ϕ is the scalar flux vector,
k is the eigenvalue, and F is the neutron fission matrix. The scalar
flux vector could be calculated by the angular flux vector with

ϕ � Tψ, (2)
where T is a matrix to calculate the scalar flux vector ϕ with the
angular flux vector ψ. Eqs 1, 2 constitute the k-eigenvalue
equations with high-order discretization, which could be
solved by the classical power iteration also known as fission SI
for the reactor problem:

ψ(n) � 1

k(n−1)
(L − ST)−1Fϕ(n−1), (3)

ϕ(n) � Tψ(n), (4)
k(n) � k(n−1)

〈Fϕ(n)〉
〈Fϕ(n−1)〉

, (5)

where the superscript (n) or (n-1) is the iteration index and the
symbol 〈 〉 means integration over the phase space with the
energy, angular, and spatial dimensions. The dimension of the
matrix (L − ST) is usually very large, and its inverse is usually not
conducted by direct matrix operation but achieved by transport
sweeps of every mesh, angle, and energy group for the SN method.

2.2 Traditional Coarse-Mesh Finite
Difference Method
The stability of source iteration is good, but the convergence rate
is usually low especially for large reactor problems. The CMFD
acceleration method is commonly used in the solution of the SN
k-eigenvalue problem. In the process of source iteration, the
k-eigenvalue problem of transport corrected finite difference
diffusion equation (low-order discretization) is solved to
correct the high-order iterative variables.

FIGURE 1 | Illustration of a hexagonal-Z mesh.
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For a hexagonal-Z mesh as illustrated in Figure 1, the low-
order neutron balance equation for every group to be solved can
be written as

∑
d�v,x,u,z(JKd+1/2 − JKd−1/2)AKd

+ Σr,KϕKVK � QKVK, (6)
where d is the dimension index with the possible values of v, x,
u, z as illustrated in Figure 1, JKd±1/2 is the normal neutron
current at the mesh surface indexed by Kd ± 1/2, AKd is the
surface area of mesh K along dimension d, Σr,K is the removal
cross section of mesh K, ϕK is the scalar neutron flux of mesh
K, VK is the volume of mesh K, and QK is the neutron source of
mesh K including the fission source and scattering source from
other groups.

For the CMFD method, the neutron currents and neutron
fluxes in Eq. 6 are related by the transport corrected Fick’s law.
For an inner mesh surface,

JKd+1/2 � −DKd+1/2
hKd+1/2

(ϕKd+1 − ϕK) − rKd+1/2
hKd+1/2

(ϕKd+1 + ϕK), (7)
where

DKd+1/2 �
2DKDKd+1hKd+1/2

hKd
DKd+1 + hKd+1DK

, (8)

rKd+1/2 � −hKd+1/2J
SN
Kd+1/2 +DKd+1/2(ϕSN

Kd+1 − ϕSN
K )

ϕSN
Kd+1 + ϕSN

K

, (9)

hKd+1/2 �
1
2
(hKd

+ hKd+1), (10)

where DKd+1/2 is the common diffusion coefficient at the mesh
surface, rKd+1/2 is the transport correction factor, h is the mesh
size, and the superscript SN means the value is from the high-
order transport calculation. For the boundary cases, take the
mesh surface in the positive coordinate direction of mesh K as an
example:

JKd+1/2 �
DKd+1/2
hKd+1/2

ϕK − rKd+1/2
hKd+1/2

ϕK, (11)
where

DKd+1/2 �
2DKαKd+1/2hKd

αKd+1/2hKd
+ 2DK

, (12)

rKd+1/2 � −hKd+1/2J
SN
Kd+1/2 −DKd+1/2ϕ

SN
K

ϕSN
K

, (13)

in which αKd+1/2 is the boundary parameter and equals 0 for the
reflective boundary condition and 0.5 for the vacuum boundary
condition.

Eqs 6–13 and the boundary equations for other cases
constitute the coarse-mesh finite difference equations and can
be solved with a linear solver for every group. Then, the low-order
k-eigenvalue problem could be solved by source iteration or other
more efficient algorithms. Details of the solution algorithm for
the linear system with low-order discretization are not to be
introduced here for simplicity. Finally, the iterative variables
including k and scalar fluxes from high-order discretization
are to be corrected:

k � kDIF, (14)
ϕi,K � ϕSN

i,K

ϕDIF
K

ϕSN
0,K

, i≥ 0, (15)

where the superscript DIF means the value is the solution of the
diffusion problem and the subscript i is the expansion order of the
spatial moment for the nodal SN method.

2.3 A Stable Condition and Adaptive
Diffusion Coefficients
The convergence rate of the CMFD method is usually high.
However, the stability of the CMFD method is a problem for the
transport problem with optically thick regions. Let us check the
CMFD equations from the stability rule in the field of numerical heat
transfer. For an innermesh surface, the traditional Fick’s lawwithout
transport correction can be written as follows:

JKd+1/2hKd+1/2 � −ϕKd+1DKd+1/2 + ϕKDKd+1/2. (16)
It is seen that the mesh-surface diffusion coefficient DKd+1/2 is

always positive from Eq. 8, which means that JKd+1/2 will always
decrease when ϕKd+1 increases and always increase when ϕK
increases. This phenomenon obeys the physical law of
diffusion and should be established in the transport corrected
cases. Let us check the case of CMFD by rewriting Eq. 7 for inner
mesh surfaces as follows:
JKd+1/2hKd+1/2 � −ϕKd+1(DKd+1/2 + rKd+1/2) + ϕK(DKd+1/2 − rKd+1/2).

(17)
From Eqs 8, 9 it is seen that the coefficient (DKd+1/2 + rKd+1/2)

of ϕKd+1 and the coefficient (DKd+1/2 − rKd+1/2) of ϕK are not
guaranteed to be always positive, which means that the physical
law of diffusion could not be guaranteed. So, the following
conditions are required:

DKd+1/2 + rKd+1/2> 0, (18)
and

DKd+1/2 − rKd+1/2> 0. (19)
After substituting Eq. 9 into Eqs 18, 19, the condition becomes

DKd+1/2>
hKd+1/2

2
max⎛⎝ − JSNKd+1/2

ϕSN
Kd+1

,
JSNKd+1/2
ϕSN
K

⎞⎠. (20)

Then, let us check Eq. 11 for the boundary cases; the following
condition is obtained with similar derivation to the case of inner
mesh surfaces:

JSNKd+1/2 > 0. (21)
This condition is always met for the vacuum boundary

condition. For the reflective boundary condition, nothing is
required to meet the diffusion law since JKd+1/2 ≡ 0. If the
boundary surface is in the negative coordinate direction of
mesh K, the response condition between the mesh-surface
current and the mesh flux is also always met. All in all, only
the condition of Eq. 20 of the inner mesh surface is necessary.
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An interesting thing was found that Eq. 20 was very similar to
the stability equation of the IFDF method (Xu et al., 2020; Xu
et al., 2022) which had been found to be more stable than the
traditional CMFD method and the adCMFD method for a large
fast reactor core. For one-dimensional (1D) meshes, the stability
condition of the IFDF method is

DK > hK
2
max( − JSNKd−1/2

ϕSN
K

,
JSNKd+1/2
ϕSN
K

). (22)

The difference is in the subscripts, and the condition for the
diffusion coefficient at the mesh surface becomes the condition
for the diffusion coefficient in the mesh.

In order to guarantee the condition in Eq. 20, Eq. (8) is
modified to the following equation of adaptive diffusion
coefficient:

DKd+1/2 � max
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 2DKDKd+1hKd+1/2
hKd

DKd+1 + hKd+1DK
,
chKd+1/2

2

max⎛⎝ − JSNKd+1/2
ϕSN
Kd+1

,
JSNKd+1/2
ϕSN
K

⎞⎠⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (23)

where c is an additional damping parameter which should be
larger than 1. With c larger than 1, Eq. 23 gives a conservative
condition to satisfy Eq. 20, and a larger value of c tends to increase
the stability but decrease the convergence rate from our
numerical tests. A value of 5 is recommended for c referring
to the IFDF method and will be employed in the numerical tests
of next section. When Eq. 20 is met, the traditional mesh-surface
diffusion coefficient in Eq. 8 is employed to guarantee diagonal
dominance of the low-order linear system, which will improve the
solution speed of the low-order linear system; when Eq. 20 is not
met, Eq. 23 will adaptively abandon Eq. 8 and employ a more
conservative mesh-surface diffusion coefficient equation in Eq.
23 to meet the stable condition of Eq. 20.

Employing Eq. 23, the traditional CMFD method is improved
to the revised CMFD (rCMFD) method. Few changes are needed
to modify a CMFD acceleration process to an rCMFD
acceleration process. What we should do is to replace Eq. 8
with Eq. 23 and update the mesh-surface diffusion coefficients
before solving the low-order k-eigenvalue problem. The process
of the rCMFD method is illustrated in Figure 2.

3 NUMERICAL RESULTS

3.1 Description of the Tests
Three fast reactor core problems were employed to test the
methods. The first one (core 1) is a small fast reactor
benchmark problem with hexagonal assemblies (Takeda and
Ikeda, 1991). The hexagonal pitches are 12.9904 cm, and the
total height of the model is 190 cm. Four-group cross sections are
provided by the benchmark for different regions of the core. The
case of half-inserted control rods is employed. The radial layout
of the core is presented in Figure 3. The second one (core 2) and
the third one (core 3) are obtained by changing the hexagonal
pitches of core 1 to 50 and 100 cm, respectively, which may be not
very rational for reactor design but helpful to test the convergence
of numerical methods for problems with optically thick meshes.

The three problems have been calculated by the DNTH (Wang
et al., 2020) solver in the NECP-SARAX (Zheng et al., 2018) code
system with different methods including pure fission-source
iteration (SI), fission-source iteration with CMFD acceleration
(SI-CMFD), fission-source iteration with adCMFD (η � 1/4)
acceleration (SI-adCMFD), fission-source iteration with
odCMFD acceleration (SI-odCMFD), fission-source iteration
with IFDF acceleration (SI-IFDF), and fission-source iteration
with rCMFD acceleration (SI-rCMFD). The NECP-SARAX code
system is a code system developed at Xi’an Jiaotong University for
the neutronics analysis of advanced fast-spectrum reactors or
facilities. The DNTH solver is an SN nodal transport solver in
NECP-SARAX for hexagonal-Z meshes with the capacity of
large-scale parallel computing.

For all the cases, S4 Legendre–Chebyshev angular quadrature was
used; the number of hexagonal-Z meshes was 169 × 33; the nodal
interior variables were expandedwith second-order polynomials; the
nodal surface variables were expanded with first-order polynomials;
the fission-source iteration criterion of high-order discretization was
1 × 10−5; the scattering-source iteration criterion of high-order

FIGURE 2 | Flowchart of the rCMFD acceleration method.
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discretization was 5 × 10−6; an iteration limit of 5 was employed for
the inner scattering-source iteration; the fission-source iteration
criterion of low-order discretization was 2.5 × 10−6; one low-
order linear system was solved before four high-order fission-
source iterations were performed. All the calculations were
performed on 2.0 GHz AMD Ryzen PRO 2500U w CPU core.

3.2 Results for Different Cases
The results for the three reactor cores are presented in Table 1. In
the table, one transport sweep means one update of all the mesh
angular fluxes within one group, which is the main part of the
time-consuming calculations, and the speedups are obtained by
comparing the CPU time of every method with that of the SI
scheme.

As shown inTable 1, for core 1, the radial hexagonal pitches were
12.9904 cm, and every method could give a convergent result; there
were some deviations between the keff of different methods, which
was caused by the different convergence degrees of the inner
scattering-source iteration; the speedup of SI-rCMFD was 2.7,
which was higher than those of adCMFD and odCMFD and
close to those of SI-CMFD and SI-IFDF. For core 2, the radial
hexagonal pitches were 50 cm, SI-CMFD and SI-adCMFD failed to
converge, while SI, SI-odCMFD, SI-IFDF, and SI-rCMFD proposed
in this work still could give convergent results; the speedup of SI-
rCMFD for core 2 was 2.5, which was a bit lower than 2.7 of SI-IFDF
but higher than 2.3 of odCMFD. For core 3, the radial hexagonal
pitches were 100 cm, SI-rCMFD also failed to converge, and only SI
and SI-IFDF could give convergent results.

FIGURE 3 | Radial layout of the small fast reactor core.

TABLE 1 | Numerical results of the tests for different methods.

Item SI SI-CMFD SI-adCMFD SI-odCMFD SI-IFDF SI-rCMFD

Core (12.9904 cm pitches) keff 0.98362 0.98368 0.98361 0.98363 0.98368 0.98368
CPU time (s) 49 18 25 20 18 18
Fission iteration count 81 29 43 37 29 29
Transport sweep count 1480 518 687 586 523 518
Speedup 1.0 2.7 2.0 2.5 2.7 2.7

Core 2 (50 cm pitches) keff 1.48319 Divergent Divergent 1.48310 1.48308 1.48311
CPU time (s) 157 69 58 64
Fission iteration count 253 101 90 98
Transport sweep count 4922 1971 1736 1895
Speedup 1.0 2.3 2.7 2.5

Core 3 (100 cm pitches) keff 1.64874 Divergent Divergent Divergent 1.64843 Divergent
CPU time (s) 240 121
Fission iteration count 383 177
Transport sweep count 7500 3453
Speedup 1.0 2.0
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4 DISCUSSION AND CONCLUSION

After numerical tests of three fast reactor problems with different
radial hexagonal pitches from 12.9904 to 100 cm by different
acceleration methods, the advantages and limitations of the
proposed rCMFD method were clarified. It was seen that the
adaptive diffusion coefficients of this work were helpful to
improve the stability of the traditional CMFD method without
obvious loss of the convergence rate, and the improvement was
even higher than those of the adCMFDmethod and the odCMFD
method which had been found to be more stable than the
traditional CMFD method. However, the rCMFD method
failed for the third core with radial hexagonal pitches of
100 cm, while the IFDF method still could give a convergent
result with a speedup of 2.0, which indicated that the rCMFD was
still not unconditionally stable and the stable region was narrower
than that of the IFDF method although the adaptive diffusion
coefficient equations were similar for the rCMFD and IFDF. The
inferiority of the rCMFD method compared with the IFDF
method may be due to the fact that Fick’s law correction
formula of the IFDF method is derived from the interface
discontinuity relationship with clear physical significance, but
Fick’s law correction formula of rCMFD is based on a heuristic
hypothesis as the traditional CMFD method.

It is concluded that the stable condition derived in this work is
necessary for the CMFD stability but perhaps not sufficient for
unconditional stability, and the adaptive diffusion coefficients can

effectively improve the stability of the traditional CMFD method
without obvious loss of the convergence rate. Further research on
spectral radius analysis of the rCMFD method and comparison
between different methods is expected, which may enlighten
sufficient stable conditions or higher improvements of the
CMFD method.
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