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α-stable Interference Modeling and Cauchy
Receiver for an IR-UWB ad hoc Network

Hamza El Ghannudi, Laurent Clavier, Member, IEEE, Nourddine Azzaoui,
François Septier Member, IEEE, and Paul-Alain Rolland

Abstract—In this paper we investigate ad hoc networks based
on impulse radio ultra wideband. Due to multiple access, the
interference distribution is not Gaussian. One important reason
for errors is the presence of close interferers generating pulse
collision. However such events are rare and we propose an
α-stable model compatible with this fact due to its heavy
tailed distribution. We derive the analytical expression of the
two significant parameters. They depend on the attenuation
coefficient, the users’ density, the pulse collision probability and
the pulse shape. We finally propose receiver strategies (Cauchy
receiver and p-norm) that outperforms the classical Gaussian
receiver.

Index Terms—Multiple Access Interference (MAI), UWB, ad

hoc networks, α-stable distribution.

I. INTRODUCTION

In dense ad hoc networks, multiple access is the main
component of interference. In other contexts and systems, it
is considered to be the sum of numerous independent and
identically distributed random variables. As a consequence,
a Gaussian approximation is used and often gives accurate
results. However, the ad hoc configuration modifies the MAI
distribution: the interfering pulses amplitude may importantly
vary and the MAI is conditioned by the presence of strong in-
terferers [1]–[3]. Sousa shows in [4] that it can be modeled as
an α-stable random variable. This result is also presented with
lognormal shadowing and Rayleigh fast fading in [5]. In [6],
Pinto derives an exact expression for the error performance of
a narrowband communication system subject to multiple UWB
interferers and additive white Gaussian noise. A framework
where the UWB interferers are spatially scattered according
to an infinite Poisson field and are operating asynchronously is
introduced. A symmetric stable distribution to model the UWB
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interference at the output of a linear narrowband receiver
is used. Win et al. have recently proposed a mathematical
framework for network interference in [7]. They show that,
when interferers are scattered according to a Poisson process,
the aggregate interference amplitude follows a symmetric
stable distribution.

Similarly for the proposed physical layer, it is shown in
[8] that the Gaussian approximation significantly underesti-
mates the Bit Error Rate (BER) of practical Time Hopping
(TH) Pulse Position Modulation (PPM) systems. Its validity
increases with the number of interferers [1] but do not ade-
quately predict the BER at low values of the user bit rate and
of the pulse repetition frequency [2]. A way to mitigate the
effect of the MAI by optimizing the TH codes in asynchronous
TH is proposed in [9] but only works because interference is
not Gaussian. To estimate the BER of an IR-UWB multiuser
transmission, several other methods have been proposed: in
[10] a composite method is used and in [11] a method based on
the characteristic function; in [12], the calculation is based on
the fact that interference is due to collisions occurring between
pulses belonging to different transmissions.

We suggest in this paper that the ad hoc configuration gives
the shape of the MAI distribution which is then accurately
represented by symmetric α-stable distributions. Stable laws
can be seen as an extension of the Gaussian laws but with
heavier tails so that they are better suited for rare events
modeling. Two parameters have to be determined and are
obtained from the channel attenuation and the physical layer
definition. In a first step, we develop an analytical work
based on a single path channel. One intended application
is for up-converted UWB signals in the 60 GHz band with
sensors using sectorized antennas [13], [14]. In such a context,
the multipath influence is low and, especially in an ad hoc

scenario with rather short links, the reflected paths only carry
little energy compared to the direct one [15]. The proposed
theoretical approach is then well adapted. We derive the
analytical expression of the two parameters and show the
validity of the model.

We then go one step further to validate our approach
and consider the residential IEEE 802.15.4a UWB channel
model. Time-hopping impulse radio with a simple multiple-
access scheme like an ALOHA protocol, is suitable for sensor
networks design [16], [17]. We propose different receiver
schemes that take into account the stable noise. We show that
a Cauchy receiver (although it is not generally optimal) or

0090-6778/09$25.00 c© 2010 IEEE
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Fig. 1. Illustration of some system parameters.

the use of the p-norm (as proposed in [18] for a generalized
Gaussian interference model) significantly improve the system
performance although the important multipath tend to reduce
the benefit. However, the classical Gaussian receiver is out-
performed and we show (a) that our model is adequate for
MAI and (b) that taking this fact into account allows a better
design of the receivers.

The rest of the paper is organized as follows: in section II
we present the network configuration and the system model.
In section III, with a single path channel and ignoring the
near field in the attenuation calculation (this means that
when the transmitter receiver distance gets close to zero, the
receive power increases to infinity; although unrealistic, this
assumption has no significant impact on our conclusions), we
show that the MAI is an α-stable random variable and derive
the parameters’ expressions. Finally, in section IV, we propose
receiver architectures adapted to the proposed interference
model and evaluate its performance in Gaussian and multipath
channels.

II. NETWORK CONFIGURATION AND SYSTEM MODEL

An ad hoc network is a self-configuring network of mobile
devices connected by wireless links. We consider throughout
this paper a MAC layer based on an Aloha protocol that can
have close performance to a CSMA protocol as shown in [16]
for a multihop mobile wireless network. This means that no
special effort is made to prevent simultaneous neighboring
transmissions from occurring.

We consider a receiver located at the center of a circle C
of radius R. The desired user (who will be denoted by index
0 in the following) is at a given distance du from the receiver
and interferers are uniformly distributed in C. Let N represent
the number of interferers in the area. It depends on the users’
density, the maximum range for a signal to be received and
the traffic in the network.

Asynchronous TH-PPM-UWB with binary data is con-
sidered [19] and represented in Figure 1. Let ω(t) be the
transmitted signal corresponding to one source bit. It has a
normalized energy equal to 1 and it is the repetition of NS

basic pulses ωp(t):

ω (t) =

NS
∑

j=1

ωp

(

t − jTS − c
(k)
j Tc

)

, (1)

where TS is the frame duration, c
(k)
j is the jth coefficient of

the pseudo-random TH code and Tc is the slot duration. The

transmitted signal for user k is then given by:

S(k) (t) =

+∞
∑

i=−∞

√

E(k)ω
(

t − iNSTS − a
(k)
i ǫ − δ(k)

)

, (2)

where E(k) is the transmitted energy for each pulse, a
(k)
j is a

binary data value, ǫ is the basic shift introduced by PPM and
δ(k) the delay between user k and user 0.

We adopt a single user correlation receiver where the
received signal is correlated with a template waveform m(t) =
ω(t)−ω(t−ǫ) after a perfect time synchronization on the main
path. Without loss of generality, we consider the detection of
the source bit a

(0)
0 . The receiver output Zd is:

Zd =

∫ NSTS

0

N
∑

k=0

(

S(k)(t) ∗ h(k)(t) + n(t)
)

m(t)dt, (3)

where ∗ stands for convolution, h(k) is the channel impulse
response and n(t) is the thermal noise, circularly symmetric
white and Gaussian.

Variable Zd can be expressed as the sum of four terms
[20]: Zd = Zu + ZMPI + Z + Zn, where Zu, ZMPI , Z and
Zn are, respectively, the contributions of the desired signal,
the multipath interference, the multiuser interference and the
additive white Gaussian noise. If a Gaussian assumption is
made for the global interference, the optimal decision is
taken by comparing Zd with a zero-valued threshold. For
independent and equiprobable transmitted bits, the average
BER is Pe = P

(

Zd < 0
∣

∣

∣a
(0)
0 = 0

)

where P (X) denotes the
probability of event X .

In the next section, to compute the semi-analytical error
probability, we neglect the multipath effect (ZMPI = 0).
Equation (3) then becomes:

Zd =

N
∑

k=0

γk

∫ NSTS

0

(

S(k)(t − τk) + n(t)
)

m(t)dt, (4)

where γk is the channel attenuation and τk the propagation
delay. In ad hoc networks, links are short and direct, which
means that multipath carry little energy, especially in the
millimeter wave band [15]. We present in Figure 2 the impact
of the multipath in our considered scenario: the channel
model [21] is obtained from a measurement campaign in a
small room presented in [22]. Directive antennas (100◦ at the
emitter and 30◦ at the receiver) are used to further reduce
the multipath influence. Multipath have in this context a very
limited impact. Consequently, in section III, we take a single
path channel to derive the MAI distribution. However, we
will also show in section IV that the proposed model is still
appropriate in multipath channels and can lead to significant
improvement of the receiver design.

Finally, we denote X = Zu +Zn; X is a Gaussian random
variable with mean Zu and same variance as the Gaussian
noise Zn. Let fX(x) be its probability density function. The
mean BER Pe is:

Pe =

∫ +∞

−∞

P

(

Z < −x
∣

∣

∣a
(0)
0 = 0, Zn

)

fX(x)dx (5)
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Fig. 2. Influence of multipaths in our 60 GHz line of sight scenario. There
is a mean of 35 objects in a circle of radius R = 5m.

III. MODELING MULTIPLE ACCESS INTERFERENCE

A. General idea

At the receiver, we develop (3) with single path channels.
We only consider pulses that effectively interfere with the
useful signal. Let κR be the random variable representing their
number. The MAI random variable Z can then be written as:

Z =

κR
∑

k=1

γkψk, (6)

with ψk =

∫ TS

0

ωp (t − ∆k) (ωp (t) − ωp (t − ǫ)) dt,

where ∆k is the total delay between the interfering and
the reference signals. The random variable ∆k is uniformly
distributed over [−TS, TS ] due to asynchronous transmission
and independence between desired and interfering links. In
(6), (ψk)k=1,··· ,N are independent, identically distributed and
bounded random variables. Their probability density function
is even. The (γk)k=1,··· ,N are positive, independent identically
distributed random variables and determine the statistical
properties of Z . Let now suppose that we are placed in a
dense traffic: κR is very large. Since (γk)k=1,··· ,κR

have finite
variances, it is the same for the products (γkψk)k=1,··· ,κR

.
One intuitive approach, considering an asymptotic regime

where the number of intereferers grows to infinity while the
contribution of each interferer to the total MAI becomes
infinitesimal, would be to use the central limit theorem. The
MAI, then expressed as the normalized sum:

Z(κR) =
1√
κR

κR
∑

k=1

γkψk

converges in law to a normal distribution with the same
variance as γkψk. This means that Z(κR) is asymptotically
Gaussian and by the sequel may be approximated with a
normal distribution when κR is large enough.

However, in the general case, the asymptotic regime is not
easily reached. An in-depth study is proposed in [23] and
only a large number of users, a large processing gain and a
large number of repetitions lead to a Gaussian MAI. Besides,

we can discuss the condition of finite variance on γk. If it
can seem natural because it represents a channel attenuation,
the interference is compared to the desired link attenuation
γ0. If this link is long but the interfering one is short, the
observed relative values of γk may be "very large". These
rare events are very important in our context and give an
impulsive nature to attenuations. To capture these situations,
heavy tailed distributions with infinite variance can be well
suited while models with finite second order will fail to do
so. The generalized central limit theorem has then to be used
(see [24, p. 22] or [25, p. 9]) and states that the MAI (for large
κR) falls in the domain of attraction of a random variable with
a stable distribution.

This infinite variance hypothesis is equivalent to neglecting
the near field1 when calculating the amplitude attenuation of
the signal γk. We suppose that it is given by γk = d

−a/2
k ,

a being the attenuation coefficient and dk the distance from
interferer k. If interferers are uniformly distributed inside
the circle C of radius R, the attenuation probability density
function is:

fγi
(x) =

4x− 4
a
−1

aR2
for R− a

2 ≤ x < +∞. (7)

Its variance is infinite for a > 2. Even if this hypothesis does
not correspond to reality, it is an accurate way to represent
the high variability in γk and the fact that there are many far
users with small γk but few close ones with high γk.

We have mainly focused here on the impact of ad hoc

configuration on the MAI. Other reason due to impulse UWB
are also unvalidating the Gaussian approximation: the fact that
the sum is not normalized or that the number of interfering
pulses is not always large and is better modeled with a
discrete random variable. As it is usually considered in similar
situations [4], [6], one can assume that κR has a Poisson
distribution. For a discussion about these considerations, an
overview of proposed modeling solutions (Laplace, Gener-
alized Gaussian, Cauchy, α-stable, Middleton class A. . .) is
proposed in [26] and we do not extend the discussion here. In
this paper, using the theory of compounded Poisson processes
we derive in section III-C that the random variable Z can be
modeled with an α-stable law when the near field is neglected.
Consequence of the ad hoc configuration, this result is valid
for DS-CDMA and FH-CDMA [4] and extended in this paper
to TH-PPM-UWB.

B. The α-stable random variables.

Stable distributions are a rich class of probability distribu-
tions that include the Gaussian (α = 2), Cauchy (α = 1)
and Lévy (α = 0.5) laws in a family that allows skewness
and heavy tails. There are several ways to define stable
distributions [25, chapter 1]. One concerns the stability prop-
erty: the family of stable distributions is preserved under
convolution. Another is that they approximate the distribution
of normalized sums of independent and identically distributed
random variables (generalized central limit theorem).

1If we do not neglect the near field, for d less than a given distance d0 the
received power would not follow the same law as the one we use. A better
model would be to then consider that γk = d

−a/2
0 ∀d < d0.
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The class of stable distributions has provided useful models
in many application fields (electrical engineering, physics,
signal processing. . .) but they still have a limited impact in
digital communication although they proved to be accurate
for modeling impulsive noises [24, chapter 9]. Of course,
other heavy tailed probability models are available but the
stability property makes this class very attractive. Besides they
are defined by four parameters (some more details can be
found in appendix A), the characteristic exponent α being
one of them: it measures the thickness of the tail of the
distribution (0 < α ≤ 2). However, in the general case, no
closed-form expression of the probability density function is
available which makes more difficult the implementation of
optimal signal processing solutions.

C. The MAI log-characteristic function

The MAI random variable has a symmetric α-stable dis-
tribution if we can write its log-characteristic function as
ϕZ (ω) = −σ|ω|α. For the theoretical framework we consider
in a first step that interferers are in a circle of radius R,
the receiver being the center and we make R tends towards
infinity. We assume that the number N of active interfer-

ing links follows a Poisson law of parameter
N̄

πR2
which

represents the mean number of interferers per unit area, N̄
being the mean number of interferers. For a given N , the
conditional law of the number κR of interfering pulses coming
from inside the circle C is binomial B(N, q), where q is the
probability that one interfering pulse falls into the integration
interval at the receiver. Due to the uniform distribution of the
delays ∆k between users, q =

3Tm

Ts
where Tm is the pulse

duration and 3Tm represents the duration of the vulnerability
interval (a pulse falling in this interval will effectively create
interference). Finally, a binomial law conditional to a Poisson

law results in a Poisson law and its parameter is
N̄q

πR2
.

The MAI characteristic function is:

φZ (ω) = E

[

ejω(
∑ κ

k=1 γkψk)
]

, (8)

where κ is the number of interferers in the circle with radius
+∞. Neglecting the near field for reasons explained in section
III-A, we can show (see annex B) that the log-characteristic
function can be written:

ϕZ (ω) =
N̄q

R2
|ω| 4

a

∫ +∞

0

dφψ

du
(u)u− 4

a du

=
N̄q

R2
|ω| 4

a F, (9)

where φψ(ω) is the characteristic function of ψ(ω) (defined in
(6)). The value F is independent of ω so that Z is a symmetric
α-stable random variable with parameters α = 4/a and σ =
−

(

N̄q/R2
)

F (the two remaining parameters are zero). Since
ψ has finite moments, the integral to calculate F exists when a
is larger than 2, which is the case in most of the situations. This
result validates the α-stable assumption. The main unrealistic
hypothesis was to neglect the near field but Sousa showed in
[4] that this aspect has a low impact.

D. Model validity

Channel attenuation is based on hypothesis from section
III-A: γi ∝ d−a/2 and we take NS = 1. A summary of
parameters used in every simulation is presented in table I.

TABLE I
IMPULSE RADIO SYSTEM PARAMETERS USED IN SIMULATION.

Parameter Value
Frame duration Ts 10ns
Pulse duration Tm 0.3ns

PPM delay ǫ 0.3ns
du 1m

To evaluate σ, we need to calculate F in (9). It can be
analytically obtained when ωp(t) is a rectangular pulse that is
why the comparison between simulations and theory is made
with this pulse shape (although it is not a practical one). The
characteristic function of ψk (see (6)) is φψ (ω) = sin(ω)

ω . Then
F is given by:

F =
2−1− 4

a

√
πΓ

(

−2
a

)

Γ
(

1
2 + 2

a

) − 2−2− 4
a

√
πΓ

(

−2
a

)

Γ
(

3
2 + 2

a

) (10)

Finally, in (5), Pe is calculated using numerical integration.
Because Z is an α-stable random variable, we do not have
an expression of its probability density function. To solve this
difficulty and obtain P

(

Z < −x
∣

∣

∣a
(0)
0 = 0, Zn

)

, we simulate
the random variable Z (see for example [24, p. 27-29]) and use
a non parametric estimate of its probability density function.
In Figure 3 we represent several situations (different values
of the attenuation coefficient a, the mean number of users per
unit area λ and the size of the considered zone R). We show
a good fit between the semi-analytical BER and the simulated
system for the rectangular pulse. However, this fit is not always
perfect and some errors can sometimes be noticed. In such
cases we adjust the dispersion of the distribution and obtain an
accurate fit between the curves. Similar behavior are obtained
with other pulse shapes but the dispersion has to be estimated
because we do not have an analytical expression for F . We
do not propose in this paper discussion about the parameter
estimation of a stable law but several works on the subjects
exist (see for instance recent works in [27]).

For a rectangular shape, the MAI distribution’s parame-
ters are analytically derived and the good fit validates the
theoretical study. Similar results are obtained if we increase
the number of repetitions. The impact of strong interferers,
which generate a heavy tailed distribution, is well captured
by the α-stable distributions when other distributions with
finite second order moments generally fail to do so. For
instance, Generalized Gaussian distributions are well fitted for
time hopping [28] but does not represent as well the ad hoc

configuration [29].
The simulated BER with a near field assumption of 10cm

is also depicted in Figure 3 (top-right). This value is much
larger than the true near field area if a 60 GHz transmission
is considered and the impact is very small although the useful
link is only ten times longer.
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Fig. 3. Comparison between semi-analytical and simulated BER in different situations with a rectangular pulse. The signal to noise ratio is the ratio between
the useful signal power and the thermal noise power at the receiver, not including the multiple access noise.

IV. A NON LINEAR RECEIVER IN MULTIPATH CONDITIONS

A. Receiver strategy.

Classical receivers consider that the received signal is mixed
with a Gaussian noise and are not optimal in our situation.
In IR-UWB system, Fiorina [28] models the MAI with a
generalized Gaussian distribution to derive the maximum
likelihood matched filter. Beaulieu [30] assumes that the signal
is immersed in a mixture of Laplacian and Gaussian noise. It
outperforms the receiver based on the Gaussian assumption.
Considering the impulsive nature of the MAI, Erseghe [31]
has suggested Gaussian mixtures for the interference to derive
the optimal receiver. Performance improves when compared to
the Gaussian receiver and the cost of implementation remains
weak. This approach is also found for detection when the
additive noise is α-stable [32]. Tsihrintzis and Nikias in [33]
studied the performance of optimal and suboptimal (including
the Cauchy) receivers in such a noise. Those receivers are
non linear solutions and a linear solution is proposed in [34].
A non parametric rank-based solution is studied in [35] and
suboptimal parametric solutions are presented in [36]. Ambike
et al. [37] have also tested a hole puncher and a soft limiter
receivers in a mixture of Gaussian and α-stable noises. All
proposed approaches are compromises between performance
and complexity and an overview can be found in [26].

We have chosen to test the non linear Cauchy receiver,
meaning the receiver obtained when we consider that a Cauchy
noise is added to the information bearing signal. This receiver
was found to perform closely to the optimum receiver for

a wide range of characteristic exponent α [33]. It was also
shown by Friedmann et al. in [38] that the maximum likeli-
hood estimator of a deterministic signal derived for a Cauchy
noise achieves good performance when the noise is symmetric
α-stable, even when α is not equal to one. The definition
of the optimal receiver is however a difficult task and is not
included in the scope of this paper. Indeed, the noise is not an
α-stable noise but a mixture of three different noises: the α-
stable multiple access interference, the Gaussian thermal noise
and the multipath interference. The resulting noise distribution
is then very difficult to obtain.

Let (as defined in section II) a
(0)
0 be the source bit from

the desired user. We consider that the correlation function
ψ0 in (6) is equal to 1 if ∆0 = 0 (meaning a perfect
synchronization and a

(0)
0 = 0) and to −1 if ∆0 = ǫ (meaning

a perfect synchronization and a
(0)
0 = 1). For the desired user,

the received samples are then, after the correlation receiver:
x

(0)
0 (j) = d

− a
2

u (−1)a
(0)
0 + nα(j) where index j indicates

the repetitions (j = 1, . . . , NS). Sequence {nα(j)}j=1,...,NS

is a realization of NS independent, identically distributed
symmetric α-stable random variables. Distance du is the useful
link length. The optimum (in the maximum likelihood sense)
test statistic Λ is:

Λ =

NS
∑

j=1

log

⎧

⎨

⎩

fα

[

x
(0)
0 (j) − d

− a
2

u

]

fα

[

x
(0)
0 (j) + d

− a
2

u

]

⎫

⎬

⎭

, (11)

where fα(u) is the probability density function of nα and the
sign of Λ gives the estimated signal. As already mentioned,



6 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 6, JUNE 2010

the main difficulty is that fα(u) has not an explicit form for
most of α values. Fortunately, fα is known for α = 2, the
Gaussian case, and α = 1 where nα is a Cauchy random
variable (fα(u) = σ/

(

π
[

u2 + σ2
])

). Our objective is to
propose a receiver able to cope with impulsive noise. The
Cauchy receiver, resulting from our analysis on the MAI, is
then the first solution that comes to mind. By Cauchy receiver,
we mean the receiver that employs Λ derived from (11) under
the assumption that α = 1. The Gaussian receiver uses the
assumption that α = 2.

We have also implemented receivers based on the metric
induced by the covariation norm ‖.‖α (see for instance [25,
p. 95]). From a practical point of view, this norm is linked to
the Lp norm, with p < α, by the equality:

‖X‖α = Cα(p)(E|X |p) 1
p ; (12)

the constant Cα(p) depends only on α and p and is given by
(see for instance [24, p. 32]):

Cα(p) =

(

α
√

πΓ(− p
2 )

2p+1Γ(1+p
2 )Γ(− p

α )

)
1
p

. (13)

This suggests an empirical estimation of this metric by:

‖X − Y ‖α = Cα(p)

⎛

⎝

1

NS

NS
∑

j=1

|xj − yj|p
⎞

⎠

1
p

, (14)

where p < α. Two ideas lie behind this metric. First, if
Euclidean distance is a logical estimation of standard deviation
when Gaussian noise is considered, the proposed solution
is adapted to SαS distributions since it estimates its scale
parameter. Choosing an adapted distance seems then rather
logical. The second aspect is that we do not want to give too
much weight for the decision to large values because they
are mixed with an important noise sample. The Euclidean
distance is poorly adapted in that sense and we prefer using
the covariation norm. Beaulieu et al. proposed a similar
solution in [18] that is an optimal solution for generalized
Gaussian interference. We however did not use their estimation
procedure for p which is not consistent with our approach. It
is based on second and higher order moments which are not
defined for stable distributions.

Finally, to get an idea of an optimal solution, we have
implemented a genie-aided receiver: in the simulation we
extract the exact noise samples and use a kernel type non
parametric estimation of the noise distribution (a Gaussian
kernel is considered). We then use this distribution to calculate
the log-likelihood function. This distribution is calculated on
each packet that we have taken rather short (50 source bits
repeated 4 times) to avoid too much computation complexity).
In future works, we will focus on solutions using some
approximate methods of the optimal receiver performance,
which represents a challenging problem owing to the α-stable
nature of the MAI interference process.

B. Simulations

We have considered two scenarios. The first one uses a
Gaussian channel so that only Gaussian noise and multiple

access interference play a role. The second one includes an
important multipath impact. Figure 4 presents the BER as a
function of the mean number of users λ. On the left graph,
with no multipath, we clearly see the improvement brought by
the Cauchy receiver, the number of errors being reduced by
a factor 10. The proposed metric is also an attractive solution
when p takes small values. For p = 0.5, the proposed metric
gives similar results to the Cauchy receiver. The genie-aided
receiver exhibits of course better performance. It is not clear
how close to this optimal curve we can get.

We have also simulated an ad hoc network situation as
described in section II but with a multipath channel. We have
chosen the residential model proposed by the IEEE 802.15.4a
[39], [40]. The useful link is in Line Of Sight (LOS) while
the interfering links can be either LOS or non LOS with
probability 0.5. The global power attenuation is d−a and an
additional shadowing factor of 0.5 is used for non LOS users.
Each object uses the same transmit power. The improvement
due to the Cauchy receiver is reduced but still significant. The
conclusion on the use of the proposed metric are similar to
the previous case. The optimal solution offers a further gain
but the much more difficult transmission conditions make the
benefit smaller.

An appropriate solution for an indoor ad hoc networks,
eventually at 60 GHz, would be to use directive antennas and
links with a LOS path. The resulting conditions would then
be in between the two considered scenarios, the importance
of multipath depending on the antenna directivity and the
environment. The benefits resulting from the proposed metric
or the Cauchy receiver would then be significant. Taking the
impulsive nature of the interference into account is important
and the stable model can certainly bring an accurate general
mathematical framework [7].

V. CONCLUSION

In this paper we present a study of multiple access interfer-
ence in ad hoc networks based on TH-PPM-UWB. We propose
a model based on α-stable process. Those distributions are
heavy tailed and perfectly capture the interference nature:
strong interferers (close to the receiver) are the ones that
limit the system performance, but they are rare. Moreover, the
time hopping approach further limits their influence. Gaussian
distributions or, in general, random variables with finite second
order moments do not allow a good representation of these
events. On the other hand, the proposed α-stable random
variables are very well suited for modeling this impulsive
noise.

For a single path channel and neglecting the near field, we
demonstrate that multiple access interference is a symmetric
α-stable random variable and derive an analytical expression
of the two parameters defining the distribution. The limitation
of the received power in the near field has no real impact on
our modeling. The multipath do not change the MAI nature
but a new evaluation of the parameters is necessary.

Because we have no exact expression of the probability
density functions of α-stable random variables, an optimal
receiver can not be easily implemented. We test receivers for
α = 1 (Cauchy receiver) and α = 2 (Gaussian receiver).
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Fig. 4. BER as a function of the mean number of users for different receivers and two different scenarios. The SNR per pulse after the correlation receiver
is 10dB. The radius of the area is R = 30m.

We also propose a receiver based on a metric inspired by
the covariation norm, well adapted to α-stable processes. We
notice a clear improvement of performance with the two
proposed strategies, which confirms the heavy tailed nature
of the MAI.

Further works have to be done to better integrate the
results of this paper in ad hoc networks. Better receivers
can certainly be implemented to account for the mixture
of different noises and optimal bounds have to be found.
Besides, some estimation difficulties will be encountered to
determine the distribution parameters. Finally, some works on
the channel modeling is also necessary because we can not
consider identical models for the desired link, short with a line
of sight, and the interfering one, long and possibly without a
line of sight.

APPENDIX A
α-STABLES DISTRIBUTIONS

The α-stable processes and variables are a direct generaliza-
tion of Gaussians’ and share many of their familiar properties
(see [24], [25] for more details on α-stable processes and
signal processing). In particular:

• The convolution stability property, which means that the
convolution of two stable distributions is also stable. In
other words the sum of two independent stable random
variables is also a stable one.

• The central limit theorem, which means that every stable
random variables may be expressed as a limit, in distribu-
tion, of a normalized sum of independent and identically
distributed random variables.

Another aspect that makes the importance of these dis-
tributions is that they are parametric. Indeed they are fully
described by four parameters:

• α is called the characteristic exponent (0 < α ≤ 2): it
measures the thickness of the tail of the distribution. Thus

larger is the value of α, less likely it is to observe values
which are far from the central location.

• µ is the location parameter (−∞ < µ < ∞): in an ob-
served sample most of the observations are concentrated
about its value. It corresponds to the mean for 1 < α ≤ 2
and to the median for 0 < α ≤ 1

• σ is the dispersion parameter (σ > 0): it has a similar
role as the standard deviation in the case of a Gaussian
distribution.

• β is the index of symmetry (−1 ≤ β ≤ 1) which
characterizes the dissymmetry of the density function
about its central location. When β = 1 we say that the
distribution is totally skewed to the right; it is symmetric
if β = 0 .

In this paper we consider symmetric α-stable random vari-
ables, which means that β = µ = 0.

Since their discovery by Paul Levy in 1925, a great amount
of knowledge has been accumulated about the theoretical
properties of these probability distributions. They have been
found to provide useful models in various application fields,
especially phenomena with large fluctuations and high vari-
ability that are not compatible with the Gaussian models.
Except the Gaussian, the Cauchy and the Levy distributions,
which are special cases of the stable class, there is no exact
expression of the probability density function of an α−stable
distribution. However its characteristic function is given for
α �= 1 by:

Φ(θ) = exp
{

−σ
α |θ|α

(

1 − iβsign(θ) tan
πα

2

)

+ iµθ
}

(15)

and for α = 1 by:

Φ(θ) = exp{−σ|θ|(1 + iβ
2

π
sign(θ) ln |θ|) + iµθ} (16)

where

sign(θ) =

⎧

⎨

⎩

1 if θ > 0
0 if θ = 0
−1 if θ < 0

. (17)
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APPENDIX B
THE MAI LOG-CHARACTERISTIC FUNCTION

We assume that N̄ (the mean number of interfering links in
the circle C of radius R) follows a Poisson law of parameter
λπR2. λ is the expected number of interferer per unit area
which is linked to the density of the network. We use the
demonstration proposed by Sousa [4] determining the log
characteristic function of the MAI.

Knowing the number of active links N in C, the number
of interfering pulses κR is a binomial law B(N, q). q is the
probability that one interfering pulse falls into the integration
interval at the receiver. The number of interfering pulses is a
Poisson law of parameter λπR2q.

P (κR = i) =
e−λqπR2 (

λqπR2
)i

i!
. (18)

Using (6) and (18), the MAI characteristic function
φZ (ω) = E

[

ejwZ
]

can be written:

φZ (ω) = E

[

ejω(
∑ κ

i=1 γiψi)
]

, (19)

where κ is the number of interferers in the circle with radius
+∞ (to model our system, we make R tends towards infinity).
We have P (κ = l) = lim

R→+∞
P (κR = l). Since ψi and γi are

independent, identically distributed and independent of κ, we
can write:

φZ (ω) =

+∞
∑

l=0

P (κ = l) .
(

E

[

e
jω(γψ)

])l

=

+∞
∑

l=0

lim
R→+∞

(

e−λπR2q .
(

λπR2q
)l

l!

)

.
(

E

[

e
jωγψ

])l

= lim
R→+∞

e
−λπR2q

e
λπR2qE[ejωγψ ]. (20)

Let ω > 0; we take the log-characteristic function:

ϕZ (ω) = log (φZ (ω))

= lim
R→+∞

λqπR2
(

E
[

ejωγψ
]

− 1
)

. (21)

The expectation is taken over the two random variables γ
and ψ and can be calculated using (7):

E
[

ejωγψ
]

=

∫ +∞

R−
a
2

E
[

ejωγψ |γ = x
]

fγ(x)dx

=

∫ +∞

R−
a
2

φψ (ωx)
4x− 4

a
−1

aR2
dx. (22)

Integrating (22) by parts, using it in (21) and making a change
of variables (u = ωx) we obtain:

ϕZ (ω) = lim
R→+∞

λqπR2
{

φψ

(

ωR−a
2

)

+
1

R2

∫ +∞

ωR−
a
2

dφψ

du
(u)

(u

ω

)− 4
a

du − 1

}

(23)

Since ψ is a random variable with mean 0 and a finite variance
σ2

ψ , we can give the Taylor expansion of φψ(x), for x near 0,
to get the approximations:

φψ (x) = 1 −
σ2

ψ

2
x2 + o

(

x2
)

(24)

and
dφψ

dx
(x) = −σ2

ψx + o (x) . (25)

Consequently,

lim
R→+∞

λqπR2
(

φψ

(

ωR−a
2

)

− 1
)

= 0 (26)

and the approximation of dφψ

dx allows to justify that only the
other term in (23) remains. We can further develop (23):

ϕ
Z
(ω) = λqπω

4
a

∫ +∞

0

dφψ

du
(u)u− 4

a du

= λqπ|ω| 4
a

∫ +∞

0

dφψ

du
(u)u− 4

a du. (27)

Since ψ is a real centered symmetric random variable, the
characteristic function φψ is an even function. If now ω is
negative then by a similar calculation, we find that:

ϕ
Z
(ω) = λqπ(−ω)

4
a

∫ +∞

0

dφψ

du
(u)u− 4

a du

= λqπ|ω| 4
a

∫ +∞

0

dφψ

du
(u)u− 4

a du. (28)

Finally the log-characteristic function of the random vari-
able Z is given by equation (9) that we recall here:

ϕZ (ω) = λqπ|ω| 4
a

∫ +∞

0

dφψ

du
(u)u− 4

a du

= λqπ|ω| 4
a F,

where F is independent of ω and given by:

F =

∫ +∞

0

dφψ

du
(u)u− 4

a du. (29)

This gives the characteristic function of the random variable
Z:

φZ (ω) = e−σ|ω|α . (30)

Then, the MAI distribution is an α-stable distribution with
α = 4

a and σ = −λqπF .
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