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ABSTRACT To enhance the stability in humidity is very

crucial to hybrid organic-inorganic lead halide perovskites in a

broad range of applications. This report describes a coating

stratergy of perovskite nanocrystals via poly-

methylmethacrylate-introduced ligand-assisted reprecipita-

tion, using the interactions between the Pb cations on the

surface of perovskite nanocrystals and the functional ester

carbonyl groups in polymethylmethacrylate framework. The

hydrophobic framework shields the open metal sites of hybrid

organic-inorganic lead halide perovskites from being attacked

by water, effectively retarding the diffusion of water into the

perovskite nanocrystals. The as-prepared films demonstrate

high resistance to heat and moisture. Additionally, the in-

troduction of polymethylmethacrylate into ligand-assisted

reprecipitation can effectively control the bulk precipitation

and promote the stability of the perovskite solution.

Keywords: perovskite nanocrystals, polymer framework, surface

coatings, interface phase

INTRODUCTION
Recently, hybrid organic-inorganic lead halide per-
ovskites (HOIPs) have aroused extensive interest due to
their potential application in a wide variety of high-per-
formance optoelectronic devices, including solar cells [1–
4], light-emitting diodes [5–7], optically pumped lasers
[8] and photodetectors [9,10]. However, HOIP materials
suffer from poor stability under external stresses, espe-
cially moisture, heat and light, due to their low formation
energy (approximate 0.1–0.3 eV) [11–14]. Once water
approaches the perovskite surface, it prefers to strongly
bind Pb cations, and then the structure degrades within
only 8.5 ps [15,16]. Enhancing the stability of the per-
ovskite is necessary to prolong the lifetime of its devices.

The intrinsic sensitivity of perovskite to external stress
can be reduced by crosslinking between the organic and
inorganic moieties [17,18], but hydrogen bonds between
methylammounium iodide (MAI) and perovskite cannot
avoid to be attacked by water. The other method to sta-
bilize HOIPs against water is covering them with water-
resistant materials including mesoporous inorganic ma-
trices [19–22] or organic small molecules [23]. Most re-
cently, microencapsulation of polymer was found to offer
a barrier to moisture [24–27], but the methods tend to
generate lead ions at the surface and the easily exfoliated
coating due to the weak chemical bonds [28].
Here a coating of perovskite nanocrystals (NCs) was

anchored via the ligand-assisted reprecipitation (LAR)
which usually offers good surface coating on NCs [29,30].
To bond the Pb cations of perovskite NCs, polymethyl
methacrylate (PMMA) was introduced on HOIP NCs by
LAR method. A strong attractive interaction brings about
a compact interface [28,31,32], which can effectively re-
tard the diffusion of water into NCs for the decreased
intermolecular spaces. Due to the ester carbonyl groups of
PMMA, the obtained composite HOIP films show good
quality, pure colors and ultrahigh stability against heat
and water.

EXPERIMENTAL SECTION

Chemicals

Lead(II) bromide (PbBr2, analytical reagent, 99.0%),
oleylamine (OLAM, 70%), oleic acid (OA, 90%), hydro-
bromic acid (HBr, 48 wt.% in H2O, ≥99.99%), PMMA
(SU) and methylamine (CH3NH2, 33 wt.% in absolute
ethanol) were purchased from Sigma-Aldrich. N,N-di-
methylformamide (DMF, analytical reagent, 99.5%), die-
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thyl ether (DME, analytical reagent, 99.5%) and toluene
(Tol, analytical reagent, 99.5%) were purchased from
Beijing Chemical Works. All chemicals were used without
any further purification.

Polymer introduced LAR (PLAR) synthesis of MAPbBr3-

PMMA solution

0.4 mL OA and 4 mL DMF with ultrasonic agitation was
heated to 40°C. 0.04 mL OLAM, 58.7 mg PbBr2 and
14.4 mg MABr were added after each step per 5 min to
form a clear transparent solution. 0.5 mL precursor so-
lution was rapidly injected into 5 mL toluene with
68.6 mg PMMA preheated to 40°C. The reaction was
quenched after 2 h at 40°C, and cooled to room tem-
perature. Then a bright yellow green supernatant
MAPbBr3-PMMA solution with green-emitting was
gained.

Preparation of PLAR composite films

PLAR solution was processed onto the glass through
cotton swab painting in air-circulating oven and dried at
40°C for 3 h. A freestanding PLAR composite film was
obtained by peeling off it from the glass plate.

Simple nanocrystal blends with PMMA films (SNBP)

1 mg LAR-synthesized MAPbBr3 NCs were blended with
5 mL of toluene and 68.6 mg of PMMA. The blend so-
lution was deposited by cotton swab painting in an air-
circulating oven and dried at 40°C for 3 h.

Sandwich structure PMMA films with an MAPbBr3 NCs

core (SPNC)

0.1 mg LAR-synthesized MAPbBr3 NCs placed into the
top surface of pure PMMA through cotton swab painting
in an air-circulating oven and dried at 40°C for 3 h.
Afterward, the pure PMMA solution (68.6 mg PMMA
dissolved in 5 mL toluene) was processed onto the above
PMMA films through cotton swab painting and dried at
40°C for 3 h.

The MAPbBr3 NCs at the top surface of PMMA (NTSP)

films

LAR-synthesized MAPbBr3 NCs were placed onto the top
face of pure PMMA through cotton swab painting in an
air-circulating oven and dried at 40°C for 3 h.

Characterization

The morphology of the obtained products was de-
termined with transmission electron microscopy (TEM)
on a JEOL JEM-1011 with a thermionic gun operating at

an accelerating voltage of 100 kV and with high-resolu-
tion TEM (HRTEM) on a JEOL JEM-2100F working at an
accelerating voltage of 200 kV. Powder X-ray diffraction
(XRD) patterns of the obtained products were measured
on a PANalytical Empyrean-2 X-ray diffractometer using
a Cu Kα source with a 1/2° fixed diffraction slit and a
1 mm receiver slit. UV-vis absorbance spectra were re-
corded with a Shimadzu UV-1800 spectrophotometer.
Photoluminescence (PL) measurements were acquired
using an RF-5301PC spectrofluorophotometer. The dif-
ferential scanning calorimetry (DSC) analysis was per-
formed on a NETZSCH DSC differential scanning
calorimeter under a nitrogen atmosphere. Thermogravi-
metric analysis (TGA) experiments were performed on a
Pyris 1 TGA Perkin-Elmer Instrument (Wellesley, MA).
Scanning electron microscopy (SEM) images together
with energy-dispersive X-ray spectroscopy (EDS). X-ray
photoelectron spectroscopy (XPS) was performed on a
Thermo Scientific ESCALab 250Xi using 200 W mono-
chromatic Al Kα radiation. Fourier transform infrared
spectroscopy (FTIR) of the obtained products was con-
ducted on a BRUKER TENSOR-27. Time-resolved PL
(TRPL) measurements were performed on an Edinburgh
Instruments FLS980 fluorescence spectrophotometer
using a time-correlated single-photon counting (TCSPC)
spectrometer with a pulsed laser diode (EPL360). PL
quantum yields (PL-QY) were acquired using an in-
tegrating sphere incorporated into the FLS980 spectro-
fluorometer. The temperature-dependent PL spectra were
measured on a Horiba luminescence spectrometer (HR
320) equipped with a closed-circuit liquid helium cryostat
(Jannis CCS-100). Inductively coupled plasma optical
emission spectroscopy (ICP-OES) was performed on a
Thermo Scientific iCAP 6300.

Stability tests

For water stability test, PLAR composite films without
further protection were immersed in deionized water at
room temperature for three months. For nearly boiling
water test at temperature of 90°C, all films were put into
nearly boiling water for 3, 5, 6, 10 and 20 min subse-
quently before they were taken out, and cooled down to
room temperature for optical microscopy, PL, PLQY,
SEM and XRD characterizations.

RESULTS AND DISCUSSION
The fabrication of MAPbBr3 NC composite films is
shown in a schematic illustration (Fig. 1a). Such com-
posite films can be cut into various shapes with green
luminescence (Fig. 1b). A ten-fold diluted MAPbBr3 NC
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solution shows a clear green color without any purifica-
tion (Fig. 1c). The PLAR-synthesized MAPbBr3 NCs with
2.3±0.5 nm were characterized by TEM (Fig. 1d, e and
Fig. S1), which indicated that the PMMA uniformly
coated on individual MAPbBr3 NCs. SEM represents
smooth morphologies of the composite films without
visible aggregations (Fig. 1f). After cutting into an ultra-
thin slice, no phase separation can be observed between
the discrete phase MAPbBr3 NCs and the continuous
phase PMMA (Fig. 1g, h), which implies a good interface
to stabilize MAPbBr3 NCs. As shown in the HRTEM (Fig.
1i) and fast Fourier transform (FFT) images (inset of Fig.
1i), the MAPbBr3 NCs embedded in the composite films
display interplanar distances of 1.5 and 2.1 Å, respec-
tively, corresponding to the (400) and (220) crystal planes
in the cubic phase. These NCs have a Br/Pb molar ratio of
3:1 (Fig. S2), in accordance with the stoichiometry of

MAPbBr3.
Without PMMA, LAR-synthesized MAPbBr3 NCs have

an average diameter of 3.2±0.8 nm (Figs S1a and S3), with
a large amount of macro-size aggregations [33], accom-
panied by yellow-red sediments at the bottom of con-
tainers (Fig. S4). The crystalline size of the precipitates in
the LAR synthesis is significantly larger than that in
PLAR synthesis (Figs S5 and S6). PLAR synthesis can
hence effectively control the bulk precipitation and pro-
mote the long-term stability of MAPbBr3 NCs. The sta-
bility plays an important role in the industrial production
of the materials. To test the system stability, we left the
LAR synthesis solution at room temperature under air
humidity (90% RH). The color of the LAR sample dis-
appeared entirely after 14 days (Fig. S7a), while the PLAR
sample maintained bright green emission even after 90
days (Fig. S7b), which shows the best stability compared
with the previous results [20].
On the anchor points, the bond between the discrete

phase MAPbBr3 nanocrystal and the continuous phase
PMMA in PLAR-synthesized MAPbBr3 NC composite
films are shown in Fig. 2a, which was characterized using
FTIR. Compared with the pristine PMMA spectrum, a
new absorption band of 1678 cm−1 corresponding to the
asymmetric stretch of the COO group appears in PLAR
films [27], indicating the bonding between the C=O
group and the surface Pb2+ (Fig. 2b and Fig. S8). The
average anchoring point number of polymer chain on the
MAPbBr3 NCs can be quantitatively determined by the
FTIR spectra of pure PMMA, SNBP films and PLAR films
[26,29,30,34]. The anchor point number of each chain in
PLAR films is about twice as much as that of SNBP films
(Supplementary Text S1 and Fig. 2c). Such a larger
number of anchors results in a higher concentration of
PMMA chains and a denser interface around the NCs,
thus fewer unbonded-Pb ions are found on the surface.
DSC of pure PMMA, SNBP films and PLAR films show
the glass transition temperatures (Tg) as Tg(PMMA)>
Tg(SNBP films)>Tg(PLAR films) (Fig. S9), suggesting that the mo-
tion of molecular chain segment of PMMA was in-
tensified by perovskite NCs because the lone pair
electrons entering the empty atomic orbit of the central
Pb ion weaken the polarity of the side chain of PMMA
[35]. TGA of pure PMMA, SNBP films and PLAR films
were performed from room temperature to 700°C under
air. The PLAR films showed the highest thermal de-
composition temperatures and lowest thermal decom-
position rates (Fig. S10). The thermo-oxidative stability of
the PLAR films is remarkably higher than that of pure
PMMA, because in the PLAR films the thermal motion

Figure 1 PLAR-synthesized MAPbBr3 NCs. (a) Schematic illustration of
fabricating MAPbBr3 NC-embedded PMMA composite films; (b) lu-
minescent photo of various shapes of cotton swab painting; (c) optical
image of a ten-fold diluted MAPbBr3 NC-PMMA solution without any
purification; (d) TEM image of MAPbBr3 NCs in the supernatant of the
PLAR solution after washing once; (e) HRTEM showing MAPbBr3 NCs
encapsulated by thin polymer shells; (f) SEM image of top surface of
MAPbBr3 composite film; (g) low magnification TEM image of an ul-
trathin slice with a depth dimension of 50 nm after treatment at the low
temperature of −60°C; (h) a typical TEM image of cross-section of
PMMA films containing MAPbBr3 NCs; (i) HRTEM image of a single
MAPbBr3 NC in films, the inset is the corresponding FFT image.
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space of PMMA chains is restricted by crosslinking points
of the MAPbBr3 NCs, resulting in a delayed thermal
decomposition.
The high-resolution XPS spectra of Pb 4f illustrate the

chemical state of the Pb2+ coated by anchoring points, as
shown in Fig. 2d. The small peaks at the lower binding
energy of Pb 4f main peaks indicate the existence of ionic
Pb on the MAPbBr3 NC surfaces [36]. The disappearance
of low binding energy peaks in the PLAR films implies
that all of Pb2+ on the NC surfaces fully react with the
C=O in PMMA. The longer PL lifetimes, the better of
perovskite films [23,37]. The TRPL in Fig. 2e reveals that
PLAR films with average PL lifetimes (τavg) of 1,117 ns
present the much slower PL decay compared to the
control sample (SNBP 60 ns). Previous reports about
MAPbBr3-polymer composite films formed by a swelling
microencapsulation strategy showed τavg ranging from
130 (for MAPbBr3-PS) to 502 ns (for MAPbBr3-ABS)
[22]. Good film quality could be attributed to the fully
anchoring Pb cation with PMMA.
The fully coating by denser interface makes the NC

surface passivated and induces high exciton binding en-

ergy. PL spectum of the PLAR films shows a width at half
maximum (FWHM) 24 nm (Fig. S11), indicating good
color purity. The samples show a Stokes shift of ~39 meV
between the absorption band edge and the emission line,
implying a direct exciton recombination process [38]. A
power law dependence (I∝Lk) was observed with k values
near 1.3 (Fig. S12), agreeing well with the excitonic
characteristics of the spontaneous emission in semi-
conductors [39]. Temperature-dependent PL was per-
formed at temperatures ranging from 300 (RT) to 20 K,
and a significant temperature quenching behavior of the
absolute PL intensity was observed (Fig. 3a). As shown in
Fig. 3b, the PL intensity monotonically decreased with
increasing temperature, the corresponding exciton bind-
ing energy can be calculated as 210 meV. This value is
much higher than the thermal ionization energy at RT
(about 26 meV), which ensures the survival of excitons at
RT. The high exciton binding energy is beneficial to good
nanoparticle dispersion and surface passivation by sur-
rounding polymer chains [23]. The PL spectra of the
PLAR films at low temperature display additional emis-
sion peaks in the high-energy tail located at 2.58, 2.64 and

Figure 2 Chemical bond interactions between the MAPbBr3 NCs discrete phase and the PMMA continuous matrix and full coating of the Pb ion on
the NC surfaces. (a) Schematic sketches showing the anchoring point bond interactions between the C=O of PMMA and Pb ion on the MAPbBr3 NC
surface; (b) expanded fingerprint region for the ester carbonyl groups (C=O) vibrations from FTIR spectra of the pristine PMMA films, SNBP films
and PLAR films; (c) the number of anchoring points of SNBP films and PLAR films, and the insets shows the schematic illustration of dense interface
phase with full coating of the Pb ion for PLAR films and loose interface phase with little coating of the Pb ion for SNBP films; (d) XPS spectra of Pb 4f
of bulk perovskite, SNBP films and PLAR films, respectively; (e) TRPL measurements spectroscopy of LAR-synthesized MAPbBr3 NCs (LARN), SNBP
films and PLAR films, respectively.
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2.71 eV at 20 K in addition to a dominant emission peak
located at 2.37 eV, and the high-energy peak disappears
with increasing temperature (Fig. S13). The additional
high-energy emission peaks are generated by the re-
combination of charge carriers in MA-ordered orthor-
hombic domains [40]. The arrangement of MA cations in
the ordered domains yields a strong local electric field,
resulting in the increased bandgap Eg of the MA-ordered
orthorhombic domains (Stark-like effect). A ∆Eg of
210 meV is observed, which is about 3 times higher than
that of bulk MAPbBr3 [40]. This can be ascribed to the
polar thermoplastic PMMA resin (dipole moment of 1.3
D) packing the MA, which makes MA exhibit a much
larger dipole moment, enhancing the intensity of the
Stark-like effect.
The PLAR films show high stability against water and

heat, which was evaluated by a long-term direct im-
mersed-water test with periodical PL monitor under UV
illumination (Fig. 4a and Supplementary movie SI). After
90 days, the fluorescence intensity still retains 60%, with
15% decay of PL quantum yield (PLQY) (Fig. S14), de-
spite the full penetration of water into the PMMA film
following Fickian diffusion [41]. When the PLAR films
were tested in nearly boiling water at 90°C (higher than
the Tg of the films), PLAR films still exhibit the highest
luminescent retention rate (Fig. 4b and Fig. S15), com-
pared to SNBP films, SPNC film, and NTSP film, which
can be attributed to the denser PMMA phase around NC
surface in PLAR films. The continuous PMMA interface
layers create a full coating on the MAPbBr3 NC surface to
avoid the direct attack of water, effectively retarding the
diffusion of water to the NCs.
The degradation of PLAR-synthesized MAPbBr3 NC

composite films shows two stages, Stage I and Stage II,
during the hydrothermal stability test (Fig. 4b). During
both stages, the remaining PL brightness under UV illu-

mination, composition content, morphology and crystal
structure of the films were also characterized. The color
of the PLAR films changes from bright green to light
green and eventually to dark from Stage I to Stage II with
increasing incubation time at 90°C, and the decreasing of
Br at the surface is much faster than that of Pb (Fig. 4c,
d). The top surface of composite film changed from
smooth (Stage I) to coarse porous (Stage II), due to water
diffusion, swelling of PMMA into pores [42]. Meanwhile,
the crystal structures of the two stages were detected by
XRD. The peak at 21.47° continued to increase, and
eventually became dominant, and additional peaks ap-
peared at 23.7°, 34.2° and 39.6°, corresponding to the
(111), (031) and (311) planes of PbBr2 (Fig. S16), in-
dicating the formation of PbBr2. With PMMA swelling
under the hydrothermal condition, water molecules
eventually permeate into the perovskite lattice, triggering
the detachment of the Br anion from the perovskite
surface. Hydration of MAPbBr3 is followed by the loss of
CH3NH3

− and Br− and then the formed PbBr2 is left in the
PMMA matrix due to the interaction between the C=O of
PMMA and the Pb ion in the interface phase, which is
evidenced by minimum lead leakage in the PLAR films
(Fig. 4e).

CONCLUSIONS
In summary, we demonstrated MAPbBr3 NC-embedded
PMMA to form framework composite films by a facile
PMMA-introduced LAR approach. Due to the interac-
tions between the carbonyl groups of PMMA and the Pb
ions on the NC surface, the introduction of PMMA into
LAR generates long-term stability against water. The re-
sulting dense interface effectively retards the diffusion of
water into the perovskite NCs, which promotes the
overall stability against water and heat. We believe that
this facile PLAR approach will open a new avenue based

Figure 3 Extionic characteristics of PLAR films with denser interface phase. (a) Temperature-dependent PL spectra taken from 20 to 299 K; (b) PL
emission integrated intensity as a function of reciprocal temperature.
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on using polymers as frameworks with functional group
to allow coating special atoms, lowering surface defects
and enhancing stability.
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一种高分子保护的铅卤钙钛矿纳米晶
李晓1,2, 薛振杰2, 罗聃2, 黄川辉2, 刘立志2, 乔学志2, 刘聪2, 宋倩2, 闫聪2, 李迎春1, 王铁2*

摘要 有机-无机杂化铅卤钙钛矿易于加工、带隙可调、电荷转移速率高, 是一种具有广泛应用前景的新型光电半导体材料. 在潮湿空气
中的稳定性是钙钛矿实现产业化应用亟待解决的问题. 本文介绍了聚甲基丙烯酸甲酯作为配体利用配体辅助再沉淀实现了钙钛矿纳米晶
的聚合物包裹. 聚合物作为疏水性骨架通过功能性酯羰基与钙钛矿表面铅化学键合实现了表面铅位点的全覆盖, 有效阻止该位点被水分
子占据, 形成的紧密界面层有效延缓水分子扩散到钙钛矿纳米晶中. 制备的薄膜表现出超高的浸水稳定性.
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