Aplikace matematiky

Lubor Malina
A-stable methods of high order for Volterra integral equations

Aplikace matematiky, Vol. 20 (1975), No. 5, 336-344

Persistent URL: http://dml.cz/dmlcz/103599

Terms of use:

© Institute of Mathematics AS CR, 1975

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/103599
http://dml.cz

SVAZEK 20 (1975) APLIKACE MATEMATIKY CisLo 5

A-STABLE METHODS OF HIGH ORDER
FOR VOLTERRA INTEGRAL EQUATIONS

LUBOR MALINA
(Received July 16, 1974)

1. INTRODUCTION

Consider the linear Volterra integral equation of the second kind

(1.1) y(t)=I'K(t,s)y(s)ds+g(t), 0<ssisT<w,

where g(r) and K(t, s) are continuouson 0 £ s <t < T.

It is well known that under this condition there is a unique continuous solution
of (1.1) on the interval [0, T]. Although we will treat only the linear case, it is simple
to adjust the present method for the numerical solution of integral equations of the
first kind, nonlinear and integro-differential equations of Volterra type.

For efficient numerical solution one must often ask not only for high asymptotic
accuracy but also for other requirements. One of these is Dahlquist’s A-stability.

Recently, de Hoog and Weiss ([2] and [3]) have suggested, for the numerical
solution of the Volterra integral equations of the first kind, methods which are
A-stable (they call them numerically stable). The methods are block by block meth-
ods, i.e., many matrix inversions are needed.

The main result of the present paper is the proof of existence of A-stable high
order methods for Volterra integral equations of the second kind. Our method con-
nects the good features of block by block methods (A-stability plus high asymptotic
accuracy, not attainable by step by step methods) with relatively easy numerical
realization of step by step methods. At least we need no matrix inversion.

Our method for numerical solution of (1.1) which is denoted by 9 is based on the
following procedure.

Denote

(1.2) z(t, u) = J‘uK(t, s)y(s)ds, 0su<=r.

o
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For every fixed ¢ € [0, T'], the equation (1.1) is equivalent to the problem

(13) é%z(t, w) = K(t,u) y(u), u<t
(1.4) z(1,0) =0
and

(1.5) | z(t, 1) = y(t) — g(1).

Then our method 9 consists in two steps. First, we compute an approximate
solution of the problem (1.3)~(1.4) by an O.IM. (overimplicit multistep) method
(on such method cf. [1]) then an approximate solution of (1.1) is computed by means
of (1.5).

Since the method M is essentially based on the O.1. M. methods, part 2 is a quota-
tion of some basic concepts and results from [1]. In part 3, method 9 is described
in detail. Convergence theorem and order of 9 is examined in part 4. Part 5 is
devoted to the extension of Dahlquist’s A-stability concept to integral equations
and to the proof of existence of A-stable method M. Finally, a numerical example
is given in part 6.

In the end, we introduce the notation needed. Let t, = gh, ¢ = O(1)N, ty =T
and let h positive be the stepsize. Let y be a real function defined on [0, T]. The ap-
proximation value of y(tq) computed by a numerical method is denoted by y,. We al-
ways mention explicitly this numerical method if it is not clear from the context.
Vector e is the k-dimensional vector [1, ..., l]T, 0 is the zero vector and 0, ; is the
zero matrix of type i x j while I} is the identity matrix of order j.

2. PRELIMINARIES

In this part we briefly quote some concepts and results from [1]. Consider the
problem

1) d% WO = 1t y(1), 1e[0, T]

(22) ‘ ¥(0) = »°,

where the right hand term is continuous and satisfying the Lipschitz condition with
respect to yinthestrip0 £ ¢t £ T, —o0 < y < +00. O.I.M. methods for numerical
solution of the problem (2.1)—(2.2) differ from linear I-step methods in such a way
that instead of computing the approximate solution at one point, from the known
approximate solutions at I preceding points, we compute the approximate solution
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at k successive points simultaneously. Hence one step of an O.1.M. method, given
by matrices B = (b))}, € = (¢;;)% ;= and D = (d,;)¥’}_,, consists in computing

i,j=1»
k values y,i 1, --., Y 4 Of the approximate solution at k successive points f,44, ...
<os byyr, from known I values at the preceding points t,_;, 4, ..., t,, by means of the

system:
J’_n+1 + B r.}rn—H—l — hC f:(tn+]:yn+l) -
Yn+x | Vn f(tnﬂc’ yn+k)
—hD rf:(tn—l+l’yn—~l+l) =0.

S(tw ¥2)

In the next step of the method we choose new [ initial values from the values
Yn—1+2> -+ Vutx- Because this can be done in many different ways, we are bound
to say how to proceed. So we introduce a parameter s(1 < s < k) and new initial
values are y,_ ;4 .q ..o Yuss If 8 < k we forget the values V,igq1s s Yusr just
computed and recompute them in the next step. Nevertheless, and this cannot lead
to any misunderstanding, we shall always denote the value of approximate solution
at the point ¢; by the only symbol y;. To the O.I.M. method just defined we shall

refer as to the O.1.M. method {B, C, D, s}.
The O.I.LM. method for which [ = 1, B = —e will be called the selfstarting

method.
Let y be (p + 1)-times continuously differentiable (p positive integer) on [0, T

and denote
wWt+h) |+ B[yt —(—-1)h]—-hC[y@+hn |-

);(t + kh) );(z) _ y"(t + kh)
= D[y (t = (1= 1) k)| =[L(x(): h)|.

y'(t) Ly(y(t); h)
The vector [L,, e Lk]T is called the local error of the method.

Definition. 0.1.M. method {B, C, D, s} is said to be of order p if the local error
of the method is of the order h?*'. Moreover, if p is at least one the O.1.M.

method is said to be consistent.
For the sake of brevity we suppose to be I < s. All the following theorems hold

also for I > s. Definition of the method IR remains unchanged.
Let us define the matrix

R = [ol,s-—ls ’la ol,k—s]
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and the matrix
E = —RB.

Definition. 0.I.M. method {B, C, D, s} is said to be stable if there is a positive
constant ¢ such that

[E"| < ¢ for every integer n .

Theorem 1. A stable and consistent O.I.M. method is convergent. Moreover,
if the method is of order p and the starting error defined by e; = y; — y(t;) i =
= O(l) I — 1is of order at least h?, then

ya = ¥(t,) + O(h?)

Sor every t, from [0, T] fixed.

3. DESCRIPTION OF THE METHOD M

Consider Q.1.M. method {B, C, D, s} which computes from values of the approxi-
mate solution at / preceding points the values at k successive points. Denote z”(tq) =
= z(tp, tq) for t, =z t, and by z} value of the approximate solution of the problem
(1.3)—(1.4) at the point t,, obtained by the O.1.M. method under consideration. Let
sufficiently exact starting values of the approximate solution of the integral equation
at the points tg, ..., tpe7-2

(31) Yo =g(0)’ Yiseoos Yiesi1-2
and of the problem (1.3)—(1.4) at the points g, ..., t,_;
(3.2) zp =0, =z, ..,z20_,,

where ¢, € (0, T]is an arbitrary fixed point, be givenand p = k + | — 1.
Later we shall return to the problem of determining the values (3.1)—(3.2).
Suppose that the values y,, ..., y,-, are available. Method 3 consists in the fol-
lowing two steps:

(a) We apply the O.1.M. method {B, C, D, s} to the problem (1.3)—(1.4):

(3.3) 2 |+ B2y | = hCIK(ty tys 1) Yasa

zPie Z, K(tp’ tn+k) Vn+k

— hD K(tp’ tn—l+1) V141 | =0

K(tys 1) ¥
forn + k < p.
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Let us denote by r the least integer for which (r + 1) s+ k>pandr =p—
— (rs + k). We calculate the values z? for ¢ < rs + k from the system (3.3).
(b) Let us carry out one step of the O.LM. method (3.3), starting from the point
n = rs + ry. The last equation of the system (3.3) is then

1 K
(34) Zp = = Zlbhfzg—k—tw + h_Zlck,- K(ty, tp—xss) Yp-sei +
j= j=
1
+ h Z dy; K(tpﬁ tp—k—l+j) Yo—k~1+j-
J=1
Using (1.4), the equation (3.4) yields for y,

1 k-1
(35) v = (g(t,) = _Zlbkizg—k—lﬂ +h Zlckj K(tp ty-iss) Vp-ses +
i= j=
1

+ h_Zldkj K(tys tpei=143) Vp-s-1+D)[(1 = hew K(tp, 1,))

=
for h < ]/(lckk]rxiax]K(t H)andp = k + [ — 1.

Applying successwely (a)—(b) for p = k + I — 1(1) N we can compute y, using
(3. 5) Thus we have established the method IR.

Remark. To point out which of O.I.M. methods is used for numerical solution
of the problem (1.3)—(1.4), we shall sometimes refer to the method 9 as to the
method generated by O.1. M. method {B, C, D, s}.

Definition. Method M is said to be of order m if the 0.1.M. method {B, C, D, s}
generating it is of order m.

Let us come back to the problem of determinig the starting values of approximate
solution (3.1)—(3.2). Let {—e, F,G, w} be a selfstarting O.LM. method which
computes from one value the values of approximate solution at m successive points.
For this method it is sufficient to know only the first m values (3.1). Let us denote
the method for numerical solution of (1.1) generated by the selfstarting method
{—e, F,G,w} by M. As for the starting values (3.2), they are reduced to z§ = 0.
Thus we can compute, using this method M, the required values of the starting
approximate solutions Yy, ..., Vi41—2. System (3.3) for O.1.M. method {—e, F, G, w}
yiclds also the values 27, ..., zJ_,. In the course of calculations, the following case
can occur: The least integer ng such that ng + k > k + | — 2 is reached and we
have not yet calculated all z%, j < I — 1. Then the missing values z are computed

from the system
Z{—‘m - ez;)—m—l — hF K(tm tl—m) Yi-m

z7 K(tw 11—1) Yi-1
~hGK(tp tyome1) Viem-1 = 0.
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The relationship between m, the order of the selfstarting method and the order
of the O.1.M. method {B, C, D, s} will be discussed in the next part.

Finally, the values y,, ..., ¥,,—, could be computed using only the value y, which
is given explicitly, by the methods described in [2].

4. CONVERGENCE AND ORDER OF M

Definition. The method M for numerical solution of (1.1) is said to be convergent
when
lim y, = y(t)

p~ooph=t
t is a fixed point from [0,T].
Let a method 9t generated by a consistent and stable O.I.M. method {B, C, D, s}
of order v be given. Denote

eg =zg — Zp(tq) .

Using (1.4) we have e =y, — y(t,) .

Careful examination of the definition of the method IR results in the conclusion
that the convergence of our method, i.e., the convergence of the approximate solu-
tions y, = z2 — g(t,), is equivalent to the convergence of the approximate solutions
zF of the problem (1.3)—(1.4), obtained by means of the O.LM. method {B, C, D, s}.

Theorem 2. A method I generated by a stable and consistent 0.1.M. method
{B, C, D, s} is convergent. Moreover, if the order of M is v and starting values are
given such that €%, i = (1)1 — 1 and el i = 1(1) k + | — 2 are of order at least
h® then e is of the order h".

The proof of the theorem repeats almost literally the proof of the convergence
theorem for O.1.M. methods (cf. [1], Theorem 3.1), so we omit it.

Remark. Let the starting values (3.2) be computed by means of the method I,
generated by a selstarting O.I.M. method {—e, F,G, w} of order m. Then e =
= O(h™*1), g = 0(1) I — 1, though the convergence theorem for O.L.M. methods
guarantee only the order m. The increase of the exponent by one is caused by the
finiteness of the steps of the method {—e, F,G, w} during the calculation of the
values (3.2). Thus the order of the “‘starting” method M, can be less by one then the
order of the method M preserving the original order of error.

5. A-STABILITY OF METHOD
Our definition of A-stable methods for numerical solution of (1.1) is a direct
analogy of A-stability (in the sense of Dahlquist) of methods for numerical solution

of Cauchy problems.
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Definition. A method M generated by an O.I.M. method {B,C, D,s} is said
to be A-stable if when applied to the equation

(5.1) W) — af ¥(s)ds = 0,

te [0, T], Re a <0, solutions y, of the corresponding difference equations converge
to zero as n tends to infinity.

Remark. One can define the A-stability concept for the methods of the type M
for numerical solutions of Volterra integral equations of the first kind as in the defini-
tion, replacing the equation (5.1) by

(5.2) 0= ocfy(s) ds,

0
tef0,T], Rea <O0.
Let us apply the A-stability concept just defined to the methods of de Hoog and
Weiss. Their method is a block by block method and applied to the equation (5.2)
could be written in the form

AY, = BY,_, .

Y, are vectors of values of approximate solutions in n successive points calculated
simultaneously and A regular and B are matrices which define the method. Then
A-stability is equivalent to the condition that eigenvalues of A™!B are in the open
unit disc. This phenomenon is called by de Hoog and Weiss numerical stability.

Consider a method M generated by an A-stable O.L.M. method {B, C, D, s}.
Such methods of arbitrary high order of asymptotic accuracy exist (cf. [1], Part 4).
The problem (1.3)—(1.4) for equation (5.1) is of the form

z(t, u) = ajy(s)ds, u<t
: 0

(5.3) 9ot u) = a y(u).
' Ju
The equation (5.1) implies
(5.49) y(w) = f % y(s) ds = =(t, ).
(V]
Substitution of (5.4) into (5.3) yields -

(5.5) % 2(t, u) = o z(t, u) .

342



The equation (5.5) is solved by an A-stable O.I. M. method {B, C, D, s}. This means:

zf >0 as p-> oo, g=p.

Particularly,
(5.6) zf>0 as p- .
Thus (1.4) and (5.6) imply

Theorem 3. Let an A-stable O.I.M. method {B, C, D, s} of order m be given.

Then the method I generated by this O.1.M. method is an A-stable method of
order m.

6. NUMERICAL EXAMPLE

Careful examination of the definition of the method M displays one of the ad-
vantages of our method. Namely, in the course of calculation of approximate solu-
tions y, we do not “‘solve” any system of equations, “solve’ in the sense of inverting
a matrix of the system in any form. This is necessary in the methods suggested by
de Hoog and Weiss. The order of the matrix that they must invert equals to the order
of the asymptotic accuracy, i.e., grown if higher order of accuracy is needed. On the
other hand, we need just operations of addition and matrix multiplication. More-
over, if the method M is generated by a selfstarting O.I.M. method, no matrix multi-
plication is needed. Also the kernel K(t, s) of the integral equation need not be de-
fined for t < s as it is required for the first method in [2].

To illustrate our method M we consider the method generated by an A-stable
selfstarting O.I. M. method { —e, F,G, w} with s = 2, k = 2 and

c- 2 ~1 D= 0 ’
2 0 0
which is of order two, applied to the equation:
3
W) = j (12 + 1 — %) y(s) ds — 1) + 41%]5) + 1,
o

where 0 < s <t £ T = 1.40.
The exact solution is

yW)=1.

In the table below the errors for h = 14 and h = -028 are tabulated. Among
other, it points out one interesting feature of our method. There is no “‘explosion™
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in the error for h = -14 and ¢t > 1.2 as it is the éase in the first of de Hoog and Weisq
methods, i.e., global error of the method is still estimated by const. h? for thesc
hand t. |

t ' -2 l 42 i <70 l -84 -08 1-12 1-26 1-40 ‘
N | |
h=-14 —0004 | -0211 1 0087 -0268 -0098 |—0116 | -0093 —-0231 -0098
h =028 |— 00()00 -00015 1 -00009 | -00017 | -00006 |—-00018 | -00008 |-—-00021 | -00007
|
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Souhrn

A-STABILN{ METODY VYSOKEHO RADU PRESNOSTI
PRO INTEGRALNI ROVNICE VOLTERROVA TYPU

LUBOR MALINA

V ¢lanku je ukazana moZnost uziti O.I.M. metod na feSeni Volterrovych rovnic.
V ttidé téchto metod existuji A-stabilni metody libovolné vysokého Fadu asymptotické
presnosti. V €asti 5 je dokazdno, Ze tyto metody generuji metody na FeSeni Volter~
rovych rovnic, jeZ jsou také A-stabilni a libovolné vysokého fddu asymptotické
pfesnosti. Pocéetni vyhodou nami definovanych metod je, Ze tyto, pfi numerické
realizaci, nikde nevyZzaduji inverzi matice v jakékoliv formé.
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