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Abstract We develop a finite element scheme to approximate the dynamics of two
and three dimensional fluidic membranes in Navier–Stokes flow. Local inextensibility
of the membrane is ensured by solving a tangential Navier–Stokes equation, taking
surface viscosity effects of Boussinesq–Scriven type into account. In our approach
the bulk and surface degrees of freedom are discretized independently, which leads
to an unfitted finite element approximation of the underlying free boundary problem.
Bending elastic forces resulting from an elastic membrane energy are discretized using
an approximation introduced by Dziuk (Numer Math 111:55-80, 2008). The obtained
numerical scheme can be shown to be stable and to have good mesh properties. Finally,
the evolution of membrane shapes is studied numerically in different flow situations
in two and three space dimensions. The numerical results demonstrate the robustness
of the method, and it is observed that the conservation properties are fulfilled to a high
precision.
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1 Introduction

The evolution of lipid bilayer membranes is driven by the bending energy, which
involves the curvature of the membrane, and hydrodynamics. Lipid membranes typi-
cally form vesicles, i.e. bag-like structures containing fluid, which are surrounded by a
possibly different fluid. The omnipresence of membranes in biological systems has led
to a growing interest in vesicles over the past decades. Much of the work on vesicles
was motivated by the fact that their shape at rest resembles the biconcave forms of
red blood cells. It is the goal of this paper to introduce, and analyze, a finite element
method of a model for the evolution of lipid membranes, which was introduced by
Arroyo and DeSimone [2].

Their model couples a tangential Navier–Stokes system on the membrane to a
bulk Navier–Stokes system. On the membrane, forces stemming from a first variation
of the curvature energy appear. In this paper, we introduce a finite element method
discretizing the bulk and surface degrees of freedoms independently, which leads to
an unfitted approximation of the two-phase flow problem. The forces resulting from
the elastic membrane energy are discretized using an approach that was introduced
by Dziuk [18] for Willmore flow. The two Navier–Stokes systems are coupled and
subsequently discretized with the help of a suitable variational formulation, which
allows us to show a stability bound for the discretization of the underlying complex
free boundary problem. It will turn out that the surface finite element mesh has good
mesh properties also for strongly deforming membrane evolutions. This fact results
from a suitable discrete local incompressibility condition on the surface, which we
will also analyse. Before we state the governing equations and the numerical method
in more detail, we discuss the physical background and review approaches used by
other authors to numerically solve similar problems.

The bending energy for a lipid membrane used in this paper is

Eα(Γ ) = α E(Γ ) , with E(Γ ) = 1
2

∫

Γ

̹2 dH
d−1,

where the bilayer is modelled as a closed hypersurface Γ in R
d , d = 2 or 3. By

̹ we denote the mean curvature (the sum of the principal curvatures) of Γ , α ∈
R>0 is the bending rigidity and dH d−1 indicates integration with respect to the
(d−1)-dimensional surface measure. In the simplest energetical model for vesicles one
minimizes the energy Eα(Γ ) under the constraints that the area of Γ is fixed and that Γ
encloses a fixed volume. The latter is due to the fact that the osmotic conditions of the
fluids surrounding the membrane lead to a fixed volume. Furthermore, the vesicle can
be considered as locally incompressible, which leads to a fixed total surface area. For
a deeper physical discussion of these conditions we refer to the overview article [39],
where also other aspects of fluidic membranes and vesicles are thoroughly discussed.

In the fluid regions, Ω− and Ω+, inside and outside of the membrane, one requires
the incompressible Navier–Stokes equations, i.e.

ρ (�ut + (�u .∇) �u) − ∇ . σ = ρ �f , ∇ . �u = 0.
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A stable numerical method for the dynamics of fluidic membranes 785

At typical temperatures the membrane itself is in a fluidic state, which leads to the fact
that on the membrane the incompressible surface Navier–Stokes equations

ρΓ ∂•
t �u − ∇s . σΓ = [σ �ν]+− + α fΓ �ν, ∇s . �u = 0

have to hold. Here ∂•
t denotes the material time derivative on Γ , σΓ is the surface

stress tensor, �ν is the unit normal on Γ and [σ �ν]+− describes stresses acting on the
membrane via the normal stresses σ �ν from both sides of the membrane (see Sect. 2 for
precise definitions). The operator ∇s . is the surface divergence and ∇s . �u = 0 models
the fact that the membrane is locally incompressible.

Interfacial fluid mechanics was first thoroughly discussed by Scriven [38], general-
izing earlier ideas of Boussinesq. In this context the surface stress tensor σΓ was first
introduced, and is hence called the Boussinesq–Scriven tensor. In addition, α fΓ �ν
models forces acting on the membrane, which result from the curvature elasticity
Eα(Γ ). The forces act in a direction normal to the membrane and fΓ is given as
minus the first variation of E(Γ ), i.e.

fΓ = −Δs ̹ − ̹ |∇s �ν|2 + 1
2 ̹3, (1.1)

where Δs is the surface Laplacian and ∇s is the surface gradient.
In recent years, many papers have appeared which numerically approximate the

L2-gradient flow equation related to the Willmore energy E(Γ ), i.e.

V = −Δs ̹ − ̹ |∇s �ν|2 + 1
2 ̹3, (1.2)

where V is the normal velocity of the evolving membrane Γ . This geometric evolution
equation is called Willmore flow, and we refer to [6,7,14,15,17,18,22,29] for different
computational approaches to Willmore flow. Since the enclosed volume and the total
surface area are preserved for lipid membranes, the volume and area preserving variant
of (1.2), which is called Helfrich flow, is of particular interest. Helfrich flow has
been considered numerically in e.g. [6,12]. Other authors included additional physical
effects in the geometrical model, such as lateral inhomogeneity and line tension effects,
see [20,31]. In [13] a fluid-membrane system, in which forces resulting from the
Willmore energy act on an interior flow, is considered. In that model surface area is
maintained with the help of a global Lagrange multiplier.

As pointed out above, the membrane is locally incompressible and hence the con-
dition ∇s . �u = 0 should be enforced on the flow. This condition has been dealt with
in numerical simulations in [27,35,36] within a level set context, in [1,24] with the
help of a phase field approach and in [23] by using an immersed boundary method. In
these approaches the local incompressibility constraint on the membrane is enforced
by a Lagrange multiplier leading to an inhomogeneous surface pressure. However, in
the computations in the latter paper the constraint is relaxed by a spring-like elastic
force. In addition, there exists work on the surface Stokes system without taking the
bulk fluid flow into account. There the volume conservation is enforced by a global
Lagrange multiplier. We refer to [33,34] for numerical results using this modelling
variant. The only numerical work taking simultaneously surface and bulk viscosity
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786 John W. Barrett et al.

effects in the fluidic membrane evolution into account is [3]. However, these results
are restricted to the axisymmetric situation. In addition, their numerical method cannot
be shown to be stable, as is the case for all of the above numerical methods.

We also refer to numerical work in [21,26,30,40] on the evolution of red blood
cells, which study the influence of the elastic effects resulting from the cytoskeleton
on the membrane evolution. Finally, we mention that analytical well-posedness issues
for the model considered in this paper are currently being addressed in [25,28].

Building on earlier work by the present authors on two-phase flow and by Dziuk
[18] on Willmore flow, it is the main goal of this paper to introduce and analyze a
numerical method for the full membrane evolution problem. Our numerical approach
has the following features:

– The bulk and surface degrees of freedom are discretized with standard bulk and
surface finite elements leading to an unfitted finite element method.

– The effects of the bulk fluid and of the fluidic membrane are taken into account
simultaneously. In particular, surface viscous effects are accounted for through the
Boussinesq–Scriven law.

– Local volume and local membrane area conservation result naturally from the
volume and surface incompressibility conditions. Local area conservation can be
shown for a continuous-in-time semidiscrete variant of our proposed scheme. In
addition, for a simple modification of our scheme, which can be interpreted as a
virtual element method, see e.g. [41], volume conservation properties can also be
shown.

– Elastic forcing from the curvature energy E(Γ ) is taken into account, and this is
discretized with the help of a weak formulation due to [18].

– Stability of a semidiscrete version can be shown. To our knowledge, this is the first
stability result in the literature for a numerical approximation of the dynamics of
fluidic membranes.

– The interface is advected with the help of the fluid velocity. In other fluid flow
problems with a free boundary this typically leads to distortions of the parametric
surface mesh, see the discussion in [4]. However, in our case the local surface area
conservation ∇s . �u = 0 guarantees that the surface mesh quality remains good
during the evolution, see Remark 4.1 and the numerical simulations in Sect. 7. We
also refer to [32], where a strategy for the tangential redistribution of mesh points
by conserving the relative surface area during the evolution was designed.

– Fully three dimensional simulations, without making any symmetry assumptions,
have been performed, and to the knowledge of the authors this paper presents
the first such numerical computations for the full fluidic membrane problem, i.e.
taking the bulk viscosity, the surface viscosity and the local incompressibility of
the bulk and surface fluid into account.

The outline of the paper is as follows. After introducing the governing equations
in Sect. 2, we present a weak formulation in Sect. 3. This weak formulation is the
basis for our semidiscrete and fully discrete finite element approximations, which are
formulated and analyzed in Sects. 4 and 5. After stating the solutions methods in
Sect. 6, we present numerical simulations in Sect. 7.
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Fig. 1 The domain Ω in the
case d = 2

ν

Γ (t)

Ω
−
(t)

Ω+(t)

2 Governing equations

In this section we state the equations governing the evolution of fluidic membranes, as
introduced in [2]. Let Ω ⊂ R

d be a given domain, where d = 2 or d = 3. We seek a
time dependent interface (Γ (t))t∈[0,T ], Γ (t) ⊂ Ω , which for all t ∈ [0, T ] separates Ω

into a domain Ω+(t), occupied by the outer phase, and a domain Ω−(t) := Ω \Ω+(t),
which is occupied by the inner phase, see Fig. 1 for an illustration. For later use,
we assume that (Γ (t))t∈[0,T ] is a sufficiently smooth evolving hypersurface without
boundary that is parameterized by �x(·, t) : Υ → R

d , where Υ ⊂ R
d is a given

reference manifold, i.e. Γ (t) = �x(Υ, t). Then

�V (�z, t) := �xt (�q, t) ∀ �z = �x(�q, t) ∈ Γ (t) (2.1)

defines the velocity of Γ (t), and V := �V . �ν is the normal velocity of the evolv-
ing hypersurface Γ (t), where �ν(t) is the unit normal on Γ (t) pointing into Ω+(t).
Moreover, we define the space-time surface GT :=

⋃
t∈[0,T ] Γ (t) × {t}.

Let ρ(t) = ρ+ XΩ+(t) + ρ− XΩ−(t), with ρ± ∈ R≥0, denote the fluid densities,
where here and throughout XA defines the characteristic function for a set A . Denot-
ing by �u : Ω × [0, T ] → R

d the fluid velocity, by σ : Ω × [0, T ] → R
d×d the stress

tensor, and by �f : Ω × [0, T ] → R
d a possible volume force, the incompressible

Navier–Stokes equations in the two phases are given by

ρ (�ut + (�u .∇) �u) − ∇ . σ = ρ �f in Ω±(t), (2.2a)

∇ . �u = 0 in Ω±(t), (2.2b)

�u = �g on ∂1Ω, (2.2c)

σ �n = �0 on ∂2Ω, (2.2d)
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788 John W. Barrett et al.

where ∂Ω = ∂1Ω ∪ ∂2Ω , with ∂1Ω ∩ ∂2Ω = ∅, denotes the boundary of Ω with
outer unit normal �n. Hence (2.2c) prescribes a possibly inhomogeneous Dirichlet
condition for the velocity on ∂1Ω , which collapses to the standard no-slip condition
when �g = �0, while (2.2d) prescribes a stress-free condition on ∂2Ω . Throughout
this paper we assume that H d−1(∂1Ω) > 0. We will also assume w.l.o.g. that �g is
extended so that �g : Ω → R

d . In addition, the stress tensor in (2.2a) is defined by

σ = μ (∇ �u + (∇ �u)T) − p Id = 2 μ D(�u) − p Id, (2.3)

where Id ∈ R
d×d denotes the identity matrix and D(�u) := 1

2 (∇ �u+(∇ �u)T) is the rate-

of-deformation tensor, with ∇ �u =
(
∂x j

ui

)d

i, j=1
. Moreover, p : Ω×[0, T ] → R is the

pressure and μ(t) = μ+ XΩ+(t) + μ− XΩ−(t), with μ± ∈ R>0, denotes the dynamic
viscosities in the two phases. On the free surface Γ (t), the following conditions need
to hold:

[�u]+− = �0 on Γ (t), (2.4a)

ρΓ ∂•
t �u − ∇s . σΓ = [σ �ν]+− + α �fΓ on Γ (t), (2.4b)

∇s . �u = 0 on Γ (t), (2.4c)

�V . �ν = �u . �ν on Γ (t), (2.4d)

where ρΓ ∈ R≥0 denotes the surface material density, α ∈ R>0 is the bending rigidity
and �fΓ := fΓ �ν is defined by (1.1). In addition, ∇s . denotes the surface divergence
on Γ (t), and the surface stress tensor is given by

σΓ = 2 μΓ Ds(�u) − pΓ PΓ on Γ (t), (2.5)

where μΓ ∈ R≥0 is the interfacial shear viscosity and pΓ denotes the surface pressure,
which acts as a Lagrange multiplier for the incompressibility condition (2.4c). Here

PΓ = Id − �ν ⊗ �ν on Γ (t) (2.6a)

is the projection onto the tangent space of Γ (t), and

Ds(�u) = 1
2 PΓ (∇s �u + (∇s �u)T)PΓ on Γ (t), (2.6b)

is the surface rate-of-deformation tensor. Here ∇s = PΓ ∇ = (∂s1 , . . . , ∂sd
) denotes

the surface gradient on Γ (t), and ∇s �u =
(
∂s j

ui

)d

i, j=1
. Moreover, as usual, [�u]+− :=

�u+ − �u− and [σ �ν]+− := σ+ �ν − σ− �ν denote the jumps in velocity and normal stress
across the interface Γ (t). Here and throughout, we employ the shorthand notation
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A stable numerical method for the dynamics of fluidic membranes 789

�b± := �b |Ω±(t) for a function �b : Ω × [0, T ] → R
d ; and similarly for scalar and

matrix-valued functions. In addition,

∂•
t ζ = ζt + �u .∇ ζ ∀ ζ ∈ H1(GT ) (2.7)

denotes the material time derivative of ζ on Γ (t). We compute ∂•
t ζ with the help of

an extension of ζ to a neighborhood of GT . Here we stress that the derivative in (2.7)
is well-defined, and depends only on the values of ζ on GT , even though ζt and ∇ ζ

do not make sense separately for a function defined on GT ; see e.g. [19, p. 324]. The
system (2.2a–d), (2.3), (2.4a–d), (2.5) is closed with the initial conditions

Γ (0) = Γ0 , ρ �u(·, 0) = ρ �u0 in Ω , ρΓ �u(·, 0) = ρΓ �u0 on Γ0, (2.8)

where Γ0 ⊂ Ω and �u0 : Ω → R
d are given initial data satisfying ρ ∇ . �u0 = 0 in Ω ,

ρΓ ∇s . �u0 = 0 on Γ0 and ρ+ �u0 = ρ+ �g on ∂1Ω . Of course, in the case ρ− = ρ+ =
ρΓ = 0 the initial data �u0 is not needed. Similarly, in the case ρ− = ρ+ = 0 and
ρΓ > 0 the initial data �u0 is only needed on Γ0. However, for ease of exposition, and
in view of the unfitted nature of our numerical method, we will always assume that
�u0, if required, is given on all of Ω .

It is not difficult to show that the conditions (2.2b) enforce volume preservation for
the phases, while (2.4c) leads to the conservation of the total surface area H d−1(Γ (t)),
see Sect. 3 below for the relevant proofs. As an immediate consequence we obtain
that spheres remain spheres, and that spheres with a zero bulk velocity are stationary
solutions. In addition, in the case d = 2 the condition (2.4c) immediately implies
that Ds(�u) = 0 on Γ (t), which means that in two space dimensions the problem is
independent of the value of μΓ .

Furthermore, we note that

∇s . σΓ = 2 μΓ ∇s . Ds(�u) − ∇s . [pΓ PΓ ] = 2 μΓ ∇s . Ds(�u) − ∇s pΓ − ̹ pΓ �ν .

(2.9)

Here ̹ denotes the mean curvature of Γ (t), i.e. the sum of the principal curvatures
̹i , i = 1, . . . , d − 1, of Γ (t), where we have adopted the sign convention that ̹ is
negative where Ω−(t) is locally convex. In particular, it holds that

Δs �id = ̹ �ν =: �̹ on Γ (t), (2.10)

where Δs = ∇s .∇s is the Laplace–Beltrami operator on Γ (t).
Assuming there are two solutions {(Γ (t), �u(·, t), p(i)(·, t), p

(i)
Γ (·, t))}t∈[0,T ],

i = 1, 2, to the problem (2.2a–d), (2.3), (2.4a–d), (2.5) and (2.8), then it follows
from (2.3) and (2.9) that

∇ p̄± = �0 in Ω±(t), (2.11a)

∇s p̄Γ + ̹ p̄Γ �ν = [ p̄ �ν]+− on Γ (t), (2.11b)
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790 John W. Barrett et al.

where p̄ = p(1) − p(2) and p̄Γ = p
(1)
Γ − p

(2)
Γ . Therefore p̄± is constant on Ω±(t).

In addition, since ∇s p̄Γ is tangential, we obtain that ∇s p̄Γ = �0, and hence p̄Γ is a
constant. Moreover, (2.11b) implies that ̹ p̄Γ = p̄+ − p̄−. So if ̹ is not constant,
which is the case if Γ (t) is not a sphere, then p̄Γ = 0 and p̄+ = p̄−. Hence pΓ in
this case is unique, and p is unique in Ω up to an additive constant. If ̹ is constant,
however, i.e. if Γ (t) is a sphere, then pΓ is only unique up to an additive constant,
which is fixed by the two additive constants in the bulk phases. For more details see
the discussion around (3.13) below.

Finally, we recall that the source term �fΓ = fΓ �ν in (2.4b), with fΓ defined in
(1.1), is the first variation of E(Γ (t)), i.e.

1
2

d

dt
〈̹, ̹〉Γ (t) = −〈 fΓ ,V 〉Γ (t) = −

〈
�fΓ , �V

〉
Γ (t)

,

where 〈·, ·〉Γ (t) denotes the L2–inner product on Γ (t). It does not appear possible to
derive a stable discretization of the system (2.2a–d), (2.3), (2.4a–d), (2.5) based on the
formulation (1.1). Hence in this paper we will make use of the stable approximation of
Willmore flow introduced in [18], which is based on a discretization of the curvature
vector �̹ = ̹ �ν, and on the identity

1
2

d

dt
〈 �̹, �̹〉Γ (t) = −

〈
∇s �̹,∇s �V

〉
Γ (t)

−
〈
∇s . �̹,∇s . �V

〉
Γ (t)

− 1
2

〈
| �̹|2 ∇s �id,∇s �V

〉
Γ (t)

+ 2
〈
(∇s �̹)T, Ds( �V ) (∇s �id)T

〉
Γ (t)

, (2.12)

where we note that our notation is such that ∇s �χ = (∇Γ �χ)T, with ∇Γ �χ =(
∂si

χ j

)d

i, j=1 defined as in [18].

3 Weak formulation

Before introducing our finite element approximation, we will state an appropriate
weak formulation. With this in mind, we introduce the following function spaces for
a given �b ∈ [H1(Ω)]d :

U(�b) := { �ϕ ∈ [H1(Ω)]d : �ϕ = �b on ∂1Ω},

V(�b) := L2(0, T ; U(�b)) ∩ H1(0, T ; [L2(Ω)]d),

VΓ (�b) := { �ϕ ∈ V(�b) : �ϕ |GT
∈ [H1(GT )]d}.

In addition, we let P := L2(Ω) and define

P̂ :=

{
{η ∈ P :

∫
Ω

η dL d = 0} if H d−1(∂2Ω) = 0,

P if H d−1(∂2Ω) > 0.

123



A stable numerical method for the dynamics of fluidic membranes 791

Letting (·, ·) and 〈·, ·〉∂2Ω denote the L2–inner products on Ω and ∂2Ω , respectively,
we recall from [11] that it follows from (2.2a–d), (2.4a, d) and (2.3) that

(ρ [�ut + (�u .∇) �u], �ξ)

= 1
2

[
d

dt
(ρ �u, �ξ) + (ρ �ut , �ξ) − (ρ �u, �ξt ) + (ρ, [(�u .∇) �u] . �ξ − [(�u .∇) �ξ ] . �u)

]

+ 1
2 ρ+

〈
�u . �n, �u . �ξ

〉
∂2Ω

∀ �ξ ∈ V(�0) (3.1)

and

∫

Ω+(t)∪Ω−(t)

(∇ . σ ) . �ξ dL
d = −2 (μ D(�u), D(�ξ)) + (p,∇ . �ξ) −

〈
[σ �ν]+−, �ξ

〉
Γ (t)

∀ �ξ ∈ U(�0), (3.2)

where we have also noted for symmetric matrices A ∈ R
d×d that A : B = A :

1
2 (B + BT) for all B ∈ R

d×d . Only slip or free-slip conditions were considered in
[11], and so the boundary integral over ∂2Ω did not appear there. But it is easily
established that the more general (3.1) also holds, on noting [11, (3.2)].

We define, similarly to (2.7), the following time derivative that follows the para-
meterization �x(·, t) of Γ (t), rather than �u. In particular, we let

∂◦
t ζ = ζt + �V .∇ ζ ∀ ζ ∈ H1(GT ); (3.3)

where we stress once again that this definition is well-defined, even though ζt and ∇ ζ

do not make sense separately for a function ζ ∈ H1(GT ). On recalling (2.7) we obtain
that ∂◦

t = ∂•
t if �V = �u on Γ (t). Moreover, for later use we note that

〈ζ,∇s . �η〉Γ (t) + 〈∇s ζ, �η〉Γ (t) = −〈ζ �η, �̹〉Γ (t) ∀ ζ ∈ H1(Γ (t)), �η ∈ [H1(Γ (t))]d

(3.4)
and

d

dt
〈χ, ζ 〉Γ (t) =

〈
∂◦

t χ, ζ
〉
Γ (t)

+
〈
χ, ∂◦

t ζ
〉
Γ (t)

+
〈
χ ζ,∇s . �V

〉
Γ (t)

∀ χ, ζ ∈ H1(GT ),

(3.5)
see Definition 2.11 and Lemma 5.2 in [19], respectively.

The most natural weak formulation of the system (2.2a–d), (2.3), (2.4a–d), (2.5)
uses the fluidic tangential velocity for the evolution of Γ (t), and so (2.4d) is replaced
by �V = �u on Γ (t). It then follows from (2.4b), (2.9), and (3.4) that

ρΓ

〈
∂•

t �u, �ξ
〉
Γ (t)

+ 2 μΓ

〈
Ds(�u), Ds(�ξ)

〉
Γ (t)

−
〈
pΓ ,∇s . �ξ

〉
Γ (t)

=
〈
[σ �ν]+−, �ξ

〉
Γ (t)

+ α
〈

�fΓ , �ξ
〉
Γ (t)

∀ �ξ ∈ H1(GT ), (3.6)
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792 John W. Barrett et al.

where we have noted for symmetric matrices A ∈ R
d×d that PΓ A PΓ : B =

PΓ A PΓ : 1
2 PΓ (B + BT)PΓ for all B ∈ R

d×d . This weak formulation of the
system (2.2a–d), (2.3), (2.4a–d), (2.5) is then given as follows. Find Γ (t) = �x(Υ, t) for
t ∈ [0, T ] with �V ∈ [L2(GT )]d and �V (·, t) ∈ [H1(Γ (t)]d for almost all t ∈ (0, T ),
and functions �u ∈ VΓ (�g), p ∈ L2(0, T ; P̂), pΓ ∈ L2(GT ), �̹ ∈ [H1(GT )]d and
�fΓ ∈ [L2(GT )]d such that for almost all t ∈ (0, T ) it holds that

1
2

[
d

dt
(ρ �u, �ξ) + (ρ �ut , �ξ) − (ρ �u, �ξt ) + (ρ, [(�u .∇) �u] . �ξ − [(�u .∇) �ξ ] . �u)

+ρ+

〈
�u . �n, �u . �ξ

〉
∂2Ω

]
+ 2 (μ D(�u), D(�ξ)) − (p,∇ . �ξ) + ρΓ

〈
∂◦

t �u, �ξ
〉
Γ (t)

+ 2 μΓ

〈
Ds(�u), Ds(�ξ)

〉
Γ (t)

−
〈
pΓ ,∇s . �ξ

〉
Γ (t)

= (ρ �f , �ξ) + α
〈

�fΓ , �ξ
〉
Γ (t)

∀ �ξ ∈ VΓ (�0), (3.7a)

(∇ . �u, ϕ) = 0 ∀ ϕ ∈ P̂, (3.7b)

〈∇s . �u, η〉Γ (t) = 0 ∀ η ∈ L2(Γ (t)), (3.7c)

〈
�V − �u, �χ

〉
Γ (t)

= 0 ∀ �χ ∈ [L2(Γ (t))]d , (3.7d)

〈 �̹, �η〉Γ (t) +
〈
∇s �id,∇s �η

〉
Γ (t)

= 0 ∀ �η ∈ [H1(Γ (t))]d , (3.7e)

〈
�fΓ , �χ

〉
Γ (t)

= 〈∇s �̹,∇s �χ〉Γ (t) + 〈∇s . �̹,∇s . �χ〉Γ (t) + 1
2

〈
| �̹|2 ∇s �id,∇s �χ

〉
Γ (t)

− 2
〈
(∇s �̹)T, Ds( �χ) (∇s �id)T

〉
Γ (t)

∀ �χ ∈ [H1(Γ (t))]d , (3.7f)

as well as the initial conditions (2.8), where in (3.7d) we have recalled (2.1). Here
(3.7a–e) can be derived analogously to the weak formulation presented in [9,11],
recall (3.1), (3.2), (3.6) and (2.10). In addition, (3.7f) is based on (2.12).

In what follows we would like to derive an energy bound for a solution of (3.7a–f),
where for ease of exposition we consider only the case �g = �0. All of the following
considerations are formal, in the sense that we make the appropriate assumptions about
the existence, boundedness and regularity of a solution to (3.7a–f). Firstly, it follows
from (3.5), (3.7d) and (3.7c) with η = |�u |Γ (t) |2 that

1
2 ρΓ

d

dt
〈�u, �u〉Γ (t) = 1

2 ρΓ

〈
∂◦

t |�u|2, 1
〉
Γ (t)

+ 1
2 ρΓ

〈
∇s . �V , |�u|2

〉
Γ (t)

= ρΓ

〈
∂◦

t �u, �u
〉
Γ (t)

+ 1
2 ρΓ

〈
∇s . �u, |�u|2

〉
Γ (t)

= ρΓ

〈
∂◦

t �u, �u
〉
Γ (t)

.

(3.8)

123



A stable numerical method for the dynamics of fluidic membranes 793

Now choosing �ξ = �u in (3.7a), recall that �g = �0, ϕ = p(·, t) in (3.7b) and η = pΓ (·, t)

in (3.7c) yields, on combining with (3.8), that

1
2

d

dt

(
‖ρ

1
2 �u‖2

0 + ρΓ 〈�u, �u〉Γ (t)

)
+ 2 ‖μ

1
2 D(�u)‖2

0 + 2 μΓ

〈
Ds(�u), Ds(�u)

〉
Γ (t)

+ 1
2 ρ+

〈
�u . �n, |�u|2

〉
∂2Ω

= (ρ �f , �u) + α
〈

�fΓ , �u
〉
Γ (t)

. (3.9)

Combining (3.9) with (2.12), on choosing �χ = �fΓ in (3.7d) and �χ = �V in (3.7f),
yields that

1
2

d

dt

(
‖ρ

1
2 �u‖2

0 + ρΓ 〈�u, �u〉Γ (t) + α 〈 �̹, �̹〉Γ (t)

)
+ 2 ‖μ

1
2 D(�u)‖2

0

+ 2 μΓ

〈
Ds(�u), Ds(�u)

〉
Γ (t)

+ 1
2 ρ+

〈
�u . �n, |�u|2

〉
∂2Ω

= (ρ �f , �u).

(3.10)

Moreover, we note that it immediately follows from (3.5) and (3.7c, d) that

d

dt
H

d−1(Γ (t)) =
d

dt
〈1, 1〉Γ (t) =

〈
1,∇s . �V

〉
Γ (t)

= 〈1,∇s . �u〉Γ (t) = 0. (3.11)

In addition, the volume of Ω−(t) is preserved in time, i.e. the mass of each phase is

conserved. To see this, choose �χ = �ν in (3.7d) and ϕ =
(
XΩ−(t) − L d (Ω−(t))

L d (Ω)

)
in

(3.7b) to obtain, on recalling [16, Lemma 2.1], that

d

dt
L

d(Ω−(t)) =
〈

�V , �ν
〉
Γ (t)

= 〈�u, �ν〉Γ (t) =

∫

Ω−(t)

∇ . �u dL
d = 0. (3.12)

Recalling the argument on the uniqueness of the pressures p and pΓ below
(2.11a, b), we note the following LBB-type condition:

inf
(ϕ,η)∈P̂×L2(Γ (t))

sup
�ξ∈UΓ (t)(�0)

(ϕ,∇ . �ξ) +
〈
η,∇s . �ξ

〉
Γ (t)

(‖ϕ‖0 + ‖η‖0,Γ (t)) (‖�ξ‖1 + ‖PΓ
�ξ |Γ (t) ‖1,Γ (t))

≥C >0,

(3.13)
which we also refer to as the LBBΓ condition. Here we have defined the space
UΓ (t)(�0) := {�ξ ∈ U(�0) : PΓ

�ξ |Γ (t)∈ H1(Γ (t))}, and let ‖�η‖2
1,Γ (t) := 〈�η, �η〉Γ (t) +

〈∇s �η,∇s �η〉Γ (t). In the case that the smooth hypersurface Γ (t) is not a sphere, then
(3.13) is shown to hold if ∂1Ω = ∂Ω is a smooth boundary in [28, p. 15].

4 Semidiscrete finite element approximation

For simplicity we consider Ω to be a polyhedral domain. Then let T h be a regular
partitioning of Ω into disjoint open simplices oh

j , j = 1, . . . , JΩ . Associated with

T h are the finite element spaces
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794 John W. Barrett et al.

Sh
k (Ω) := {χ ∈ C(Ω) : χ |o∈ Pk(o) ∀ o ∈ T

h} ⊂ H1(Ω) , k ∈ N,

where Pk(o) denotes the space of polynomials of degree k on o. We also introduce

Sh
0 (Ω), the space of piecewise constant functions on T h . Let {ϕh

k, j }
K h

k

j=1 be the standard

basis functions for Sh
k (Ω), k ≥ 0. We introduce �I h

k : [C(Ω)]d → [Sh
k (Ω)]d , k ≥ 1, the

standard interpolation operators, such that ( �I h
k �η)( �ph

k, j ) = �η( �ph
k, j ) for j = 1, . . . , K h

k ;

where { �ph
k, j }

K h
k

j=1 denotes the coordinates of the degrees of freedom of Sh
k (Ω), k ≥ 1. In

addition we define the standard projection operator I h
0 : L1(Ω) → Sh

0 (Ω), such that

(I h
0 η) |o=

1

L d(o)

∫

o

η dL
d ∀ o ∈ T

h .

Our approximation to the velocity and pressure on T h will be finite element spaces
U

h(�g) ⊂ U( �I h
k �g), for some k ≥ 2, where we assume from now on that �g ∈ [C(Ω)]d ,

and P
h(t) ⊂ P. We require also the space P̂

h(t) := P
h(t) ∩ P̂. For the finite

element spaces (Uh(�g), P
h) we may choose, for example, the lowest order Taylor–

Hood element P2–P1, the P2–P0 element or the P2–(P1+P0) element on setting
U

h(�g) = [Sh
2 (Ω)]d ∩ U( �I h

2 �g), and P
h = Sh

1 (Ω), Sh
0 (Ω) or Sh

1 (Ω) + Sh
0 (Ω), respec-

tively. The lowest order Taylor–Hood element satisfies the standard LBB condition in
the bulk for d = 2 and d = 3, while the other two choices satisfy it for d = 2.

For the numerical approximation of the evolution of fluidic membranes it is desir-
able to maintain the surface area of the interface, recall (3.11), as well as the volume
of the two phases, recall (3.12). In [8,11] the present authors augmented the pressure
space by the characteristic function of the inner phase in order to obtain discretiza-
tions that maintain the volume of the two phases. This enrichment of the pressure
space is an example of an XFEM approach, and we refer to this particular approach
as XFEMΓ . Unfortunately, it does not appear possible to prove a discrete analogue of
(3.11) for the XFEMΓ approach from [8,11]. Hence in this paper we will modify the
XFEMΓ approach so that we obtain numerical approximations that satisfy discrete
analogues of both (3.12) and (3.11). From a practical point of view, this approach
is very close to the procedure in [8,11]. But the introduced modifications mean that
the adjustments to the finite element approximations no longer have an interpreta-
tion within the XFEM framework. However, the new approach may be interpreted as
an example of the recently proposed virtual element method, see below for further
details.

The parametric finite element spaces in order to approximate e.g. �̹ and pΓ are
defined as follows, see also [5]. Let Γ h(t) ⊂ R

d be a (d − 1)-dimensional polyhedral

surface, i.e. a union of non-degenerate (d − 1)-simplices with no hanging vertices
(see [16, p. 164] for d = 3), approximating the closed surface Γ (t). In particular,

let Γ h(t) =
⋃JΓ

j=1 σ h
j (t), where {σ h

j (t)}JΓ

j=1 is a family of mutually disjoint open

(d − 1)-simplices with vertices {�qh
k (t)}KΓ

k=1. Then, for k ∈ N, let

Sh
k (Γ h(t)) := {χ ∈ C(Γ h(t)) : χ |σ h

j
∈ Pk(σ

h
j ) ∀ j = 1, . . . , JΓ } ⊂ H1(Γ h(t)).
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We also introduce Sh
0 (Γ h(t)), the space of piecewise constant functions on {σ h

j (t)}JΓ

j=1.
For ease of presentation, we introduce the following notations for the spaces of
piecewise linear functions on Γ h(t). Let W (Γ h(t)) = Sh

1 (Γ h(t)) and V (Γ h(t)) =

[Sh
1 (Γ h(t))]d , with {χh

k (·, t)}KΓ

k=1 denoting the standard basis of W (Γ h(t)), i.e.

χh
k (�qh

l (t), t) = δkl ∀ k, l ∈ {1, . . . , KΓ } , t ∈ [0, T ]. (4.1)

For later purposes, we also introduce the standard interpolation operators πh
k (t) :

C(Γ h(t)) → Sh
k (Γ h(t)) and �πh

k (t) : [C(Γ h(t))]d → [Sh
k (Γ h(t))]d , for k ∈ N. For

scalar and vector functions η, ζ on Γ h(t) we introduce the L2–inner product 〈·, ·〉Γ h(t)

over the polyhedral surface Γ h(t) as follows

〈η, ζ 〉Γ h(t) :=

∫

Γ h(t)

η . ζ dH
d−1.

If v,w are piecewise continuous, with possible jumps across the edges of {σ h
j }JΓ

j=1,

we introduce the mass lumped inner product 〈·, ·〉h
Γ h(t)

as

〈η, ζ 〉h
Γ h(t)

:= 1
d

JΓ∑

j=1

H
d−1(σ h

j )

d∑

k=1

(η . ζ )((�qh
jk
)−),

where {�qh
jk
}d
k=1 are the vertices of σ h

j , and where we define η((�qh
jk
)−) :=

lim
σ h

j ∋ �p→�qh
jk

η( �p).

Following [19, (5.23)], we define the discrete material velocity for �z ∈ Γ h(t) by

�V h(�z, t) :=

KΓ∑

k=1

[
d

dt
�qh

k (t)

]
χh

k (�z, t). (4.2)

Then we define, similarly to (3.3),

∂
◦,h
t ζ = ζt + �V h .∇ ζ ∀ ζ ∈ H1(G h

T ) , where G
h
T :=

⋃

t∈[0,T ]

Γ h(t)×{t}. (4.3)

For later use, we also introduce the finite element spaces

W (G h
T ) := {χ ∈ C(G h

T ) : χ(·, t) ∈ W (Γ h(t)) ∀ t ∈ [0, T ]},

WT (G h
T ) := {χ ∈ W (G h

T ) : ∂
◦,h
t χ ∈ C(G h

T )},

as well as

V
h
Γ h (�g) := { �φ ∈ H1(0, T ; U

h(�g)) : ∃ �χ ∈ [WT (G h
T )]d ,

s.t. �χ(·, t) = �πh
1 [ �φ |Γ h(t)] ∀ t ∈ [0, T ]}.
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On differentiating (4.1) with respect to t , it immediately follows that

∂
◦,h
t χh

k = 0 ∀ k ∈ {1, . . . , KΓ }, (4.4)

see [19, Lem. 5.5]. It follows directly from (4.4) that

∂
◦,h
t ζ(·, t) =

KΓ∑

k=1

χh
k (·, t)

d

dt
ζk(t) on Γ h(t)

for ζ(·, t) =
∑KΓ

k=1 ζk(t) χh
k (·, t) ∈ W (Γ h(t)), and hence ∂

◦,h
t

�id = �V h on Γ h(t).
We recall from [19, Lem. 5.6] that

d

dt

∫

σ h
j (t)

ζ dH
d−1 =

∫

σ h
j (t)

∂
◦,h
t ζ + ζ ∇s . �V h dH

d−1 ∀ ζ ∈ H1(σ h(t)), (4.5)

for j = 1, . . . , JΓ , which immediately implies that

d

dt
〈η, ζ 〉Γ h(t) = 〈∂◦,h

t η, ζ 〉Γ h(t) + 〈η, ∂
◦,h
t ζ 〉Γ h(t) + 〈η ζ,∇s . �V h〉Γ h(t)

∀ η, ζ ∈ WT (G h
T ). (4.6)

Similarly, we recall from [9, Lem. 3.1] that

d

dt
〈η, ζ 〉h

Γ h(t)
= 〈∂◦,h

t η, ζ 〉h
Γ h(t)

+ 〈η, ∂
◦,h
t ζ 〉h

Γ h(t)
+ 〈η ζ,∇s . �V h〉h

Γ h(t)

∀ η, ζ ∈ WT (G h
T ). (4.7)

Given Γ h(t), we let Ωh
+(t) denote the exterior of Γ h(t) and let Ωh

−(t) denote the

interior of Γ h(t), so that Γ h(t) = ∂Ωh
−(t) = Ωh

−(t) ∩ Ωh
+(t). We then partition

the elements of the bulk mesh T h into interior, exterior and interfacial elements as
follows. Let

T
h

− (t) := {o ∈ T
h : o ⊂ Ωh

−(t)},

T
h

+ (t) := {o ∈ T
h : o ⊂ Ωh

+(t)},

T
h

Γ h (t) := {o ∈ T
h : o ∩ Γ h(t) �= ∅}.

Clearly T h = T
h

− (t) ∪ T
h

+ (t) ∪ T
h

Γ (t) is a disjoint partition. In addition, we define
the piecewise constant unit normal �νh(t) to Γ h(t) such that �νh(t) points into Ωh

+(t).
Moreover, we introduce the discrete density ρh(t) ∈ Sh

0 (Ω) and the discrete viscosity
μh(t) ∈ Sh

0 (Ω) as
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ρh(t) |o=

⎧
⎪⎨
⎪⎩

ρ− o ∈ T
h

− (t),

ρ+ o ∈ T
h

+ (t),
1
2 (ρ− + ρ+) o ∈ T

h
Γ h (t),

and μh(t) |o=

⎧
⎪⎨
⎪⎩

μ− o ∈ T
h

− (t),

μ+ o ∈ T
h

+ (t),
1
2 (μ− + μ+) o ∈ T

h
Γ h (t).

We introduce, similarly to (2.6a, b),

PΓ h = Id − �νh ⊗ �νh on Γ h(t), (4.8a)

and
Dh

s (�η) = 1
2 PΓ h (∇s �η + (∇s �η)T)PΓ h on Γ h(t), (4.8b)

where here ∇s = PΓ h ∇ denotes the surface gradient on Γ h(t).
In what follows we will introduce a finite element approximation for the free

boundary problem (2.2a–d), (2.3), (2.4a–d), (2.5). Here �U h(·, t) ∈ U
h(�g) will

be an approximation to �u(·, t), while Ph(·, t) ∈ P̂
h(t) approximates p(·, t) and

Ph
Γ (·, t) ∈ W (Γ h(t)) approximates pΓ (·, t). When designing such a finite element

approximation, a careful decision has to be made about the discrete tangential velocity

of Γ h(t). The most natural choice is to select the velocity of the fluid, i.e. (3.7d) is
appropriately discretized, and that is the approach we adopt in this paper. Overall, we
then obtain the following semidiscrete continuous-in-time finite element approxima-
tion, which is the semidiscrete analogue of the weak formulation (3.7a–f).

Given ℓ ∈ {1, 2}, Γ h(0) and �U h(·, 0) ∈ U
h(�g), find Γ h(t) such that �id |Γ h(t)∈

V (Γ h(t)) for t ∈ [0, T ], and functions �U h ∈ V
h
Γ h (�g), Ph ∈ P

h
T := {ϕ ∈ L2(0, T ; P̂) :

ϕ(t) ∈ P̂
h(t) for a.e. t ∈ (0, T )}, Ph

Γ ∈ W (G h
T ), �κh ∈ [W (G h

T )]d and �Fh
Γ ∈ [W (G h

T )]d

such that for almost all t ∈ (0, T ) it holds that

1
2

[
d

dt

(
ρh �U h, �ξ

)
+
(
ρh �U h

t , �ξ
)

− (ρh �U h, �ξt ) + ρ+

〈
�U h . �n, �U h . �ξ

〉
∂2Ω

]

+ 2
(
μh D( �U h), D(�ξ)

)
+ 1

2

(
ρh, [( �U h .∇) �U h] . �ξ − [( �U h .∇) �ξ ] . �U h

)

−
(

Ph,∇ . �ξ
)

+ ρΓ

〈
∂

◦,h
t �πh

1
�U h, �ξ

〉h
Γ h(t)

+ 2 μΓ

〈
Dh

s (�πh
1

�U h), Dh
s (�πh

1
�ξ)
〉
Γ h(t)

−
〈
Ph

Γ ,∇s . (�πh
ℓ

�ξ)
〉
Γ h(t)

=
(
ρh �f h, �ξ

)
+ α

〈
�Fh
Γ , �ξ

〉h
Γ h(t)

∀ �ξ ∈ H1(0, T ; U
h(�0)), (4.9a)

(
∇ . �U h, ϕ

)
= 0 ∀ ϕ ∈ P̂

h(t), (4.9b)

〈
∇s . (�πh

ℓ
�U h), η

〉
Γ h(t)

= 0 ∀ η ∈ W (Γ h(t)), (4.9c)

〈
�V h, �χ

〉h
Γ h(t)

=
〈
�U h, �χ

〉h
Γ h(t)

∀ �χ ∈ V (Γ h(t)), (4.9d)

〈
�κh, �η

〉(h)

Γ h(t)
+
〈
∇s �id,∇s �η

〉
Γ h(t)

= 0 ∀ �η ∈ V (Γ h(t)), (4.9e)
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〈
�Fh
Γ , �χ

〉h
Γ h(t)

=
〈
∇s �κh,∇s �χ

〉
Γ h(t)

+
〈
∇s . �κh,∇s . �χ

〉
Γ h(t)

+ 1
2

〈
|�κh |2 ∇s �id,∇s �χ

〉(h)

Γ h(t)
− 2

〈
(∇s �κh)T, Dh

s ( �χ) (∇s �id)T
〉
Γ h(t)

∀ �χ ∈ V (Γ h(t)), (4.9f)

where we recall (4.2). Here we have defined �f h(·, t) := �I h
2

�f (·, t), where here and
throughout we assume that �f ∈ L2(0, T ; [C(Ω)]d). We observe that (4.9d) collapses
to �V h = �πh

1
�U h |Γ h(t)∈ V (Γ h(t)), which on recalling (4.3) turns out to be crucial

for the stability analysis for (4.9a–f). It is for this reason that we use mass lumping in
(4.9d). The superscript ·(h) in (4.9e, f) means that we can consider the corresponding
terms either with or without mass lumping. Here we note that the scheme (4.9d–f),
with true integration used throughout, and with �U h in (4.9d) replaced by �Fh

Γ , is the
stable approximation of Willmore flow from [18], see also [15] for the case d = 2. In
fact, for d = 2 we observe that

〈
∇s �κh,∇s �χ

〉
Γ h(t)

+
〈
∇s . �κh,∇s . �χ

〉
Γ h(t)

− 2
〈
(∇s �κh)T, Dh

s ( �χ) (∇s �id)T
〉
Γ h(t)

=
〈
∇s �κh,∇s �χ

〉
Γ h(t)

−
〈
∇s . �κh,∇s . �χ

〉
Γ h(t)

=
〈
�κh

s . �νh, �χs . �νh
〉
Γ h(t)

,

where ·s in the last term denotes differentiation with respect to arclength; compare
also [7, (3.12 a, b)].

In the following theorem we derive discrete analogues of (3.10) and (3.11) for the
scheme (4.9a–f).

Theorem 4.1 Let {(Γ h, �U h, Ph, Ph
Γ , �κh, �Fh

Γ )(t)}t∈[0,T ] be a solution to (4.9a–f).
Then, in the case �g = �0, and if (ℓ − 1) ρΓ = 0, it holds that

1
2

d

dt

(
‖[ρh]

1
2 �U h‖2

0 + ρΓ

〈
�U h, �U h

〉h
Γ h(t)

+ α
〈
�κh, �κh

〉(h)

Γ h(t)

)
+ 2 ‖[μh]

1
2 D( �U h)‖2

0

+ 2 μΓ

〈
Dh

s (�πh
1

�U h), Dh
s (�πh

1
�U h)

〉
Γ h(t)

+ 1
2 ρ+

〈
�U h . �n, | �U h |2

〉
∂2Ω

=(ρh �f h, �U h).

(4.10)

If ℓ = 1, it also holds that

d

dt

〈
χh

k , 1
〉
Γ h(t)

= 0 ∀ k ∈ {1, . . . , KΓ } (4.11)

and hence that
d

dt
H

d−1(Γ h(t)) = 0. (4.12)

Proof Choosing �ξ = �U h in (4.9a), recall that �g = �0, ϕ = Ph in (4.9b) and η = Ph
Γ

in (4.9c) yields that

1
2

d

dt
‖[ρh]

1
2 �U h‖2

0 + 2 ‖[μh]
1
2 D( �U h)‖2

0 + ρΓ

〈
∂

◦,h
t �πh

1
�U h, �U h

〉h
Γ h(t)
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+ 1
2 ρ+

〈
�U h . �n, | �U h |2

〉
∂2Ω

+ 2 μΓ

〈
Dh

s (�πh
1

�U h), Dh
s (�πh

1
�U h)

〉
Γ h(t)

= (ρh �f h, �U h) + α
〈
�Fh
Γ , �U h

〉h
Γ h(t)

. (4.13)

Moreover, it is possible to show, similarly to (2.12), that

1
2

d

dt

〈
�κh, �κh

〉(h)

Γ h(t)
= −

〈
∇s �κh,∇s �V h

〉
Γ h(t)

−
〈
∇s . �κh,∇s . �V h

〉
Γ h(t)

− 1
2

〈
|�κh |2 ∇s �id,∇s �V h

〉(h)

Γ h(t)
+ 2

〈
(∇s �κh)T, Dh

s ( �V h) (∇s �id)T
〉
Γ h(t)

,

see [18]. Hence choosing �χ = �Fh
Γ in (4.9d) and �χ = �V h in (4.9f) yields that

〈
�Fh
Γ , �U h

〉h
Γ h(t)

=
〈
�Fh
Γ , �V h

〉h
Γ h(t)

= − 1
2

d

dt

〈
�κh, �κh

〉(h)

Γ h(t)
. (4.14)

If ρΓ = 0, then the desired result (4.10) directly follows from combining (4.13) and
(4.14). If ρΓ > 0, on the other hand, then the assumptions mean that ℓ = 1. Then we
note, similarly to (3.8), that (4.7), (4.9d) and (4.9c) with η = πh

1 [| �U h |Γ h(t) |2] imply
that

1
2 ρΓ

d

dt

〈
�U h, �U h

〉h
Γ h(t)

= 1
2 ρΓ

〈
∂

◦,h
t �πh

1 [| �U h |2], 1
〉h
Γ h(t)

+ 1
2 ρΓ

〈
∇s . �V h, | �U h |2

〉h
Γ h(t)

= ρΓ

〈
∂

◦,h
t �πh

1
�U h, �U h

〉h
Γ h(t)

+ 1
2 ρΓ

〈
∇s . (�πh

1
�U h), | �U h |2

〉h
Γ h(t)

= ρΓ

〈
∂

◦,h
t �πh

1
�U h, �U h

〉h
Γ h(t)

. (4.15)

Combining (4.13), (4.15) and (4.14) yields the desired result (4.10) for ρΓ > 0.
In the case ℓ = 1, it immediately follows from (4.6) and (4.4), similarly to (3.11),

on choosing η = χh
k in (4.9c), and on recalling from (4.9d) that �V h = �πh

1
�U h |Γ h(t),

that

d

dt

〈
χh

k , 1
〉
Γ h(t)

=
〈
χh

k ,∇s . �V h
〉
Γ h(t)

=
〈
χh

k ,∇s . (�πh
1

�U h)
〉
Γ h(t)

= 0, (4.16)

which proves the desired result (4.11). Summing (4.11) for all k = 1, . . . , KΓ then
yields the desired result (4.12). ⊓⊔

Remark 4.1 We remark that (4.11) ensures that the measure of the support of each
basis function on Γ h(t) is conserved. In the case d = 2, and for JΓ being odd, this
is equivalent to each element σ h

j maintaining its length. In particular, if Γ h(0) is

equidistributed, then Γ h(t) will remain equidistributed throughout.
The same result, for arbitrary JΓ ≥ 2 and for d = 2 and d = 3, can be obtained

on replacing the space of continuous piecewise linear finite elements W (Γ h(t)) for
the surface pressure functions Ph

Γ , and for the test functions in (4.9c), with the space
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of discontinuous piecewise constant functions, Sh
0 (Γ h(t)). Then (4.5), similarly to

(4.16), immediately yields that

d

dt
H

d−1(σ h
j (t)) = 0 ∀ j ∈ {1, . . . , JΓ }. (4.17)

While this property may appear desirable at first, our numerical experience for the fully
discrete variant of this modified (4.9a–f) indicates that in the case d = 3 the constraint
(4.17) is too severe. For example, the evolution for the fully discrete analogues of Γ h(t)

may lag behind the observed evolution for the equivalent simulation with Sh
0 (Γ h(t))

replaced by W (Γ h(t)). This can even lead to locking, where the linear solvers are
no longer able to find a discrete solution at a certain time step. Here we note that for
typical triangulations of Γ h(t) it holds that JΓ ≈ 2 KΓ . It is for this reason that we
prefer the scheme (4.9a–f) as stated.

Remark 4.2 For the proofs of (4.11) and (4.12) it is crucial that (4.9c) holds with linear
interpolation, i.e. ℓ = 1. Similarly, for the proof of (4.10) with ρΓ > 0 it is necessary
to choose ℓ = 1. For the surface Navier–Stokes system, this means that we use linear
velocity approximations with linear pressures, something that is unlikely to satisfy
a discrete surface LBB condition. In fact, in practice this can lead to an oscillatory
approximation of the surface pressure, as can be seen in Fig. 5 below.

This can be avoided by using a quadratic interpolation of the bulk velocities, i.e.
choosing ℓ = 2. This gives better behaved surface pressure approximations in practice,
but the mesh quality is no longer maintained. Moreover, it can no longer be shown
that (4.12) holds. However, in practice the evolutions of the fully discrete analogues
of Γ h(t) are nearly identical for the two cases ℓ = 1 and ℓ = 2, at least when d = 2.
When ℓ = 2 that means that in practice the surface area is maintained well, while for
ℓ = 1 it means that despite the oscillatory surface pressures, the approximation of the
velocity is well-behaved. Note that in three dimensional simulations we observe that
the scheme with ℓ = 2 does not conserve the overall surface area well. Hence it does
not appear to be a viable scheme in practice.

We observe that it does not appear possible to prove a discrete analogue of (3.12)
for the scheme (4.9a–f). The reason is that �χ = �νh is not a valid test function in (4.9d).
However, a procedure similar to the XFEMΓ approach introduced by the authors in
[8,11] ensures that a modified variant of (4.9a–f) conserves the enclosed volumes. To
this end, we introduce the vertex normal function �ωh(·, t) ∈ V (Γ h(t)) with

�ωh(�qh
k (t), t) :=

1

H d−1(Λh
k (t))

∑

j∈Θh
k

H
d−1(σ h

j (t)) �νh |σ h
j (t),

where for k = 1, . . . , K h
Γ we define Θh

k := { j : �qh
k (t) ∈ σ h

j (t)} and set Λh
k (t) :=

∪ j∈Θh
k
σ h

j (t). For later use we note that

〈
�z, w �νh

〉h
Γ h(t)

=
〈
�z, w �ωh

〉h
Γ h(t)

∀ �z ∈ V (Γ h(t)) , w ∈ W (Γ h(t)). (4.18)
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We are now in a position to propose the following adaptation of (4.9a–f).
Given ℓ ∈ {1, 2}, Γ h(0) and �U h(·, 0) ∈ U

h(�g), find Γ h(t) such that �id |Γ h(t)∈

V (Γ h(t)) for t ∈ [0, T ], and functions �U h ∈ V
h
Γ h (�g), Ph ∈ P

h
T , Ph

sing ∈ L2(0, T ; R),

Ph
Γ ∈ W (G h

T ), �κh ∈ [W (G h
T )]d and �Fh

Γ ∈ [W (G h
T )]d such that for almost all t ∈ (0, T )

it holds that

1
2

[
d

dt

(
ρh �U h, �ξ

)
+
(
ρh �U h

t , �ξ
)

− (ρh �U h, �ξt ) + ρ+

〈
�U h . �n, �U h . �ξ

〉
∂2Ω

]

+ 2
(
μh D( �U h), D(�ξ)

)
+ 1

2

(
ρh, [( �U h .∇) �U h] . �ξ − [( �U h .∇) �ξ ] . �U h

)

−
(

Ph,∇ . �ξ
)

− Ph
sing

〈
�ωh, �ξ

〉h
Γ h(t)

+ ρΓ

〈
∂

◦,h
t �πh

1
�U h, �ξ

〉h
Γ h(t)

+ 2 μΓ

〈
Dh

s (�πh
1

�U h), Dh
s (�πh

1
�ξ)
〉
Γ h(t)

−
〈
Ph

Γ ,∇s . (�πh
ℓ

�ξ)
〉
Γ h(t)

=
(
ρh �f h, �ξ

)
+ α

〈
�Fh
Γ , �ξ

〉h
Γ h(t)

∀ �ξ ∈ H1(0, T ; U
h(�0)), (4.19a)

(
∇ . �U h, ϕ

)
= 0 ∀ ϕ ∈ P̂

h(t) and
〈
�U h, �ωh

〉h
Γ h(t)

= 0 (4.19b)

and (4.9c–f) hold. Of course, �χ = �ωh is a valid test function in (4.9d), and so com-
bining with (4.19b) yields a discrete volume preservation property, as is shown in the
following theorem.

Theorem 4.2 Let {(Γ h, �U h, Ph, Ph
sing, Ph

Γ , �κh, �Fh
Γ )(t)}t∈[0,T ] be a solution to (4.19a,

b), (4.9c–f). Then (4.10) holds if �g = �0 and (ℓ − 1) ρΓ = 0. In addition, (4.12) holds

for ℓ = 1, while
d

dt
L

d(Ωh
−(t)) = 0 (4.20)

holds for ℓ ∈ {1, 2}.

Proof The proofs for (4.10) and (4.12) are analogous to the proofs in Theorem 4.1. In
order to prove (4.20) we choose �χ = �ωh ∈ V (Γ h(t)) in (4.9d) to yield that

d

dt
L

d(Ωh
−(t)) =

〈
�V h, �νh

〉
Γ h(t)

=
〈

�V h, �νh
〉h
Γ h(t)

=
〈

�V h, �ωh
〉h
Γ h(t)

=
〈
�U h, �ωh

〉h
Γ h(t)

= 0,

where we have used (4.18) and (4.19b). ⊓⊔

In order to interpret the adaptation in (4.19a, b) physically, we note the following.
Of course, Ph and Ph

sing act as Lagrange multipliers for the conditions in (4.19b).
Moreover, on noting that

(
∇ . �ξ,XΩh

−(t)

)
=

∫

Ωh
−(t)

∇ . �ξ dL
d =

〈
�ξ, �νh

〉
Γ h(t)

∀ �ξ ∈ U
h(�0),
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we observe that replacing

〈
�ωh, �ξ

〉h
Γ h(t)

and
〈
�U h, �ωh

〉h
Γ h(t)

(4.21)

in (4.19a, b) by 〈
�νh, �ξ

〉
Γ h(t)

and
〈
�U h, �νh

〉
Γ h(t)

corresponds to augmenting P
h in (4.9a, b) with the single additional basis function

XΩh
−(t). This is the XFEMΓ approach introduced by the authors in [8,11], which for

the schemes introduced there naturally leads to the conservation of the volume of the
two phases. Such an XFEM interpretation is no longer possible for the modifications
(4.21), as one cannot identify the corresponding additional basis function in the bulk.
Therefore this can be viewed as an example of the recently proposed framework of
virtual element methods, see e.g. [41]. In addition, on recalling (4.18) we have for a
fixed time t ∈ [0, T ] that

∣∣∣∣
〈
�ωh, �ξ

〉h
Γ h(t)

−
〈
�νh, �ξ

〉
Γ h(t)

∣∣∣∣ =

∣∣∣∣
〈
�νh, �πh

1
�ξ − �ξ

〉
Γ h(t)

∣∣∣∣

≤
〈
| �πh

1
�ξ − �ξ |, 1

〉
Γ h(t)

→ 0 as hΓ (t) → 0 ∀ �ξ ∈ [C(Ω)]d , (4.22)

if H d−1(Γ h(t)) remains bounded as hΓ (t) → 0, where hΓ (t) := max j=1,...,JΓ

diam(σ h
j (t)). It follows from (4.22) that we can interpret Ph(·, t) + Ph

sing(t)XΩh
−(t)

as the natural approximation to the pressure p(·, t) arising from (4.19a, b), (4.9c–f).

5 Fully discrete finite element approximation

In this section we consider a fully discrete variant of the scheme (4.19a, b), (4.9c–f)
from §4. Here we will choose the time discretization such that existence and uniqueness
of the discrete solutions can be guaranteed, and such that we inherit as much of the
structure of the stable schemes in [8,11] as possible, see below for details.

We consider the partitioning tm = m τ , m = 0, . . . , M , of [0, T ] into uniform time
steps τ = T/M . The time discrete spatial discretizations then directly follow from
the finite element spaces introduced in Sect. 3, where in order to allow for adaptivity
in space we consider bulk finite element spaces that change in time. For all m ≥ 0, let
T m be a regular partitioning of Ω into disjoint open simplices om

j , j = 1, . . . , J m
Ω .

Associated with T m are the finite element spaces Sm
k (Ω) for k ≥ 0. We introduce

also �I m
k : [C(Ω)]d → [Sm

k (Ω)]d , k ≥ 1, the standard interpolation operators, and the
standard projection operator I m

0 : L1(Ω) → Sm
0 (Ω). Similarly, the parametric finite

element spaces are given by

Sm
k (Γ m) := {χ ∈ C(Γ m) : �χ |σm

j
∈ Pk(σ

m
j ) ∀ j = 1, . . . , JΓ }
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for m = 0, . . . , M − 1 and k ∈ N. Here Γ m =
⋃JΓ

j=1 σm
j , where {σm

j }JΓ

j=1 is a family

of mutually disjoint open (d −1)-simplices with vertices {�qm
k }KΓ

k=1. For ease of notation
we set W (Γ m) = Sm

1 (Γ m) and V (Γ m) = [Sm
1 (Γ m)]d . We denote the standard basis

of W (Γ m) by {χm
k (·, t)}KΓ

k=1. We also introduce the standard interpolation operators
πm

k : C(Γ m) → Sm
k (Γ m) and �πm

k : [C(Γ m)]d → [Sm
k (Γ m)]d , for k ∈ N. Throughout

this paper, we will parameterize the new closed surface Γ m+1 over Γ m , with the help
of a parameterization �Xm+1 ∈ V (Γ m), i.e. Γ m+1 = �Xm+1(Γ m).

Given Γ m , we let Ωm
+ denote the exterior of Γ m and let Ωm

− denote the interior of
Γ m , so that Γ m = ∂Ωm

− = Ωm
− ∩ Ωm

+ . In addition, we define the piecewise constant
unit normal �νm to Γ m such that �νm points into Ωm

+ . We then partition the elements of
the bulk mesh T m into interior, exterior and interfacial elements as before, and we
introduce ρm, μm ∈ Sm

0 (Ω), for m ≥ 0, as

ρm |om =

⎧
⎪⎨
⎪⎩

ρ− om ∈ T
m

− ,

ρ+ om ∈ T
m

+ ,
1
2 (ρ− + ρ+) om ∈ T

m
Γ m ,

and μm |om =

⎧
⎪⎨
⎪⎩

μ− om ∈ T
m

− ,

μ+ om ∈ T
m

+ ,
1
2 (μ− + μ+) om ∈ T

m
Γ m .

We also introduce the L2–inner product 〈·, ·〉Γ m over the current polyhedral surface
Γ m , as well as the the mass lumped inner product 〈·, ·〉h

Γ m . We introduce, similarly to
(4.8a, b),

PΓ m = Id − �νm ⊗ �νm on Γ m,

and
Dm

s (�η) = 1
2 PΓ m (∇s �η + (∇s �η)T)PΓ m on Γ m,

where here ∇s = PΓ m ∇ denotes the surface gradient on Γ m .
We introduce the following pushforward operator for the discrete interfaces Γ m

and Γ m−1, for m = 0, . . . , M . Here we set Γ −1 := Γ 0. Let �Πm
m−1 : [C(Γ m−1)]d →

V (Γ m) such that

( �Πm
m−1 �z)(�qm

k ) = �z(�qm−1
k ), k = 1, . . . , KΓ , ∀ �z ∈ [C(Γ m−1)]d , (5.1)

for m = 1, . . . , M , and set �Π0
−1 := �π0

1 . Analogously to (5.1) we also introduce
Πm

m−1 : C(Γ m−1) → W (Γ m). We note, similarly to (4.18), that

〈
�z, w �νm

〉h
Γ m =

〈
�z, w �ωm

〉h
Γ m ∀ �z ∈ V (Γ m) , w ∈ W (Γ m),

where �ωm :=
∑KΓ

k=1 χm
k �ωm

k ∈ V (Γ m), and where for k = 1, . . . , KΓ we let Θm
k :=

{ j : �qm
k ∈ σm

j } and setΛm
k := ∪ j∈Θm

k
σm

j and �ωm
k := 1

H d−1(Λm
k )

∑
j∈Θm

k
H d−1(σm

j ) �νm
j .

For the approximation to the velocity and pressure on T m we use the finite element
spaces U

m(�g) and P
m , which are the direct time discrete analogues of U

h(�g) and
P

h(tm), as well as P̂
m ⊂ P̂. Analogously to (3.13), we also say that (Um(�0), P

m,

W (Γ m), �πm
ℓ ) satisfy the discrete LBBΓ inf-sup condition if there exists a C0 ∈ R>0,
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independent of T m and {σm
j }JΓ

j=1, such that

inf
(ϕ,λ,η)

∈P̂m×R×W (Γ m )

sup
�ξ∈Um(�0)

(ϕ,∇ . �ξ) + λ
〈
�ωm, �ξ

〉h
Γ m

+
〈
η,∇s . (�πm

ℓ
�ξ |Γ m )

〉
Γ m

(‖ϕ‖0 + |λ| + ‖η‖0,Γ m ) (‖�ξ‖1 + ‖PΓ m (�πm
ℓ

�ξ |Γ m )‖1,Γ m ,h)

≥ C0, (5.2)

where ‖η‖2
0,Γ m := 〈η, η〉Γ m and ‖�η‖2

1,Γ m ,h := 〈�η, �η〉Γ m +
∑JΓ

j=1

∫
σm

j
|∇s �η|2 dH d−1.

Unfortunately, it does not appear possible to prove that (5.2) holds for e.g. (Um(�0),

P
m) = ([Sm

2 (Ω)]d ∩ U(�0), Sm
1 (Ω)), because T m and Γ m are totally indepen-

dent. Recall that also in the much simpler situation of the XFEMΓ approach from

[8,11], which corresponds to setting η = 0 in (5.2) and replacing
〈
�ωm, �ξ

〉h
Γ m

with
〈
�νm, �ξ

〉
Γ m

, the authors were unable to show that an LBB condition holds. In fact, in

this simpler situation it is easily possible to construct a counterexample, e.g. when
P

m = Sm
0 (Ω). Then, if Ωm

− is a union of bulk elements, i.e. Γ m happens to be a
union of bulk faces, clearly (5.2) does not hold, as XΩm

−
∈ P

m . Hence for the choice

ϕ = (XΩm
−

−
L d (Ωm

− )

L d (Ω)
) and λ = −1 we obtain that

(ϕ,∇ . �ξ) + λ
〈
�νm, �ξ

〉
Γ m

= 0 ∀ �ξ ∈ U
m(�0).

Of course, in practice this situation never occurs, because the totally independent Γ m

is never exactly aligned with the bulk mesh.
Our proposed fully discrete equivalent of (4.19a, b), (4.9c–f), for a fixed ℓ ∈ {1, 2},

is then given as follows. Let Γ 0, an approximation to Γ (0), as well as �κ0 ∈ V (Γ 0)

and �U 0 ∈ U
0(�g) be given. For m = 0, . . . , M − 1, find �U m+1 ∈ U

m(�g), Pm+1 ∈ P̂
m ,

Pm+1
sing ∈ R, Pm+1

Γ ∈ W (Γ m), �Xm+1 ∈ V (Γ m), �κm+1 ∈ V (Γ m) and �Fm+1
Γ ∈ V (Γ m)

such that

1
2

(
ρm �U m+1 − (I m

0 ρm−1) �I m
2

�U m

τ
+ (I m

0 ρm−1)
�U m+1 − �I m

2
�U m

τ
, �ξ

)

+ 2
(
μm D( �U m+1), D(�ξ)

)
+ 1

2

(
ρm, [( �I m

2
�U m .∇) �U m+1] . �ξ − [( �I m

2
�U m .∇) �ξ ] . �U m+1

)

−
(

Pm+1,∇ . �ξ
)

− Pm+1
sing

〈
�ωm, �ξ

〉h
Γ m

+ ρΓ

〈
�U m+1 − �Πm

m−1 ( �I m
2

�U m) |Γ m−1

τ
, �ξ

〉h

Γ m

+ 2 μΓ

〈
Dm

s (�πm
1

�U m+1), Dm
s (�πm

1
�ξ)
〉
Γ m

−
〈
Pm+1

Γ ,∇s . (�πm
ℓ

�ξ)
〉
Γ m

=
(
ρm �f m+1, �ξ

)
+ α

〈
�Fm+1
Γ , �ξ

〉h
Γ m

− 1
2 ρ+

〈
�U m . �n, �U m . �ξ

〉
∂2Ω

∀ �ξ ∈ U
m(�0),

(5.3a)
(
∇ . �U m+1, ϕ

)
= 0 ∀ ϕ ∈ P̂

m and
〈
�U m+1, �ωm

〉h
Γ m

= 0, (5.3b)
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〈
∇s . (�πm

ℓ
�U m+1), η

〉
Γ m

= 0 ∀ η ∈ W (Γ m), (5.3c)

〈
�Xm+1 − �id

τ
, �χ

〉h

Γ m

=
〈
�U m+1, �χ

〉h
Γ m

∀ �χ ∈ V (Γ m), (5.3d)

〈
�κm+1, �η

〉(h)

Γ m +
〈
∇s �Xm+1,∇s �η

〉
Γ m

= 0 ∀ �η ∈ V (Γ m), (5.3e)

〈
�Fm+1
Γ , �χ

〉h
Γ m

=
〈
∇s �κm+1,∇s �χ

〉
Γ m +

〈
∇s . ( �Πm

m−1 �κm),∇s . �χ
〉
Γ m

+ 1
2

〈
| �Πm

m−1 �κm |2 ∇s �id,∇s �χ
〉(h)

Γ m

− 2
〈
[∇s ( �Πm

m−1 �κm)]T, Dm
s ( �χ) (∇s �id)T

〉
Γ m

∀ �χ ∈ V (Γ m), (5.3f)

and set Γ m+1 = �Xm+1(Γ m). Here we have defined �f m+1 := �I m
2

�f (·, tm+1). We
observe that (5.3a–f) is a linear scheme in that it leads to a linear system of equations for
the unknowns ( �U m+1, Pm+1, Pm+1

sing , Pm+1
Γ , �Xm+1, �κm+1, �Fm+1

Γ ) at each time level.
In the absence of the LBBΓ condition (5.2) we need to consider the reduced system

(5.3a, d–f), where U
m(�0) in (5.3a) is replaced by U

m
0 (�0). Here we define

U
m
0 (�b) :=

{
�U ∈ U

m(�b) : (∇ . �U , ϕ) = 0 ∀ ϕ ∈ P̂
m ,

〈
∇s . (�πm

ℓ
�U ), η

〉
Γ m

= 0 ∀ η ∈ W (Γ m)

and
〈
�U , �ωm

〉h
Γ m

= 0

}
, (5.4)

for given data �b ∈ [C(Ω)]d .
In order to prove the existence of a unique solution to (5.3a–f) we make the following

very mild well-posedness assumption.

(A ) We assume for m = 0, . . . , M − 1 that H d−1(σm
j ) > 0 for all j = 1, . . . , JΓ ,

and that Γ m ⊂ Ω .

Theorem 5.1 Let the assumption (A ) hold. If the LBBΓ condition (5.2) holds,

then there exists a unique solution ( �U m+1, Pm+1, Pm+1
sing , Pm+1

Γ , �Xm+1, �κm+1, �Fm+1
Γ )

∈ U
m(�g)× P̂

m ×R×W (Γ m)×[V (Γ m)]3 to (5.3a–f). In all other cases, on assuming

that U
m
0 (�g) is nonempty, there exists a unique solution ( �U m+1, �Xm+1, �κm+1, �Fm+1

Γ ) ∈

U
m
0 (�g) × [V (Γ m)]3 to the reduced system (5.3a, d–f) with U

m(�0) replaced by U
m
0 (�0).

Proof As the system (5.3a–f) is linear, existence follows from uniqueness. In order to
establish the latter, we consider the homogeneous system. Find ( �U , P, Psing, PΓ , �X , �κ,

�FΓ ) ∈ U
m(�0) × P̂

m × R × W (Γ m) × [V (Γ m)]3 such that

1
2 τ

(
(ρm + I m

0 ρm−1) �U , �ξ
)

+ 2
(
μm D( �U ), D(�ξ)

)
−
(

P,∇ . �ξ
)

− Psing

〈
�ωm, �ξ

〉h
Γ m

+ 1
2

(
ρm, [( �I m

2
�U m .∇) �U ] . �ξ − [( �I m

2
�U m .∇) �ξ ] . �U

)
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+ 1
τ

ρΓ

〈
�U , �ξ

〉h
Γ m

+ 2 μΓ

〈
Dm

s (�πm
1

�U ), Dm
s (�πm

1
�ξ)
〉
Γ m

−
〈
PΓ ,∇s . (�πm

ℓ
�ξ)
〉
Γ m

− α
〈
�FΓ , �ξ

〉h
Γ m

= 0 ∀ �ξ ∈ U
m(�0), (5.5a)

(
∇ . �U , ϕ

)
= 0 ∀ ϕ ∈ P̂

m and
〈
�U , �ωm

〉h
Γ m

= 0, (5.5b)
〈
∇s . (�πm

ℓ
�U ), η

〉
Γ m

= 0 ∀ η ∈ W (Γ m), (5.5c)

1
τ

〈
�X , �χ

〉h
Γ m

=
〈
�U , �χ

〉h
Γ m

∀ �χ ∈ V (Γ m), (5.5d)

〈�κ, �η〉(h)
Γ m +

〈
∇s �X ,∇s �η

〉
Γ m

= 0 ∀ �η ∈ V (Γ m), (5.5e)

〈
�FΓ , �χ

〉h
Γ m

− 〈∇s �κ,∇s �χ〉Γ m = 0 ∀ �χ ∈ V (Γ m) . (5.5f)

Choosing �ξ = �U in (5.5a), ϕ = P in (5.5b), η = PΓ in (5.5c), �χ = �FΓ in (5.5d),
�η = �κ in (5.5e) and �χ = �X in (5.5f) yields that

1
2

(
(ρm + I m

0 ρm−1) �U , �U
)

+ 2 τ
(
μm D( �U ), D( �U )

)
+ ρΓ

〈
�U , �U

〉h
Γ m

+ 2 τ μΓ

〈
Dm

s (�πm
1

�U ), Dm
s (�πm

1
�U )
〉
Γ m

+ α 〈�κ, �κ〉(h)
Γ m = 0 . (5.6)

It immediately follows from (5.6), Korn’s inequality and α > 0, that �U = �0 ∈ U
m(�0)

and �κ = �0. (For the application of Korn’s inequality we recall that H d−1(∂1Ω) > 0.)
Hence (5.5d, f) yield that �X = �0 and �FΓ = �0, respectively. Finally, if (5.2)
holds then (5.5a) with �U = �0 and �FΓ = �0 implies that P = 0 ∈ P̂

m ,
Psing = 0 and PΓ = 0 ∈ W (Γ m). This shows existence and uniqueness of
( �U m+1, Pm+1, Pm+1

sing , Pm+1
Γ , �Xm+1, �κm+1, �Fm+1

Γ ) ∈ U
m(�g) × P̂

m × R × W (Γ m) ×

[V (Γ m)]3 to (5.3a–f). The proof for the reduced system is very similar. The homo-
geneous system to consider is (5.5a, d–f) with U

m(�0) replaced by U
m
0 (�0). As before,

we infer that (5.6) holds, which yields that �U = �0 ∈ U
m
0 (�0), �κ = �0, and hence �X = �0

and �FΓ = �0. ⊓⊔

Remark 5.1 We always choose U
m(�0) and P

m so that the standard LBB condition
in the bulk holds. Therefore U

m
0 (�g), recall (5.4), is non-empty in the absence of the

two Γ m constraints in (5.4). Clearly, there is the possibility of U
m
0 (�g) being empty

if the number of vertices on Γ m , KΓ , is too large compared to the number of bulk
mesh vertices in the vicinity of Γ m . In practice we refine our bulk meshes in the
neighbourhood of the interface, which lessens the likelihood of this occurring. In fact,
in practice we do not experience problems for our choices of bulk and surface meshes.
For example, in the case d = 2, we recall that the P2–(P1+P0) element satisfies the
standard LBB condition in the bulk. This means that for the lowest order Taylor–Hood
element P2–P1, which we employ in practice, there are some additional degrees of
freedom in the velocity space, which prevent U

m
0 (�g) from being empty in practice.
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Remark 5.2 The scheme (5.3a–f) clearly leads to a coupled system of linear equa-
tions. On replacing �Fm+1

Γ in (5.3a) with �Fm
Γ the system decouples into (5.3a–c) for

( �U m+1, Pm+1, Pm+1
sing , Pm+1

Γ ) and into (5.3d–f) for ( �Xm+1, �κm+1, �Fm+1
Γ ). Of course,

the subsystem (5.3d–f) itself decouples into three equations for the three unknowns.
While the decoupled system offers the advantage of being easier to solve, we found
in practice that the coupled scheme (5.3a–f) preserved the surface area better than the
decoupled scheme. An additional drawback of the decoupled scheme is that it is less
stable and so in general needs smaller time steps than the coupled scheme (5.3a–f).
The latter fact can partly be explained with the following observation.

On replacing �Fm+1
Γ with �κm+1, and in the case ∂1Ω = ∂Ω , �g = �0 and ρΓ = 0,

we obtain an unconditionally stable approximation for two-phase flow in the spirit of
[11], but with the additional side constraint (2.4c). In particular, for fixed bulk meshes
in time one can show that

1
2 (ρm �U m+1, �U m+1) + α H

d−1(Γ m+1) + 1
2

(
ρm−1 ( �U m+1 − �U m), �U m+1 − �U m

)

+ 2 τ
(
μm D(U m+1), D(U m+1)

)

+ 2 τ μΓ

〈
Dm+1

s (�πm+1
1

�U m+1), Dm+1
s (�πm+1

1
�U m+1)

〉
Γ m+1

≤ 1
2 (ρm−1 �U m, �U m) + α H

d−1(Γ m) + τ
(
ρm �f m+1, �U m+1

)
,

see [11, Theorem 4.1] and [10, Theorem 4.2] for more details. It is for these reasons
that we prefer the coupled scheme (5.3a–f).

6 Solution methods

As is standard practice for the solution of linear systems arising from discretizations
of Stokes and Navier–Stokes equations, we avoid the complications of the constrained
pressure space P̂

m in practice by considering an overdetermined linear system with P
m

instead. Introducing the obvious abuse of notation, the linear system (5.3a–c) for α =
0, with P̂

m replaced by P
m , can be formulated as: Find ( �U m+1, Pm+1, Pm+1

sing , Pm+1
Γ ),

such that ⎛
⎜⎜⎝

�BΩ
�CΩ

�DΩ
�SΓ,Ω

�CT
Ω 0 0 0

�DT
Ω 0 0 0

�ST
Γ,Ω 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

�U m+1

Pm+1

Pm+1
sing

Pm+1
Γ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

�b
0
0
0

⎞
⎟⎟⎠ , (6.1)

where ( �U m+1, Pm+1, Pm+1
sing , Pm+1

Γ ) ∈ (Rd)K m
U × R

K m
P × R × R

KΓ here denote the
coefficients of these finite element functions with respect to the their standard bases.
The definitions of the matrices and vectors in (6.1) directly follow from (5.3a–c),
but we state them here for completeness in the case �g = �0. Let i, j = 1, . . . , K m

U
,

n, q = 1, . . . , K m
P

and k, l = 1, . . . , KΓ . Then

[ �BΩ ]i j :=
(

ρm+I m
0 ρm−1

2 τ
φUm

j , φUm

i

)
Id + 2

((
μm D(φUm

j �er ), D(φUm

i �es)
))d

r,s=1
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+ 1
2

(
ρm, [( �I m

2
�U m .∇) φUm

j ] φUm

i − [( �I m
2

�U m .∇) φUm

i ] φUm

j

)
Id,

+
ρΓ

τ

〈
ϕUm

j , ϕUm

i

〉h
Γ m

Id + 2μΓ

(〈
Dm

s (πm
1 φUm

j �er ), Dm
s (πm

1 φUm

i �es)
〉
Γ m

)d

r,s=1

[ �CΩ ]iq := −
(
φPm

q ,
(
∇ . (φUm

i �er )
))d

r=1
,

[ �SΓ,Ω ]il := −
(〈

χm
l ,∇s . (πm

ℓ φUm

i �er )
〉
Γ m

)d

r=1
,

�bi =
(

I m
0 ρm−1

τ
�I m
2

�U m + ρm �f m+1, φUm

i

)
+

ρΓ

τ

〈
�Πm

m−1
�U m |Γ m−1 , ϕUm

i

〉h
Γ m

− 1
2 ρ+

〈
( �U m . �n) �U m, φUm

i

〉
∂2Ω

; (6.2)

where {�er }
d
r=1 denotes the standard basis in R

d , and where we have used the con-
vention that the subscripts in the matrix notations refer to the test and trial domains,
respectively. A single subscript is used where the two domains are the same. The
entries of �DΩ , for i = 1, . . . , K m

U
, are given by [ �DΩ ]i,1 := −〈φUm

i , �ωm〉h
Γ m .

The only new term compared to previous works by the authors on two-phase flows,
see [10,11], is �SΓ,Ω . Here we note that

(〈
χm

l ,∇s . (πm
ℓ φUm

i �er )
〉
σm

)d

r=1
=
(〈

χm
l ,∇s (πm

ℓ φUm

i ) . �er

〉
σm

)d

r=1
. (6.3)

Algorithm 1: Calculate the matrix contributions for (6.3), for a given r ∈
{1, . . . , d}.

For all elements σm of Γ m do
Let �Qm,P

j , j = 1, . . . , K P
Γ , be the Lagrange nodes on σm for Sm

1 (Γ m).

Let �Qm,U
j , j = 1, . . . , K U

Γ , be the Lagrange nodes on σm for Sm
ℓ (Γ m).

Let χ
m,P
j and χ

m,U
j be the corresponding local basis functions.

Compute
〈
χ

m,P
l , �er .∇s χ

m,U
j

〉
σm

for all l = 1, . . . , K P , j = 1, . . . , K U .

For each node �Qm,U
j find the bulk element in which �Qm,U

j lies and denote the

local U
m(�0) bulk basis functions on these elements with ϕ

local, j
k ,

k = 1, . . . , K U
Ω .

For all i = 1, . . . , K P
Γ do

For all j = 1, . . . , K U
Γ do

For all l = 1, . . . , K U
Ω do

Add ϕ
local, j

l ( �Qm,U
j )

〈
χ

m,P
i , �er .∇s χ

m,U
j

〉
σm

to the contributions for
〈
χ

m,P
global_dof (i),∇s . (πm

ℓ ϕUm

global_dof (l) �er )
〉
Γ m

.

end do
end do

end do
end do
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In order to provide a matrix-vector formulation for the full system (5.3a–f), and in
particular in view of (5.3f), we recall from [18, p. 64] that

2
〈
(∇s �ξ)T, Dm

s ( �χ) (∇s �id)T
〉
Γ m

=

d∑

i, j=1

〈
(∇s) j (�ξ)i , (∇s)i ( �χ) j

〉
Γ m

−

d∑

i, j=1

〈
(�νm)i (�νm) j ∇s (�ξ) j ,∇s ( �χ)i

〉
Γ m

+
〈
∇s �ξ,∇s �χ

〉
Γ m

=

d∑

i, j=1

〈
(∇s) j (�ξ)i , (∇s)i ( �χ) j

〉
Γ m

+

d∑

i, j=1

〈
(δi j − (�νm)i (�νm) j )∇s (�ξ) j ,∇s ( �χ)i

〉
Γ m

.

Moreover, we observe that 〈∇s . �ξ,∇s . �χ〉Γ m =
∑d

i, j=1 〈(∇s) j (�ξ) j , (∇s)i ( �χ)i 〉Γ m .
Hence, in addition to (6.2), we introduce the following matrices, where q =
1, . . . , K m

U
, and k, l = 1, . . . , KΓ

[ �BΓ ]kl :=
(〈
[∇s] j χm

l , [∇s]i χm
k

〉
Γ m

)d

i, j=1
,

[ �RΓ ]kl :=
〈
∇s χm

l .∇s χm
k , Id − �νm ⊗ �νm

〉
Γ m

,

[ �AΓ,�κ ]kl := 1
2

〈
| �Πm

m−1 �κm |2 ∇s χm
l ,∇s χm

k

〉h
Γ m

Id , [ �MΓ,Ω ]ql :=
〈
χm

l , φU
m

q

〉
Γ m

Id ,

[ �MΓ ]kl :=
〈
χm

l , χm
k

〉h
Γ m Id , [AΓ ]kl :=

〈
∇s χm

l ,∇s χm
k

〉
Γ m , [ �AΓ ]kl := [AΓ ]kl Id.

Here we have made use of the fact that

[ �BΓ ]kl =
(〈
∇s . (χm

l �e j ),∇s . (χm
k �ei )

〉
Γ m

)d

i, j=1
=
(〈
(∇s χm

l ) . �e j , (∇s χm
k ) . �ei

〉
Γ m

)d

i, j=1

=
(〈
[∇s] j χm

l , [∇s]i χm
k

〉
Γ m

)d

i, j=1
.

Moreover, it clearly holds that ([ �BΓ ]kl)
T = [ �BΓ ]lk =: [ �B⋆

Γ ]kl .

Denoting the system matrix in (6.1) as
(

�BΩ
�C

�C T 0

)
, and letting P̃m+1 = (Pm+1, Pm+1

sing ,

Pm+1
Γ )T, then the linear system (5.3a–f), with numerical integration in (5.3e, f), can

be written as

⎛
⎜⎜⎜⎜⎜⎝

�BΩ
�C 0 0 −α �MΓ,Ω

�C T 0 0 0 0
( �MΓ,Ω)T 0 0 − 1

τ
�MΓ 0

0 0 �MΓ
�AΓ 0

0 0 − �AΓ 0 �MΓ

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

�U m+1

P̃m+1

�κm+1

δ �Xm+1

�Fm+1
Γ

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

�b
0
0

− �AΓ
�Xm

�ZΓ �κm + �AΓ,�κ
�Xm

⎞
⎟⎟⎟⎟⎠

,

(6.4)
where �ZΓ := �BΓ − �B⋆

Γ − �RΓ . For the solution of (6.4) a Schur complement
approach similar to [11] can be used. In particular, the Schur approach for eliminating
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(�κm+1, δ �Xm+1, �Fm+1
Γ ) from (6.4) can be obtained as follows. Let

ΘΓ :=

⎛
⎝

0 − 1
τ

�MΓ 0
�MΓ

�AΓ 0
− �AΓ 0 �MΓ

⎞
⎠ .

Then (6.4) can be reduced to

(
�BΩ + α �TΩ

�C
�C T 0

)(
�U m+1

P̃m+1

)
=

(
�b + α �c

0

)
(6.5a)

and ⎛
⎝

�κm+1

δ �Xm+1

�Fm+1
Γ

⎞
⎠ = Θ−1

Γ

⎛
⎝

−( �MΓ,Ω)T �U m+1

− �AΓ
�Xm

�ZΓ �κm + �AΓ,�κ
�Xm

⎞
⎠ . (6.5b)

In (6.5a) we have used the definitions

�TΩ = (0 0 �MΓ,Ω)Θ−1
Γ

(
( �MΓ,Ω )T

0
0

)
= τ �MΓ,Ω

�M−1
Γ

�AΓ
�M−1

Γ
�AΓ

�M−1
Γ ( �MΓ,Ω)T

and

�c = (0 0 �MΓ,Ω)Θ−1
Γ

(
0

− �AΓ
�Xm

�ZΓ �κm + �AΓ,�κ
�Xm

)

= �MΓ,Ω
�M−1

Γ [ �ZΓ �κm + �AΓ,�κ
�Xm − �AΓ

�M−1
Γ

�AΓ
�Xm].

For the linear system (6.5a) well-known solution methods for finite element discretiza-
tions for the standard Navier–Stokes equations may be employed. We refer to [11, § 5],
where we describe such solution methods in detail for a very similar situation.

7 Numerical results

For the bulk mesh adaptation we use the strategy from [11], which results in a fine
mesh size h f around Γ m and a coarse mesh size hc further away from it. Here h f =
2 min{H1,H2}

N f
and hc = 2 min{H1,H2}

Nc
are given by two integer numbers N f > Nc, where

we assume from now on that the convex hull of Ω is given by ×d
i=1(−Hi , Hi ). To

summarize the discretization parameters we use the shorthand notation n adaptk,l from
[11]. The subscripts refer to the fineness of the spatial discretizations, i.e. for the set
n adaptk,l it holds that N f = 2k and Nc = 2l . For the case d = 2, in this paper, we
have in addition that KΓ = JΓ = 2k + 1. Finally, the uniform time step size for the
set n adaptk,l is given by τ = 10−3/n, and if n = 1 we write adaptk,l . We remark
that we implemented the scheme (5.3a–f) with the help of the finite element toolbox
ALBERTA, see [37].
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In all the numerical simulations we employ the scheme with numerical integration
in (5.3e, f), i.e. we choose the superscript ·h in the two brackets ·(h). Moreover, unless
otherwise stated, we use the scheme (5.3a–f) with ℓ = 1. The initial data �κ0 ∈ V (Γ 0)

is always computed as the solution to

〈
�κ0, �η

〉h
Γ 0

+
〈
∇s �id,∇s �η

〉
Γ 0

= 0 ∀ �η ∈ V (Γ 0).

In addition, we employ the lowest order Taylor–Hood element P2–P1 in all compu-
tations and set �U 0 = �I 0

2 �u0. Unless stated otherwise we fix ∂1Ω = ∂Ω , �g = �0 and
�u0 = �0. The volume force is always set to �f = �0. Moreover, we set all physical
parameters to unity, i.e. ρ± = μ± = ρΓ = μΓ = α = 1, unless stated otherwise.

At times we will discuss the discrete energy of the numerical solutions. On recalling
Theorem 4.1 the discrete energy is defined by

E
h(Γ m, �κm+1) := E

h
kin(Γ m, ρm, �U m+1) + 1

2 α
〈
�κm+1, �κm+1

〉h
Γ m

,

where

E
h
kin(Γ m, ρm, �U m+1) := 1

2 ‖[ρm]
1
2 �U m+1‖2

0 + 1
2 ρΓ

〈
�U m+1, �U m+1

〉h
Γ m

represents the kinetic part of the discrete energy. For the simulation of vesicles the
reduced volume is often mentioned as a characteristic number. In the case d = 3, and
for the initial discrete interface Γ 0, this is defined as

vr =
3 L 3(Ω0

−)

4 π (
H 2(Γ 0)

4 π
)

3
2

=
6 π

1
2 L 3(Ω0

−)

(H 2(Γ 0))
3
2

,

see e.g. [42]. In a similar fashion, for the case d = 2 we define the reduced area as

ar =
L 2(Ω0

−)

π (
H 1(Γ 0)

2 π
)2

=
4 π L 2(Ω0

−)

(H 1(Γ 0))2
.

7.1 Numerical simulations in 2D

For all our two-dimensional simulations we choose the discretization parameters
2 adapt9,4. In all the simulations presented here the areas of the two phases, as well as
the length of the interface, are well preserved, with the relative differences over time
in each case being less than 0.2 %. Moreover, the ratio

ra := max
j∈{1,...,JΓ }

H
d−1(σm

j )/ min
j∈{1,...,JΓ }

H
d−1(σm

j )

of the largest and smallest elements’ lengths was always bounded by 1.005. Here we
note that we always choose the initial polygon Γ 0 to be equidistributed.
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812 John W. Barrett et al.

Fig. 2 Shear flow with parameters as in (7.1a), leading to tank treading. The plots show the interface Γ m ,
together with the discrete velocity �Um on Ω , at times t = 0, 1, 3, 5 (top left to bottom right)

We conducted the following shearing experiments on the domain Ω = (−2, 2)2

for an initial interface in the form of an ellipse, centred at the origin, with axis lengths
1 and 2.5, so that ar = 0.745. In particular, we prescribe the inhomogeneous Dirichlet
boundary condition �g(�z) = (z2, 0)T on ∂1Ω = [−2, 2] × {±2}. For the initial data
�u0 we choose the function �u0(�z) = η(z2) �e1, where η : [−2, 2] → R is a continuous
piecewise linear function with η(±2) = ±2 and η(s) = 0 if |s| ≤ 1.5. Hence �u0

satisfies the required conditions ∇ . �u0 = 0 in Ω and ∇s . �u0 = 0 on Γ (0), recall (2.8),
and is such that �u0 = �g on ∂1Ω . The remaining parameters are given by α = 0.05,
ρ± = ρΓ = μΓ = 1 and either

(a) μ+ = 1, μ− = 1 , or (b) μ+ = 1, μ− = 10, (7.1)

where we recall that the continuous problem, as d = 2, is independent of the value
of μΓ . The results can be seen in Figs. 2 and 3. In the first case we observe that the
evolution reaches a steady state in which the interfacial fluid rotates along the interface.
This motion is often called tank treading, see e.g. [36]. The second example, on the
other hand, leads to a rotation of the whole vesicle, and this is called tumbling.
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A stable numerical method for the dynamics of fluidic membranes 813

Fig. 3 Shear flow with parameters as in (7.1b), leading to tumbling. The plots show the interface Γ m ,
together with the discrete velocity �Um on Ω , at times t = 8, 11, 14, 17 (top left to bottom right)

The numerical simulation of a vesicle flowing through a constriction can be seen
in Fig. 4. This example shows that membranes can drastically deform in order to
pass through a constriction. This resembles the remarkable properties of red blood
cells, which show a similar behaviour when flowing through capillaries. Here we
choose the initial shape of the interface to be an elongated tube of total dimension
0.2 × 1.5. This gives a reduced area of ar = 0.351. As the computational domain we
choose Ω = (−2, 2) × (−1, 1) \ ([−1, 1] × [−1,−0.5] ∪ [−1, 1] × [0.5, 1]) with
∂2Ω = {2} × (−1, 1) and ∂1Ω = ∂Ω \ ∂2Ω . On the left boundary {−2} × [−1, 1]
we prescribe the inhomogeneous boundary conditions �g(�z) = (1 − z2

2, 0)T in order to
model Poiseuille flow. In this computation we consider the quasi-static variant with
ρ± = 0. Moreover, we set α = 0.1 and let ρΓ = 0 or ρΓ = 15. In the latter case
the effect of inertia on the evolution is clearly visible. We note that for the experiment
with ρΓ = 0, the ratio ra increases at the very first time step from 1 to 1.0023, which
explains the graph in Fig. 4. Here we recall from Remark 4.1 that equidistribution is
only maintained for the semidiscrete variant of our scheme.

In order to highlight the local interface length preservation, we also show in Fig. 5
how a scalar field, initialized as Ψ 0 = 1, is transported along the interface by the fluid.
To this end, at each time step, we find Ψ m+1 ∈ W (Γ m+1) such that
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Fig. 4 Flow through a constriction for the scheme (5.3a–f). Left for ρΓ = 0 and right for ρΓ = 15, where
the plots show the interface Γ m at times t = 0, 0.5, 1, 1.5, 2, 2.5. The middle row shows a visualization
of �Um at time t = 2.5, and below are plots of the ratio ra
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Fig. 5 The final distribution of the scalar field Ψ M ∈ W (Γ M ), plotted against arclength, for the simulation
in Fig. 4 with ρΓ = 0. On the left for ℓ = 1, on the right for ℓ = 2. The second row visualizes the surface
pressures P M

Γ
∈ W (Γ M−1), plotted against arclength
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Fig. 6 Flow for a smooth letter “C” for ρΓ = 0. The plots show the interface Γ m , together with the
discrete velocity �Um on [−1, 1]× [−0.5, 0.5], at times t = 0, 0.05, 0.1, 1. Below are plots of the discrete
energy and the discrete kinetic energy

〈
Ψ m+1, χm+1

k

〉h
Γ m+1

=
〈
Ψ m, χm

k

〉h
Γ m ∀ k ∈ {1, . . . , KΓ }, (7.2)

recall (4.4e) in [9] without diffusion. We compare the results to a simulation for
the scheme (5.3a–f) with ℓ = 2, when no local interface length preservation can
be expected, recall Remark 4.2. Clearly, using the scheme with ℓ = 2 leads to a
nonuniform distribution of the scalar field Ψ M , which coincides with a nonuniform
distribution of the vertices along the discrete interface Γ M . Despite this difference
in the approximation of Γ (tM ), the two simulations produce interfaces Γ M that are
nearly identical. This suggests that the oscillatory surface pressure exhibited by the
scheme (5.3a–f) with ℓ = 1 compared to ℓ = 2, see the bottom row in Fig. 5, does not
have a detrimental effect on the velocity approximation.
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Fig. 7 Flow for a smooth letter “C” for ρΓ = 1. The plots show the interface Γ m , together with the
discrete velocity �Um on [−1, 1] × [−0.5, 0.5], at times t = 0, 0.05, 0.1, 0.3, 0.6, 1. Below are plots of
the discrete energy and the discrete kinetic energy

A very pronounced difference between ρΓ = 0 and ρΓ > 0 can be observed in
our next simulation, where we start with an initial shape in the form of a smooth
letter “C” with reduced area ar = 0.326. As the computational domain we choose
Ω = (−1, 1)2, and we let ρ± = α = 1. See Figs. 6 and 7 for the evolutions in the
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Fig. 8 Flow for a flat plate of dimensions 4 × 4 × 1 for the scheme (5.3a–f). The triangulations of Γ m

at times t = 0, 0.5, 1, 3, together with cuts of Γ m at z2 = 0. The third row shows plots of the discrete
energy and the discrete kinetic energy, while a plot of the ratio ra can be found at the bottom

Fig. 9 Flow through a constriction. The plots show the interface Γ m at times t = 0, 0.3, 0.5, 1, 1.4, 1.8

cases ρΓ = 0 and ρΓ = 1, respectively. In the latter case, the two arms of the vesicle
swing up and down due to inertia, which is clearly visible in the plot of the kinetic
energy as well.

7.2 Numerical simulations in 3D

Unless otherwise stated, for the uniform time step size we choose τ = 10−3 in this
subsection. In all the simulations presented here the volumes of the two phases, as well
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Fig. 10 The first row shows the final distribution of the scalar field Ψ M ∈ W (Γ M ), while the second row

shows the final surface pressure P M
Γ

∈ W (Γ M−1). On the left for ℓ = 1, and on the right for ℓ = 2

as the area of the interface, are almost exactly preserved, with the relative differences
over time in each case being less than 0.2 %.

As a first example for a three-dimensional simulation, we consider the evolution
for an initially flat plate of total dimension 4 × 4 × 1, similarly to [6, Fig. 15]. As the
computational domain we choose Ω = (−2.5, 2.5)3, and we set ρΓ = 0. We note that
the reduced volume for this shape is given by vr = 0.569. As discretization parameters
we choose adapt5,2, and the initial triangulation Γ 0 satisfies (KΓ , JΓ ) = (1538, 3072)

and ra = 1.898. The results for the scheme (5.3a–f) can be seen in Fig. 8, where we
note that the interface assumes the shape of a red blood cell. Plots of the discrete
energies and of the ratio ra are also shown in Fig. 8. We note that the discrete energy
is monotonically decreasing, while the ratio ra always remains bounded below 2.

The numerical simulation of a vesicle flowing through a constriction can be seen
in Fig. 9. Here we choose the initial shape of the interface to be a biconcave surface
resembling a human red blood cell, with a reduced volume of vr = 0.568. As the
computational domain we choose Ω = (−2,−1)×(−1, 1)2∪[−1, 1]×(−0.5, 0.5)2∪
(1, 2) × (−1, 1)2. We define ∂2Ω = {2} × (−1, 1)2 and on ∂1Ω we set no-slip
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Fig. 11 The first row shows the final distribution of the scalar field scalar field Ψ M ∈ SM
0 (Γ M ), while

the second row shows the final surface pressure P M
Γ ∈ SM−1

0 (Γ M−1). On the left for ℓ = 1, and on the

right for ℓ = 2

conditions, except on the left hand part {−2} × [−1, 1]2, where we prescribe the
inhomogeneous boundary conditions �g(�z) = ([1− z2

2 − z2
3]+, 0, 0)T in order to model

a Poiseuille-type flow. For the remaining parameters we set ρ = ρΓ = 0, μ = 1 and
α = 0.1. and α = 0.1. As discretization parameters we choose adapt5,2, and the initial
triangulation Γ 0 satisfies (KΓ , JΓ ) = (770, 1536).

Similarly to in Fig. 5, we consider the transport of a scalar field Ψ 0 = 1 on Γ 0

for the simulation in Fig. 9. As can be seen from the plot in Fig. 10, the local surface
area is maintained almost exactly throughout the evolution. The same cannot be said
for the scheme (5.3a–f) with ℓ = 2. Here the final distribution of Ψ M is very uneven,
and the overall surface area decreases by 14 %. As a consequence, the final shape Γ M

differs dramatically from the run with ℓ = 1.
We also show the final surface pressure P M

Γ in Fig. 10, and also compare the results
with a run for the scheme (5.3a–f) with ℓ = 2. Similarly to the results in Fig. 5, we
observe oscillatory surface pressures when ℓ = 1, while ℓ = 2 yields well behaved
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Fig. 12 Flow through a constriction. The plots show the interface Γ m at times t =
0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4

surface pressure approximations. The same simulation for piecewise constant surface
pressures Pm+1 ∈ Sm

0 (Γ m), and for both ℓ = 1 and ℓ = 2, yields the plots in Fig. 11.
Here we replace (7.2) with the suitable formulation for the basis functions of Sm

0 (Γ m)

and Sm+1
0 (Γ m+1). We observe that this evolution can be computed also for piecewise

constant surface pressure approximations. However, for more complex evolutions,
such as three dimensional analogues of Figs. 2 and 3, we observe locking. Here the
iterative linear solver is unable to find a discrete solution, even at the first time step.

Finally, in the larger domain Ω = (−3,−1)× (−1, 1)2 ∪[−1, 1]× (−0.5, 0.5)2 ∪
(1, 4) × (−1, 1)2, with the analogous boundary conditions, we also show the flow
of four vesicles through a constriction, see Fig. 12. Here we choose adapt4,1 for
our original scheme (5.3a–f) with ℓ = 1, and the initial triangulation Γ 0 satisfies
(KΓ , JΓ ) = (4 × 770, 4 × 1536).
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