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Abstract. To perform accurate LES-calculations of low Mach number flows with non-
premixed combustion, an efficient, robust and accurate algorithm is needed. So-called
pressure-correction methods are efficient algorithms for this purpose. Those methods are
well elaborated for flows with constant density. However, in non-premixed combustion
simulations, the density is variable in time and space, leading to instabilities. In this
paper we provide insight in the origin of the instability by examining the test case of a
density jump. Further, we propose improvements to existing schemes in order to increase
robustness.

1 INTRODUCTION

In this research a hybrid RANS-LES turbulence model will be applied in numerical
simulations of non-premixed flames with swirl. The finite volume technique is used on
a cell-vertex collocated mesh. In order to make an honest judgement of the turbulence
model, numerical errors must be sufficiently small. Therefore as a first step, presented
here, we develop a sufficiently accurate numerical scheme for low Mach variable density
LES-calculations. In this paper efforts are concentrated on the solution algorithm.

The cases considered in this research, as well as many applications in the combustion
area, are of low speed nature. This means that the arising velocities are much smaller
than the speed of sound, so that density variations due to pressure variations can be
neglected. In those so-called low Mach number flows, an efficient way to solve the set
of Navier-Stokes equations describing the flow, is to use a segregated solver, relying on a
pressure-correction algorithm. Here, the pressure is split in a thermodynamic part p0 and
a second order kinematic pressure p2, which only appears in the momentum equations.
As a result, the momentum equations together with a constraint on the divergence of
the velocity decouple from the equations determining the density field. The velocity field
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is computed from the momentum equations, and is corrected with a pressure-correction
to satisfy the divergence constraint. The correction on the pressure is the result of a
Poisson-equation, which is elliptic.

In flows where the density takes a constant value, the classical pressure-correction
method of [1] is well elaborated. The velocity at the new time level is predicted from the
momentum equations and afterwards corrected in order to obtain a solenoidal field, as
imposed by the mass conservation equation. One does not have to fear instabilities arising
from the segregated solution procedure when the convective CFL stability condition on
the time step is respected.

In order to account for large density variations, in contrast with incompressible constant-
density flow calculations, a set of five transport equations needs to be solved in three di-
mensions: continuity, momentum and a fifth equation, mainly governing the local density.
In heat transfer applications this is the energy-equation, whereas in turbulent combustion
applications typically the equation for the mixture fraction plays this role. The mixture
fraction is a non-dimensional normalized variable which takes the value 0 in pure air and
1 in pure fuel. In non-reacting flows, as is the case in e.g. a turbulent mixing layer, it is
the transport equation for the species mass fraction which is density-imposing. Here, we
consider from now on the fifth equation as the energy equation.

The pressure-correction formalism in variable density flows consists now of a predictor
step for the velocity, obtained from the momentum equations, and a corrector step: the
velocity field is corrected to satisfy the continuity equation, or the equation of energy, or
a combination of the two. As a result there is not one pressure-correction algorithm, but
depending on the choice of the constraining equation, several alternatives are possible.

In this paper, different formulations are investigated. Apparently, some of them fail in
giving the correct result when density ratios get too high. The stability of the different
schemes is investigated by means of the test case of a density jump. In this test case a
jump in density is convected inside a straight 1D channel. It is a simple test case, which
yet turns out too difficult to solve with respect to stability for certain widely used pressure-
correction algorithms. It is therefore seen as a necessary condition for the eventual scheme
to give stable solutions in a general variable-density problem.

Section 2 describes the equations governing the flow field. Section 3 defines the different
pressure-correction algorithms. In the fourth section, the density jump as an important
test case is explained in more detail. Section 5 shows some results and in the last section
the conclusion is stated.
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2 GOVERNING EQUATIONS

2.1 Low Mach-Number Formulation

Five equations are considered, governing the conservation of mass, momentum and
energy. The Navier-Stokes equations read:

∂ρ̂

∂t̂
+

∂ρ̂ûi

∂x̂i
= 0, (1)

∂ρ̂ûj

∂t̂
+

∂ρ̂ûiûj

∂x̂i
= − ∂p̂

∂x̂j
+

∂τ̂ij

∂x̂i
, (2)

∂ρ̂Ê

∂t̂
+

∂ρ̂ûiĤ

∂x̂i

=
∂τ̂ij ûj

∂x̂i

+
∂

∂x̂i

(
κ̂

∂T̂

∂x̂i

)
, (3)

with shear stress tensor τ̂ given by:

τ̂ij = µ̂

[(
∂ûi

∂x̂j

+
∂ûj

∂x̂i

)
− 2

3

∂ûk

∂x̂k

δij

]
. (4)

ρ denotes the local density, ui the component of the velocity vector in the i-direction, p
the pressure, E the total energy per unit of mass, H the total ethalpy per unit of mass, T
the temperature and κ the heat conduction coefficient. The ˆ-notation is used to indicate
dimensional variables. We assume a perfect and ideal gas, with equation of state:

p̂ = ρ̂R̂T̂ , (5)

with R the gas constant. We introduce the nondimensional variables:

ρ =
ρ̂

ρ̂∞
, p =

p̂

p̂∞
, uj =

ûj

û∞
,

T =
T̂

T̂∞
, µ =

µ̂

µ̂∞
, κ =

κ̂

κ̂∞
,

xj =
x̂j

L̂
, t =

t̂

L̂/û∞
, E =

Ê

p̂∞/ρ̂∞
, H =

Ĥ

p̂∞/ρ̂∞
. (6)

The subscript ∞ denotes reference values. By doing so, three non-dimensional parameters
appear:

M̃∞ =
û∞√

p̂∞/ρ̂∞
, Re∞ =

ρ̂∞û∞L̂

µ̂∞
, P r∞ =

ĉpµ̂∞
κ̂∞

(7)

and the non-dimensional Navier-Stokes equations become

∂ρ

∂t
+

∂ρui

∂xi

= 0, (8)
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∂ρuj

∂t
+

∂ρuiuj

∂xi
= − 1

M̃2∞

∂p

∂xj
+

1

Re∞

∂τij

∂xi
, (9)

∂ρE

∂t
+

∂ρuiH

∂xi

=
M̃2

∞
Re∞

∂τijuj

∂xi

+
γ

(γ − 1)Re∞Pr∞

∂

∂xi

(
κ

∂T

∂xi

)
, (10)

with γ the specific heat ratio. The total energy and total enthalpy are given by

E = e + M̃2
∞

1

2
|u|2 , (11)

H = E +
p

ρ
, (12)

with e the internal energy. The nondimensional equations of state become

p = ρT, (13)

e =
1

γ − 1
T. (14)

As we are dealing with low Mach number flows, the set of equations (8)-(10) can be
simplified: every variable is expanded in a power series of M̃∞, and the asymptotic limit
for M̃∞ going to zero is taken. For every variable the lowest order term remains in the
equations, except for the pressure, which has two parts: a thermodynamic part p0 and a
kinematic part p2,

p = p0 + M̃2
∞p2. (15)

The low Mach number equations read [4]:

p0 = p0(t), (16)

∂ρ

∂t
+

∂ρui

∂xi
= 0, (17)

∂ρuj

∂t
+

∂ρuiuj

∂xi

= −∂p2

∂xj

+
1

Re∞

∂τij

∂xi

, (18)

ρ

[
∂T

∂t
+ ui

∂T

∂xi

]
=

1

Re∞Pr∞

∂

∂xi

(
κ

∂T

∂xi

)
+

γ − 1

γ

dp0

dt
, (19)

and the zeroth-order equation of state is:

p0 = ρT. (20)

Unless we are dealing with enclosed systems, the thermodynamic pressure p0 has a con-
stant value in time and space.
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2.2 Equations for Combustion

The general transport equations, describing a reacting flow, are the conservation equa-
tions for species:

∂ρYl

∂t
+

∂ρuiYl

∂xi

=
∂

∂xi

(Jli) + ω̇l, (21)

with Yl the mass fraction of species l, Jli the diffusive flux and ω̇l the chemical source
term. If we assume Fick’s diffusion law with equal diffusivities for all species and if we
neglect the Sorret-effect, these equations can be lumped together into one equation for
the mixture fraction ξ:

∂ρξ

∂t
+

∂ρuiξ

∂xi
=

∂

∂xi

(
D

∂ξ

∂xi

)
. (22)

As mentioned, the mixture fraction takes a value between 0 and 1 (0 for pure oxidizer
and 1 for pure fuel). The advantage of equation (22) is that the chemical source term
disappears. Once equation (22) is solved, and the value of ξ is known, the variables Yl

are obtained from the chemistry model. Furthermore in the absence of radiation and
under adiabatic circumstances the static enthalpy can immediately be recovered from the
mixture fraction. Hence no transport equation for static enthalpy needs to be solved and
temperature immediatly follows from the value of ξ. (Note that this is not true when
the energy equation is expressed in terms of temperature. In this manner, a source term,
expressing the heat generation per unit of time by the exothermal combustion reactions
appears.)

3 PRESSURE-CORRECTION ALGORITHMS

In this section we present different formulations of the pressure-correction algorithm.
In order to keep the overview, the equations (17) to (19) are simplified to their Euler-
formulation by taking the limit Re∞ → ∞. Furthermore we do not consider enclosures,
so p0 is a constant. Hence the equations to solve become:

∂ρ

∂t
+

∂ρui

∂xi
= 0, (23)

∂ρuj

∂t
+

∂ρuiuj

∂xi
= −∂p2

∂xj
, (24)

∂T

∂t
+ ui

∂T

∂xi
= 0, (25)

The prediction of the velocity is the same for all algorithms: the pressure terms in the
momentum equations (24) are discretized at the old time level. If we treat the convective
terms explicitly, the predicted momentum field (ρuj)

∗ follows from

(ρuj)
∗ − (ρuj)

n

∆t
+

(
∂ρuiuj

∂xi

)n

= −
(

∂p2

∂xj

)n

. (26)
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This field is corrected to give the velocity at the new time level:

(ρuj)
n+1 = (ρuj)

∗ + (ρuj)
′ , (27)

where the correction for the momentum (ρuj)
′ is related to the correction for the pressure

p′ = pn+1 − pn by

(ρuj)
′

∆t
= − ∂p′

∂xj
. (28)

Four different formulations of the pressure-correction algorithm are now considered. They
differ in two aspects:

1. the determination of the density at the new time level;

2. the constraining equation from which (ρuj)
′ follows.

3.1 Frequently Used Pressure-Correction Algorithms

3.1.1 Standard Pressure-Correction

This version can be considered as a direct extension of the pressure-correction scheme
for constant-density flow. The energy-equation (25) is used to calculate the temperature
T n+1. The density then follows:

ρn+1 =
p0

T n+1
. (29)

The velocity has to obey the continuity equation (23), written as

(
∂ρui

∂xi

)n+1

= −ρn+1 − ρn

∆t
. (30)

Inserting (27) and (28) in (30) results in a Poisson equation for the pressure:

(
∂ρui

∂xi

)∗
− ∆t

∂2p′

∂x2
i

= −ρn+1 − ρn

∆t
. (31)

3.1.2 Constraint-Based Pressure-Correction

For heat transfer applications a constraint, different than the conservation of mass, can
be constructed. Indeed, by writing the temperature equation (19) in conservative form,
an equation for the thermodynamic pressure is obtained:

dp0

dt
+ γp0

∂ui

∂xi
=

γ

Re∞Pr∞

∂

∂xi

(
κ

∂T

∂xi

)
. (32)
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When dealing with the Euler-equations in open atmosphere, this simplifies into

∂ui

∂xi

= 0, (33)

requiring the velocity field to be solenoidal. This gives rise to a Poisson-like pressure
equation:

(
∂ui

∂xi

)∗
− ∆t

∂

∂xi

(
1

ρn+1

∂p′

∂xi

)
= 0, (34)

The density field again follows from (25) and (29).

3.2 Improved Pressure-Correction Algorithms

Several arguments form the basis for the improvements, shown in the two following
subsections:

• the scheme must remain stable, even in regions with high density jumps;

• mass must be conserved;

• a pressure Poisson-equation with constant coefficients is desirable;

• in statistically steady low-speed non-premixed combustion applications under adia-
batic circumstances, no energy-equation is needed at all when unity Lewis Number
is assumed for all species since the static enthalpy can then immediately be recov-
ered from the mixture fraction (see section 2.2). Therefore an algorithm which uses
a constraint solely based on the energy equation, is not a viable approach.

These arguments result in two improved schemes. A judgement upon which scheme
is the best, depends on the specific desire of the user, balancing stability and computing
speed.

3.2.1 The Standard Scheme Revised

Using 20 the equation for temperature (25) is rewritten as an equation for density:

∂ρ

∂t
+ ui

∂ρ

∂xi
= 0, (35)

from which the density at the new time level ρn+1 immediately follows. The mass conser-
vation equation (30) is replaced by

(
∂ρui

∂xi

)†
= −ρn+1 − ρn

∆t
. (36)
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The dagger-symbol indicates a partly-implicit value given by

(ρu)† = ρnu∗ + (ρu)′

= (ρu)n+1 −
(
ρn+1 − ρn

)
u∗. (37)

These definitions give rise to a pressure Poisson-equation of the form

∂ρnu∗
i

∂xi
− ∆t

∂2p′

∂x2
i

= −ρn+1 − ρn

∆t
. (38)

The advantage of the latter equation over (31) is that, for a case with pure convective
transport of density in a region with constant velocity, (38) gives a constant pressure field,
which is physically correct.

3.2.2 The Constraint-Based Correction Revised

The density field at the new time is calculated by using the continuity equation (23),
or the equation of temperature in the form (35). The constraint on the velocity field
follows from the combination of these two equations. Eliminating the time derivative of
the density, we get:

∂ρui

∂xi
= ui

∂ρ

∂xi
(39)

If we evaluate the latter equation at time level n + 1, we can derive the Poisson-like
equation (

∂ρui

∂xi

)∗
− ∆t

∂2p′

∂x2
i

=
∂ρn+1

∂xi

[
u∗

i −
∆t

ρn+1

∂p′

∂xi

]
. (40)

4 TEST CASE: DENSITY JUMP

Since several authors [3, 5] reported instabilities in non-premixed combustion simula-
tions when the density ratio exceeds a certain value (which is around 4), we take a density
jump as test case. In a 1D channel a step in density with height (ρ1 − ρ0) is convected
with a constant velocity u. No diffusive effects are considered. An inlet boundary con-
dition for the velocity u = 1 and density ρ = 1 is imposed. At the outlet the pressure
is fixed to a value p2 = 1. The thermodynamic pressure p0 equals an arbitrary strictly
positive value. The initial field (Fig. 1) for the density is the piecewise constant function:

ρi =

⎧⎪⎨
⎪⎩

1 for i ∈ [1, i1[
r for i ∈ [i1, i2]
1 for i ∈ ]i2, 100]

. (41)

r is given a value of 20. The interval of the jump is [20, 40]. The equations are solved
using a finite volume method on a collocated mesh, which means that all variables are
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located in the center of the control volume. The pressure term in the momentum equation
is discretized centrally. A first order upwinding for the convective terms is used. Also in
the conservation equation for mass, the density in the convective term takes the upwind
value. Indeed, the continuity equation is seen as a transport equation for density, rather
than a conservation (continuity) equation. All calculations are done with a convective
CFL-number of 0.9.

10 15 20 25 30 35 40 45 50
−0.5

0

0.5

1

1.5

2

2.5

density/20
velocity

Figure 1: Density jump with factor 20 in a straight channel: initial condition.

5 RESULTS

5.1 Standard Pressure-Correction

Fig. 2 shows that the standard pressure-correction scheme gives inaccurate predictions
for the velocity field (dash-dotted line), even in regions far away from the density step
(x > 40). This observation follows from the corrector step (30) that imposes mass con-
servation. Since the density field at the new time level follows from the non-conservative
discretization (25), mass is conserved through the adjustment of the outlet velocity. From
this we see that errors in the calculation of the pressure field have a major influence on
the whole domain, and must therefore remain well controlled. One solution for preserving
the stability of the scheme is given by an unphysical rescaling of the time derivative of the
density [2]. However, since the rescaling factor has to take a value in the order of 1/100,
this artificial solution jeopardizes results of time accurate simulations.
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density/20
velocity

Figure 2: Convection of a density jump with factor 20 in a straight channel after one time step with the
Standard Pressure-Correction .

5.2 Constraint-Based Pressure-Correction

10 15 20 25 30 35 40 45 50
−0.5

0

0.5

1

1.5

2

2.5

density/20
velocity

Figure 3: Convection of a density jump with factor 20 in a straight channel after one time step with the
Constraint-Based Pressure-Correction Scheme.
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This approach gives accurate results: the velocity remains constant during the com-
putation, which is physically correct (Fig. 3). However, when the duct is divergent or
convergent, mass is no longer conserved (not shown). Moreover, when this formulation of
the pressure-correction algorithm is applied in combustion simulations under the condi-
tions as stated in section 3.2, it cannot be used since equation (32) is not solved any more
(the mixture fraction transport equation takes over). For completeness we add that in
this formulation, in order to get the pressure field right, one has to add an extra predictor
step for the density. However, the inaccurate representation of the pressure has no further
consequences for the test case considered here.

5.3 Standard Pressure-Correction in Revised Form

10 15 20 25 30 35 40 45 50
−0.5

0

0.5

1

1.5

2

2.5

density/20
velocity

Figure 4: Convection of a density jump with factor 20 in a straight channel after one time step with
modified Standard Pressure-Correction.

A way of dealing with the unphysical results from the standard pressure-correction, is
by writing (25) in the form (35). The results (Fig. 4) show that wiggles still appear, but
the velocity far from the density step is not affected any more.

A second modification (36) makes that the velocity in the straight duct does not alter
at all during computation, as is physically correct (Fig. 5). This scheme has the advantage
of a low computational cost, because of the constant coefficient Poisson-equation for the
pressure (38), but turns out unstable if the density ratio gets too high in a more general
environment: e.g. for a divergent channel, the simulation becomes unstable for density
ratios higher than a value depending on the section growth. On the other hand, mass is
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density/20
velocity

Figure 5: Convection of a density jump with factor 20 in a straight channel after one time step with the
Standard Pressure Correction Scheme in revised form.

conserved with this formulation of the scheme.

5.4 Constraint-Based Pressure-Correction in Revised Form

Solutions for the velocity field with the revised form of the constraint-based pressure-
correction do not differ from the original formulation for the case of a straight channel
(section 5.2), since in either case the velocity remains constant at all times. (The density
is again predicted as in section 5.3, so the result is identical to Fig. 5) However, in a more
general case, mass is conserved in this approach and the scheme remains stable for high
density ratios, even in the divergent channel (up to a density ratio of 10, as required for
methane-air combustion simulations). As shown in Fig. 6 for a CFL-number of 0.9 the
convection of a density jump in a divergent channel with a section growth of 1% remains
stable and the velocity remains practically constant in time, as expected. Because heat
transfer is disregarded the smoothing of the density jump is only due to the first order
upwind discretization of the scalar field. When performing the same test with a Standard
Pressure Correction, results are not physical because even after the first timestep the
velocity departs from its orginal value by a factor in the order of 10 (not shown). In
contrast with the original constraint correction, this scheme is applicable in the context
of non-premixed combustion. The computing time for solving the Poisson-like equation
(40) gets higher though, depending on the existing density gradients.
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Figure 6: Convection of a density jump with factor 20 in a divergent channel each 20th timestep with
the Constraint Pressure-Correction in Revised Form. The velocity remains almost constant.

6 CONCLUSIONS

In this paper we presented four different pressure-correction algorithms for variable-
density low-Mach number flow simulations. The standard formulations fail for high den-
sity ratios. Two improved schemes were presented: the standard pressure-correction
scheme in revised form and the constraint pressure-correction in revised form. The for-
mer has a low computational cost for solving the Poisson-equation but has an inherent
danger of becoming unstable for too high density ratios, depending on the local flow field.
The latter is stable for high density ratios (at least up to a factor of 10) but requires more
computing time.
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