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Machinery fault diagnosis is pretty vital in modern manufacturing industry since an early detection can avoid some dangerous
situations. Among various diagnosis methods, data-driven approaches are gaining popularity with the widespread development of
data analysis techniques. In this research, an e
ective deep learning method known as stacked autoencoders (SAEs) is proposed
to solve gearbox fault diagnosis. 	e proposed method can directly extract salient features from frequency-domain signals and
eliminate the exhausted use of handcra�ed features. Furthermore, to reduce the over�tting problem in training process and improve
the performance for small training set, dropout technique and ReLU activation function are introduced into SAEs. Two gearbox
datasets are employed to conform the e
ectiveness of the proposed method; the result indicates that the proposed method can not
only achieve signi�cant improvement but also is superior to the raw SAEs and some other traditional methods.

1. Introduction

As one of the most vital components of rotating machinery,
gearboxes are widely used in various industrial �elds, such
as vehicles and machine tools [1]. Due to the complexity
structure of gearbox and various working conditions inter-
ference, gears always cause fault quite easily. If the fault is not
detected in time, it can result in the crash of entire system
and serious loss of property. So it is challenging to conduct
e
ective fault diagnosis system. In modern industries, data-
driven systems have revolutionized manufacturing through
enabling computers to collect a massive amount of data from
monitored machines [2]. At the same time, machines have
also been more precise than ever before, and machinery
fault diagnosis has su
ciently embraced multifault diagnosis
revolution in condition monitoring system. Contrasted with
top-down modeling proposed by the physics-based fault
diagnosis systems, data-driven systems provide a bottom-
up model to detect the occurrence of machinery faults [3].
As is well-known, the physics-based methods are unable
to be updated online with measured data and also cannot
deal well with large-scale data. On the other hand, with the

fast-developing computer systems and sensors, data-driven
based fault diagnosis systems have drawn increasing public
attentions.

	e basic framework of data-driven system usually con-
sists of four consecutive stages: data acquisition, feature
extraction, model training, and model testing [4]. Conven-
tional data-driven methods are usually trying to design a
right set of features and then put them into some shallow
machine learning models such as Naive Bayes (NB) [5],
Support Vector Machines (SVM) [6], and logistic regres-
sion [7]. But these works usually focus on manual feature
extraction (statistical features, frequency, and time-frequency
features) that always need plenty of human labor and cannot
update online [8]. Meanwhile, the selection of these features
could not leave prior knowledge and feature engineering.
So it is really a tough problem for these methods to extract
intrinsic features behind the raw time-series data. As the
hottest sub�eld of machine learning, deep learning has
been regarded as a powerful solution for the intelligent
fault diagnosis system to extract salient features through
multilayer architecture, such as arti�cial neural networks
(ANN) [9, 10], autoencoders [11, 12], restricted Boltzmann
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machine (RBM) [13, 14], and convolutional neural networks
(CNN) [15, 16]. Compared with traditional methods, deep
learning methods do not need human labor and expert
knowledge for feature extraction. All the hyperparameters in
model training and pattern classi�cation modules are able to
be trained jointly. 	erefore, deep learning can be employed
to address machinery fault diagnosis in a very general way.

As one of the widely used deep learning techniques,
stacked autoencoders (SAEs) have attracted considerable
attention in fault diagnosis. It has been investigated as a
common component of DNN by Bengio et al. [17]. Jia et al.
[18] proposed a SAEs based DNNs for roller bearing and
planetary gearbox fault diagnosis with input as frequency
spectra a�er Fourier transform. Guo et al. [19] employed
multidomain statistical features of the raw vibration signals
as the input of SAEs, which can be viewed as a kind of feature
fusion. Liu et al. [20] fed the normalized spectrograms created
by STFT into SAEs for rolling bearing fault diagnosis. In the
work presented in [21], the nonlinear so� threshold approach
and digital wavelet frame were used to process the measured
signal and then fed into SAEs for rotating machinery diag-
nosis. Jia et al. [22] constructed a local connection network
based on normalized sparse autoencoder, and L1 norm was
employed to �nd sparse features.

Inspired by the prior researches, a new framework based
on SAEs is proposed to resolve the gearbox fault diagnosis.
Furthermore, to overcome the de�ciency of over�tting prob-
lem in the training process and improve the performance
for small training set, dropout technique [23] and ReLU
activation function are introduced into SAEs. Rest of the
paper is organized as follows. Section 2 brie�y introduces the
algorithms of SAEs, dropout, and ReLU activation function.
Section 3 is dedicated to detailing the content of the proposed
method. In Section 4, the multifault gearbox dataset is
adopted to validate the e
ectiveness of the proposedmethod.
Furthermore, the superiority of the proposed method is
exhibited by comparing with the other traditional methods.
Finally, some conclusions are drawn in Section 5.

2. Theoretical Background

2.1. Stacked Autoencoders. Autoencoder is a kind of unsuper-
vised learning structure that owns three layers: input layer,
hidden layer, and output layer as shown in Figure 1. 	e
process of an autoencoder training consists of two parts:
encoder and decoder. Encoder is used for mapping the input
data into hidden representation, and decoder is referred to
reconstructing input data from the hidden representation.

Given the unlabeled input dataset {xn}Nn=1, where xn ∈ Rm×1,
hn represents the hidden encoder vector calculated from xn,
and x̂n is the decoder vector of the output layer. Hence the
encoding process is as follows:

hn = f (W1xn + b1) (1)

where f is the encoding function, W1 is the weight matrix of
the encoder, and b1 is the bias vector.

	e decoder process is de�ned as follows:

x̂n = g (W2hn + b2) (2)

where g is the decoding function, W2 is the weight matrix of
the decoder, and b2 is the bias vector.

	e parameter sets of the autoencoder are optimized to
minimize the reconstruction error:

� (Θ) = argmin
�,��

1
n

n

∑
i=1
L (xi, x̂i) (3)

where L represents a loss function L(x, x̂) = ‖x − x̂‖2.
As shown in Figure 2, the structure of SAEs is stacking n

autoencoders into n hidden layers by an unsupervised layer-
wise learning algorithm and then �ne-tuned by a supervised
method. So the SAEs based method can be divided into three
steps:
(1) Train the �rst autoencoder by input data and obtain

the learned feature vector;
(2)	e feature vector of the former layer is used as the

input for the next layer, and this procedure is repeated until
the training completes.
(3) A�er all the hidden layers are trained, backpropaga-

tion algorithm (BP) is used tominimize the cost function and
update the weights with labeled training set to achieve �ne-
tuning.

2.2. Dropout. Dropout is an e
ective strategy that has been
proved to reduce over�tting in the training process of neural
networks. 	e over�tting problem always happens when the
training set is small, which would result in a low accuracy on
the test set. Dropout can randomly a
ect the neurons of the
hidden layer to lose power in the training process as shown
in Figure 3, but the weights of those neurons are preserved.
Furthermore, the neurons can recover to work when the next
sample is input. Technically, dropout is able to be achieved by
setting the output date of some hidden neurons to 0 and then
these neurons cannot be related to the forward propagation
process. Many researches have tested the e
ect of dropout
on reducing the over�tting problem for the small training
set [28], and this paper will also employ it to enhance the
feature extraction ability and classi�cation accuracy of SAEs
for multifault gearbox fault diagnosis.

2.3. ReLU. For traditional activation functions (sigmoid
and hyperbolic tangent functions), the gradients decrease
quickly with training error propagating to forward layers.	e
recti�ed linear units (ReLU) activation function has received
extensive attention in recent years, since its gradient will not
decrease with the independent variables increasing. So the
network with ReLU does not su
er from gradient di
usion
or vanishing. 	e ReLU function is shown in (4) and the
structure is displayed in Figure 4.

fr (x) = max (0, x) (4)

3. Proposed Framework

	is section details the proposed intelligent fault diagnosis
method. In the method, SAEs are combined with dropout
to achieve multifault gearbox fault diagnosis. 	e framework
and illustration of the proposed method are displayed in Fig-
ure 5. SAEs combinedwith dropoutmodel are applied to train
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Figure 2: Structure of stacked autoencoders.

Figure 3: Dropout neural net model. Le�: a standard neural net. Right: an example of a thinned net produced by applying dropout.

theweightmatrix from frequency spectra of vibration signals.
Speci�cally, the procedure can be described as follows:
(1) 	e spectra of vibration signals are composed the

training set {Xi, li}Mi=1, where M is the number of samples,

Xj ∈ RN×1 is the ith sample containing N Fourier coe
cients,
and li is the health label of Xi.

(2) Build the DNNs by SAEs, and then employ the

unlabeled training set {Xi}Mi=1 to pretrain the DNNs layer-by-
layer.
(3) Utilize BP algorithm to update the weights and �ne-

turn the parameters of the SAEs with labeled training set

{Xi, li}Mi=1.
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Figure 5: Flowchart of the proposed method.

(4)	e testing set is adopted to validate the e
ectiveness
of the proposed method.

4. Experiments

4.1. Case 1: Fault Diagnosis of a Multifault Gearbox

4.1.1. DataDescription. Gear faults including distributed fault
(worn) and localized faults (broken, pit), as well as coupled
fault in power train, perhaps cause catastrophic accidents.
	erefore, an early recognition of the gear faults is critical
for normal operation of a gearbox. Our paper focuses on
investigating the multifault gearbox. In this section, a muli-
fault gearbox experimental dataset is employed to validate
the e
ectiveness of the proposed method [29]. 	e vibration
signals were collected on a specially designed bench which
consisted of a one phase input and three-phase output
motor (the nominal power is 0.75 kW and nominal rotation
frequency is 880 rpm), a gearbox, the sha� supporting seats,
a �exible coupling, and a magnetic powder brake as show
in Figure 6. 	e sensor is a piezoelectric accelerometer
(DH131E) mounted on the �at surface of gearbox and the
sampling frequency is 5120Hz. 	e gearbox includes two

gears (pinion and wheel gear) and the gear parameters are
displayed in Table 1. 	ere are six health conditions under
three loads: normal, a single worn pinion, a single pit of
wheel, a single broken tooth of wheel, coupled fault of broken
wheel and worn pinion, and coupled fault of wheel pit and
worn pinion. For brevity, the six fault types of gear are
named as Type-1, Type-2, Type-3, Type-4, Type-5, and Type-
6, respectively. 100 data samples are collected from each fault
type under one load by an overlapped manner, so a total of
1800 samples are obtained from the designed bench and each
sample contains 1000 data points. Considering the rotation
frequency of sha� is 880 rpm, so each period of rotation
contains 350 data points. For avoiding the in�uence of speed
�uctuation, each sample collects almost three periods of
rotation data (1000 data points). 	e frequency spectra are
also adopted as input data, and each sample contains 500
Fourier coe
cients. 	e major reason of using frequency
spectra is that the frequency spectra can show the distribution
of constitutive components with discrete frequencies and
more clarity information about the state of rotatingmachines
[18]. Herewe randomly select 4 samples from the normal type
of gear, and obtain their Fourier coe
cients by FFT as shown
in Figure 7. It is easy to �nd that the time-domain features of
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Table 1: Gear parameters.

Gear Teeth Module(mm) Pressure angle (deg.) Materials

Pinion 55 2 20 S45C

Wheel 75 2 20 S45C

Sha� supporting seat Flexible couplings Gearbox Magnetic powder brake

�ree-phase motor

Tooth-shaped belt

Figure 6: Bench of multifault gearbox.
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Figure 7: Comparison of time-domain and frequency-domain coe
cients.

each sample are di
erent, but the frequency spectra features
are becoming regularity with each other. 	e structure of the
designed DNNs is 500, 200, 100, and 6, respectively.

4.1.2. Diagnosis Results. 	e parameter of dropout rate � is
changed from 0 to 0.7 with a step size of 0.1, and 15 trials are
carried out for the experiment in order to reduce the e
ective
of randomness. 10% of samples are randomly selected to train
the model, and the rest are used for testing. 	e diagnosis
accuracies are shown in Figure 8. It is clearly seen that when �
is 0.3, the diagnosis accuracy is the highest and the standard

deviation is the lowest, so 0.3 is chosen as the dropout rate in
this experiment.

To classify the six health conditions of the gears, 10%
samples are employed to train the proposed model and the
rest are used for testing. 	e learning rate is 0.01 and the
iteration number is 100.	e training and testing accuracies of
15 trials are displayed in Figure 9 and the average training and
testing accuracies are 100% and 99.34% ± 0.25% respectively,
which indicates that the proposed model can also distinguish
the six health conditions of gear with a high accuracy. To
illustrate the process concretely, the classi�cation results of
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Figure 9: Diagnosis result using the proposed method.

the 14th testing trial are drawn in Figure 10. It can be seen that
3 of the testing samples are misclassi�ed, yielding the success
rates 99.44%. Among them, 1 sample of type-3 ismisclassi�ed
as type-4, 2 samples of type-4 are misclassi�ed as type-3,
and 1 sample of type-5 is misclassi�ed as type-6, respectively.
To further display the ability of the proposed method, t-
distributed stochastic neighbor embedding (t-SNE) [30] is
employed to visualize the learned features.	erefore, the 100-
dimension feature vector is embedded into a 3-dimension
feature vector. 	e classi�cation result is shown in Figure 11.
It is easy to �nd that the same types of samples are gathered
together and di
erent types are separated excellently.

For comparison, several diagnosis methods are presented
and the diagnosis results are displayed in Table 2. Li et
al. [24] proposed a method combining 19 time-domain
and frequency-domain features with self-organizing map,
when their method was adopted to classify the six types of
the gearbox dataset and achieved 92.51% ± 4.23% testing
accuracy. In [25], wavelet multifractal features and SVM
model were used to represent the six gear fault types, and
�nally obtained 87.65%±5.37% classi�cation accuracy. Lin et
al. [26] proposed a fault diagnosis method using multifractal
detrended �uctuation (MFDFA) and here achieved 96.23% ±
1.69% accuracy. Lou et al. [27] applied multiple domain
features and ensemble fuzzy ARTMAP neural networks
to distinguish the health conditions and 98.83% ± 0.42%
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Figure 10: Diagnosis result of the 14th trial.
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Figure 11: Feature visualization map.

accuracywas obtained. Furthermore, the raw stacked autoen-
coders without dropout (Raw SAEs) are also adopted for
comparison, and the testing accuracy is just 93.16% ±
3.78% which exhibits the e
ectiveness of dropout in feature
extraction. Compared with the methods above, it shows that
the proposed method can not only automatically distinguish
the six health conditions of gearbox, but also achieve a higher
accuracy with a lower percentage of training samples.

To further investigate the learned features in the proposed
model, another experiment is conducted as shown in Figures
12 and 13. As a result, two level features can be obtained from
two hidden layers of the DNNs which can be called learned
features, so 200- and 100-dimensional learned feature vectors
of each sample are obtained, respectively. For achieving a
good view on the visualization, all the learned feature vectors
of the same type test samples are gathered together [31].
Figure 12 displays the learned 100-dimensional features of
gearbox dataset using the raw SAEs without dropout, and
Figure 13 shows the learned 100-dimension features using the
proposed method. It can be clearly seen that all the learned
feature vectors of one health condition by the proposed
method are almost the same trend with each other. By
contrast, the feature vectors of each health condition by the
raw SAEsmethod are mixed with each other and can not �nd
a unit tendency. And also, the amplitudes of feature vectors
by the two methods are di
erent, the proposed method is
able to learn more distinguished feature vectors that own



Mathematical Problems in Engineering 7

Table 2: Comparison of classi�cation accuracy.

Method Training samples Testing accuracy

[24] 40% 92.51% ± 4.23%
[25] 75% 87.65% ± 5.37%
[26] N/A 96.23% ± 1.69%
[27] 50% 98.83% ± 0.42%
Raw SAEs 10% 93.16% ± 3.78%
Proposed 10% 99.34% ± 0.25%
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Figure 12: Learned features of gearbox dataset using the raw SAEs.
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Figure 13: Learned features of gearbox dataset using the proposed
method.

larger amplitudes than the raw SAEs method. 	erefore, the
proposed method can e
ectively mine the main variations in
a high order space from di
erent fault signals than the raw
SAEs method without dropout.

4.2. Case 2: Fault Diagnosis of a Motorcycle Gearbox. To
further validate the proposed method, a motorcycle gearbox
dataset [32] is taken as the second case analysis. Figure 14
displays the gearbox being referred to; besides the gear-
box, there are an electrical motor with the rotation speed
1420 rpm, a data acquisition system, a tachometer, a triaxial
accelerometer, and a load mechanism.	e sample frequency
was 16384Hz. 	ere are four health types of gear as shown
in Figures 14(b)–14(c): normal condition (NC), slightly worn
(SW), medium worn (MW), and broken tooth (BT). In
Figure 14(e), the gears, which have 24 teeth and 29 teeth
(tested gear), are a pair of driven and driving gears. 	e
vibration signals of four gear health types are depicted in
Figure 15. It can be easy to �nd that the NC and BT are easily
distinguished, but the SW andMW are hardly discriminated.
50 samples of NC and 100 samples of SW, MW, and BT are
collected, and each sample contains 1000 data points.

Similarly, 10% samples are employed to train the proposed
model and the rest are used for testing, and the parameter set
is the same as Case 1.	e training and testing accuracies of 15
trials are displayed in Figure 16 and the average training and
testing accuracies are 100% and 99.26% ± 0.41% respectively,
which also indicates that the proposed model can distinguish
the four health types of the motorcycle gearbox with a high
accuracy.	en, the classi�cation results of the 3rd testing trial
are displayed in Figure 17. Only 2 samples are misclassi�ed;
i.e., 1 sample of SW is misclassi�ed as MW, and 1 sample
of MW is misclassi�ed as SW, respectively. Meanwhile, the
visualization of the 2-dimensional feature vectors mapped
by t-SNE is shown in Figure 18. 	e excellent classi�cation
result is also obtained which illustrates the robustness of the
proposed method.

5. Conclusions

An intelligent fault diagnosis method based on SAEs is
presented for gearbox fault diagnosis. In order to reduce
over�tting problem and improve the performance of tradi-
tional SAEs for small training set, the dropout technique and
ReLU activation function are both adopted. As illustrated
in the experimental study, the proposed method can extract
useful features from di
erent fault gear types and achieve
a high diagnosis accuracy. Comparison studies show that
the proposed method outperforms the raw SAEs method
and some other traditional methods. On the other hand, the
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Figure 14: (a) Experimental setup; (b) worn teeth; (c) broken teeth; (d) accelerometer location; (e) schematic of the gearbox.
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exhibition of the learned features illustrates that with the
help of dropout technique and ReLU activation function, the
proposed method can capture salient features and obtain a
higher diagnosis result than the raw SAEs method. Mean-
while it can clearly describe the process on how DNNs deal
withmechanical signals, which is worth further study in fault
diagnosis. In future work, a wide range of experiments will
be investigated to evaluate the robustness of the proposed
method.
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