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Deep learning is the crucial technology in intelligent question answering research tasks. Nowadays, extensive studies on question
answering have been conducted by adopting the methods of deep learning. ,e challenge is that it not only requires an effective
semantic understanding model to generate a textual representation but also needs the consideration of semantic interaction
between questions and answers simultaneously. In this paper, we propose a stacked Bidirectional Long Short-Term Memory
(BiLSTM) neural network based on the coattention mechanism to extract the interaction between questions and answers,
combining cosine similarity and Euclidean distance to score the question and answer sentences. Experiments are tested and
evaluated on publicly available Text REtrieval Conference (TREC) 8-13 dataset and Wiki-QA dataset. Experimental results
confirm that the proposed model is efficient and particularly it achieves a higher mean average precision (MAR) of 0.7613 and
mean reciprocal rank (MRR) of 0.8401 on the TREC dataset.

1. Introduction

Deep learning forms a more abstract high-level repre-
sentation attribute feature by combining low-level fea-
tures to discover the distributed feature representations of
data. It provides an effective method for NLP research. In
recent years, intelligent question answering in the NLP
field has emerged as a prominent discipline research
hotspot in both academia and industry, which has been
widely used by many influential question answering
systems. Answer selection plays a vital role in question
answering task, and it mainly encodes QA pair and inputs
them into the model to extract the key information and get
the corresponding representation [1]. ,us, the main task
is to map the question and answer sentences into a joint
feature space to generate the codependent representation
for them. In the end, an algorithm is utilized to calculate
their similarity.

In the past few years, most question answering studies
[2–4] were based on knowledge bases and FAQs, which use

machine learning to analyze and retrieve keywords. Un-
fortunately, both of them lack relevant semantic analysis of
the questions and answers, which results in a shortcoming
of strong artificial dependency and poor scalability.

With the significant innovation of deep learning, deep
neural networks are able to availably map the meaning of a
single word in a sentence to a continuous representation of
the entire sentence, and the meaning of the sentence rep-
resentation obtained is more complete. Because deep
learning reduces the need for manual feature engineering
and adapting to new tasks, it has become an important
research method for various tasks of NLP in the last several
years, and a large number of researchers take advantage of its
end-to-end model for sentence semantic analysis to im-
plement question answering tasks. Feng et al. [5] and Wang
and Nyberg [6] resorted convolutional neural networks
(CNN) and Bidirectional Long Short-Term Memory Net-
works to capture single sentence semantics, respectively.
Nevertheless, both of them ignored the interrelationship
between encoded representations of question and answer.
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Recently, the model based on the attention mechanism has
been explored for question answering. Tan et al. [7] and Nie
et al. [8] proposed a BiLSTM model that combines the at-
tention mechanism to construct a better answer represen-
tation according to the input question sentences. ,e model
takes the effect of the question on the answer list encoding
into account, but they ignore the effect of the answer on the
encoding representation of the question, which will cause
some deviations in the final prediction result. For instance,
the question 1 is “Michael, what are you eating?” and the
question 2 is “Michael, why are you eating somuch?” and the
answer is “Yeah, I’m eating a hamburger.”,e words “what”
& “eating” in question 1 and the words “I’m” & “eating
hamburger” in answer have a certain semantic association,
and we could easily infer that the answer is corresponding to
the question 1. It means that each answer has some intrinsic
connection with the question, and to some extent, the
question representation is affected by different answers. In
addition to analyzing the answers from the questions, we can
also infer some results about the questions from the answers.

In this paper, we construct a deep learning architecture for
question answering, where questions and answers are limited
to a single sentence. ,e cores of our architecture are two
distributed sentence models working in parallel, based on a
stacked BiLSTM neural network. We map questions and
answers to the corresponding distribution vectors and finally
calculate the semantic similarity between them. BiLSTM
neural networks have been widely used in recent years to deal
with NLP issues [9–11]. Zhang and Ma [12] established a new
deep learning model based on BiLSTM networks to ac-
complish the answer selection task and achieved favorable
results.Motivated by this work, we utilize the stacked BiLSTM
deep neural network that incorporates the coattention
mechanism to semantically understand and model the QA
pair, thus allowing model to capture long dependency sen-
tence-level features and generate deeper codependent rep-
resentations for the QA pair. Additionally, the cosine
similarity and the Euclidean distance are reconciled as a new
metric to measure the semantic similarity and distance be-
tween the questions and the answers. Experiments are settled
on the Text REtrieval Conference 8-13 QA dataset and Wiki-
QA dataset. Comparison shows that our experimental model
achieved the best experimental results.

,e main contributions of this paper are summarized as
follows:

(i) A stacked BiLSTM neural network is resorted to
attain the vector representation of the input sen-
tence, which can effectively capture the semantics of
the sentence.

(ii) Our model combines coattention mechanism and
attention mechanism to encode sentences to ob-
tain the interaction and influence between the QA
pair.

(iii) ,e cosine similarity and the Euclidean distance are
reconciled to calculate the degree of matching be-
tween two vectors. ,is method is able to take the
distance and angle relationship between vectors into
consideration.

,e rest of this paper is organized as follows. Section 2
gives a brief review of related work. Section 3 presents the
proposed framework and method for question answering.
Section 4 is a detailed analysis and summary of the ex-
perimental results. We will draw a conclusion and discuss
the next work in Section 5.

2. Related Work

Research in question answering has been greatly boosted by
the Text REtrieval Conference series since 1999. Recently, a
number of related works [12–15] have proposed many ef-
ficient models for question answering. We compare and
correlate the proposed stacked BiLSTM neural networks,
coattention mechanism, and scoring metric with our other
methods in the literature as follows.

2.1. Long Short-Term Memory Neural Networks. Previously,
traditional research approaches concentrated on syntactic
matching between the questions and answers. Punyakanok
et al. [3] was the earliest to propose the general question and
answer matching model via dependency tree models. Later,
both Heilman and Smith [2] and Khan et al. [16] presented a
probabilistic tree edit algorithm to model sentence. Yao et al.
[17] constructed a linear-chain conditional random field
based on TREC-QA dataset, which extracted the answer as
the answer sequence labeling problem of the tree editing
sentence. Moreover, Zhou et al. [4] resorted lexical model
based on word relations to select answer sentences. But these
traditional models rely excessively on external conditions
such as manual labeling of information, which requires a
large amount of related work to achieve.

In the recent work of question answering, the
mainstream is based on deep learning methods. Yih et al.
[18] and Wang et al. [19] developed a semantic parsing
framework by a semantic similarity model using con-
volutional neural networks. Wang and Nyberg [6] used a
stacked BiLSTM network to sequentially read words from
the question and answer sentences, which did not require
any syntactic parsing or external knowledge resources
such as WordNet. However, these models failed to
consider the codependent representations of the ques-
tions and answers. ,us, we add attention mechanism to
the deep neural networks to capture the associations
between the QA pair.

2.2. Coattention Mechanism. ,e attention mechanism is
appropriate for inferring the mapping relationship between
different modal data extremely. It can help a framework like
a codec to properly acquire the interrelationships of multiple
content models, thus expressing more effectively [1]. ,ere
are plenty of related works having explored the attention
mechanism in question answering. Based on bidirectional
recurrent neural networks, Bahdanau et al. [20] added the
attention mechanism to the model to encode and decode the
sentence in machine translation. Zhang et al. [21] examined
inner attention mechanism and outer attention mechanism
in discourse representation for implicit discourse relation
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recognition. ,e result showed a marvelous improvement
on marco-F1 point is 1.61%. Inspired by the related work in
Bahdanau et al. [20] and Fu et al. [22], Tan et al. [7] and
Xiang et al. [23] successively proposed an attention mech-
anism based on bidirectional single-layer LSTMs for ques-
tion-answer matching, which is able to construct better
answer representations according to the input question.
Meanwhile, Lu et al. [24] took the lead in presenting a
hierarchical coattention model for visual question answer-
ing. ,ey used the coattention mechanism to compute a
conditional representation of the image given the question
and a conditional representation of the question given the
image. Enlightened by this work, Xiong et al. [10] presented
a dynamic coattention network (DCN) to obtain the co-
dependent representations of question and document, and
they used a dynamic point decoder to sort potential answers.
,e experiment achieved 0.8% EM and 2.1% F1 improve-
ment on SQuAD dataset. A more refined coattention model
was proposed by Zhang and Ma [12]. ,e author combined
the coattention mechanism with the attention mechanism to
encode the representation of questions and answers, and this
model significantly utilized the inner relationship between
questions and answers to enhance the experiment results.
Our research also adopts a similar coattention mechanism to
extract the statement features.

2.3. ScoringMechanism. In many previous works such as Liu
[25] and He et al. [26], cosine similarity has been proven to
be an effective metric for evaluating the similarity between
two chord vectors, and it has been widely used in complex
queries and matching in recent years. However, Lee et al.
[27] resorted the Euclidean distance as the classification
decision-making function to measure the average distance
between the new data point and the support vectors from
different categories, and the data showed that it is efficient.
Feng et al. [5] proposed two novel metrics GESD (Geometric
mean of Euclidean and Sigmoid Dot product) and AESD
(Arithmetic mean of Euclidean and Sigmoid Dot product) in
their answer selection task. ,ey proposed two metrics that
are the best among all the comparison metrics. In the work
of Yin et al. [15], the cosine similarity and the Euclidean
distance were separately used to calculate the sentence
similarity and measure the semantic distance between dif-
ferent sentences. ,e result revealed that the simultaneous
use of two evaluation mechanisms is superior to using only
cosine similarity metric. Unlike the previous research, our
approach improves and optimizes previous methods by
reconciling the two functions. Our results show that the
method is efficient.

3. Proposed Question Answering Model

In this section, we describe the proposed question an-
swering model based on deep learning, which is optimized
based on the architecture of Tan et al. [1] and Xiong et al.
[10]. ,e overview of the framework is constructed in
Figure 1.

In Figure 1, we first utilize the pretrained GloVe to
construct word embedding layer, and this word embedding
provides the vector representation for each question and its
candidate answers. Second, the stacked BiLSTM neural
network serves as an encoder that extracts hidden features
from each input sentence. Corresponding representations
can be obtained by the questions based on the coattention
mechanism. After entering the question vector into the
maximum pooling, the attention mechanism is used to
generate an answer embedding according to the question
representation. At last, we combine cosine similarity and
Euclidean distance to measure the degree of matching be-
tween the question vector and the answer vector.

3.1. A Stacked BiLSTM Neural Network. LSTM networks
architecture was originally developed by Hochreiter and
Schmidhuber [28]. More formally, an input sequence vector
x � (x1, x2, . . . , xn) is given, where n indicates the length of
the input sentence. ,e core structure of the LSTM is the use
of three control gates to control a memory cell activation
vector c. ,e first forget gate determines how much of the
cell state ct− 1 at the previous time is retained until the current
cell state ct; the second input gate determines the extent to
which the input xt of the network is saved to the current cell
state ct; the third output gate determines how much of the
cell state ct is transmitted to the current output value ht of
the LSTM networks. ,e three gates are a fully connected
layer, and its input is a vector and the output is a real number
in [0, 1]. ,e basic LSTM cell architecture is shown in
Figure 2, and its representation is as follows:

Coattention encoder mechanism

Output

Attention weight

Question sequence Answer sequence

Max pooling Max pooling

Oa

Softmax Softmax

Score (Oq,Oa)

Oq

CQ CA

HQ HA

(a1, a2,..., am)(q1, q2,..., qn)

Figure 1: Framework of the proposed neural network model.
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Input gates: it � σ Wixxt +Wihht− 1 + bi( 􏼁,
Forget gates: ft � σ Wfxxt +Wfhht− 1 + bf􏼐 􏼑,
Output gates: ot � σ Woxxt +Wohht− 1 + bo( 􏼁,

Cell states: ct � ft ∗ ct− 1 + it ∗ tanh
· Wcxxt +Wchht− 1 + bc( 􏼁,

Cell outputs: ht � ot ∗ tanh ct( 􏼁,

(1)

where σ is the logistic sigmoid function, xt indicates t-th
word vector of the sentence and ht indicates the hidden state,
W terms and b terms, respectively, represent weight matrices
(e.g.,Wxf represents the forget gate weight matrix) and bias
vectors (e.g., bi represents the input gate bias vector) for the
three gates.

To overcome the shortcoming of single LSTM cell that
can only capture previous context but not utilize the future
context, Schuster and Paliwal [29] invented bidirectional
recurrent neural networks (BRNN) to combine two separate
hidden LSTM layers of opposite directions to the same
output. With this structure, the output layer is able to utilize
related information from both the previous and future
context. A BiLSTM calculates the input sequence
x � (x1, x2, . . . , xn) from the opposite direction to a forward

hidden sequence h
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(2)

where y � (y1, y2, . . .yt . . . , yn) is the output sequence of
the first hidden layer.

Some previous works represented that by stacking
multiple BiLSTM in neural networks, the performance of
classification or regression can be further improved [30–32].

Moreover, there is some related theoretical support to show
that a deep hierarchical model is more efficient in repre-
senting some functions than a shallow one [6, 33]. We have
defined a stacked BiLSTMnetwork where the output yt from
the lower layer becomes the input of the upper layer. ,e
stacked BiLSTM structure is illustrated in Figure 3:

ht �Wh _h h
→
t +Wh _h h

←
t + bh. (3)

DefiningQ � (q1, q2, . . . , qn) andA � (a1, a2, . . . , am) to
represent question sequences and answer sequences, re-
spectively, where n and m indicate the length of the ques-
tions and answers, and qt and at indicate the t-th words of
the questions and answers. We run a stacked BiLSTM over
the questions and answers to obtain their hidden state
matrixes HQ and HA, and the mathematics is as follows:

hqt � sBiLSTM h
q
t− 1, h

q
t+1, qt( 􏼁, h

q
0 � 0,

hat � sBiLSTM hat− 1, h
a
t+1, at( 􏼁, ha0 � h

q
n,

HQ � h
q
1, h

q
2, . . . , h

q
n􏼂 􏼃 ∈ Rd∗n,

HA � ha1 , h
a
2 , . . . , h

a
m􏼂 􏼃 ∈ Rd∗m,

(4)

where d is the dimension of the hidden state.

3.2. Coattention Mechanism for Question Representation.
Here, we implement a coattention mechanism to encode
question according to the answer sequences, as shown in
Figure 4. Motivated by the work of Xiong et al. [10], we try to
enforce more question-answer interactions by designing
more careful matrix multiplication, operations, and con-
catenations in the coattention mechanism.

We first perform matrix multiplication to calculate the
affinity matrix L, which includes affinity scores corre-
sponding to all pairs of question and answer words. It can be
described as follows:

L � HT
AHQ ∈ Rm∗n. (5)

c

h

tanh

Ct–1

ft it c~t Ot

σ σ σ

Wf Wi Wc Wo

ht–1

[ht–1, xt]

xt

ht

Ct

tanh

[·, ·]

Figure 2: Architecture of Long Short-Term Memory cell.
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Softmax function is applied to standardize vector ele-
ments, and it is effective in dealing with multiclassification
and probability distribution problems. Hence, the column-
and row-based softmax functions are utilized to generate
attention weights for the hidden states of question and
answer separately in the following equation:

AQ
� softmax(L) ∈ Rm∗n,

AA
� softmax LT􏼐 􏼑 ∈ Rn∗m. (6)

In order to obtain the attention vector of the question
in light of each word of answers, we concatenate at-
tention weights and affinity matrix to compute new
context vectors CQ and CA. Here, CQ and CA are the
results of the interaction between the question and the
answer vector:

CQ
� HAA

Q ∈ Rd∗n,
CA
� HQA

A ∈ Rd∗m.
(7)

ht–1 ht ht+1

yt–1 yt yt+1

xt–1 xt xt+1

LSTM LSTMLSTM

LSTM LSTMLSTM

LSTM LSTMLSTM

LSTM LSTMLSTM

Forward layer

Backward layer

Forward layer

Backward layer

Figure 3: Architecture of the stacked BiLSTM networks.

HQ

HA

AQ

AA

CQ

CA

Softmax

Softmax

L=HA
T HQ

Figure 4: An illustration of the coattention mechanism.
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3.3. AttentiveAttentionMechanism forAnswer Representation.
To reduce the information loss of stacked BiLSTM, a soft
attention flow layer can be used for linking and integrating
information from the question and answer words [1, 13]. In
the proposed model, the attention mechanism is applied to
the output of coattention. We assume that CQ

t indicates t-th
attention context vector of the question, and the max
pooling is taken to convert the input into a fixed-length
vector output Oq. �en, the softmax weights of all context
vectors (CA

1 , C
A
2 , . . . , C

A
m) can be learned autonomously

according to Oq via the attention mechanism, and the
weighted context vector Oa of the answer is used as the final
representation:

Oq � max
0<t<�n

C
Q
t ,

Maq(t) � tanh WamC
A
t +WqmOq( ),

Saq(t) ∝ exp w
T
msMaq(t)( ),

Oa �∑
m

t�1

C
A
t Saq(t).

(8)

Here, Wam and Wqm represent the attention matrices
of CA

t and Oq, respectively. wms denotes the attention
weight vector. �e final representation Oa of answer is
determined by the attention weight Saq(t) for answer
context vector of the t-th word. It is normalized by the
softmax function, which is proportional to CA

t . Higher
values for Saq(t) indicate higher correlation between CA

t

and the question, and the question vector will get more
attention.

3.4. Answer Scoring Mechanism and Objective Function.
In this work, we resort a method to reconcile cosine simi-
larity and Euclidean distance to evaluate the degree of
matching between the questions and answers. Cosine sim-
ilarity represents the angle between two vectors, and the
Euclidean distance represents the distance between two
points in Euclidean space. We hope that the distance be-
tween the question and the answer semantic vector to be
close enough and the angle is small enough, to maximize the
similarity calculation between question and answer pair
sentence vectors. �e schematic diagram of cosine similarity
and Euclidean distance is shown in Figure 5.

A vector representation of the question and answer is
obtained from the hidden layer of the model. �e cosine
similarity and Euclidean distance calculation details are as
below. Score(Oq, Oa) is the final match result:

Scorecosine Oq, Oa( ) �
Oq · Oa

Oq

∣∣∣∣∣
∣∣∣∣∣ Oa

∣∣∣∣
∣∣∣∣
, (9)

ScoreEuclidean Oq, Oa( ) �
1

1 + Oq − Oa

�����
�����2
. (10)

Normalize the cosine similarity to the [0, 1] interval and
it can be obtained as follows:

Scorecosine Oq, Oa( ) � 0.5Scorecosine Oq, Oa( ) + 0.5,

Score Oq, Oa( ) �
2 · Scorecosine Oq, Oa( ) · ScoreEuclidean Oq, Oa( )
Scorecosine Oq, Oa( ) + ScoreEuclidean Oq, Oa( )

,

(11)

where · represents the point multiplication operation, |Oq|

and |Oa| represent the modulus length of the corresponding
vector, respectively. ‖Oq − Oa‖2 is the Euclidean distance
between two points, and the values of equations (9) and (10)
are in the range of [0, 1].

During training, the positive and the negative samples
can be input simultaneously by using the hinge loss function.
We define the hinge loss function as the training goal as
below:

L � max 0,M − Score Oq, Oa+( ) + Score Oq, Oa−( ){ } + λ‖θ‖,

(12)

where M is the constant margin, a+ and a− denote the
positive answer and the negative answer, respectively. λ and
θ represent regularization parameters and neural networks
parameters separately.

In the process of training, we utilize the backpropagation
algorithm to calculate the gradient zL/zθ and update the
parameter θ to achieve the minimization of the objective
function [34]. Finally, we update the parameters with the
minimum objective function Lmin.

4. Experiments

In this section, we will introduce the detailed information
of the experimental implementation, including TREC-QA
(8-13) dataset and Wiki-QA dataset, model evaluation
indicators, and selection of training parameters, and then,
we will carefully analyze the experimental results on dif-
ferent datasets to prove that our proposed model has good
accuracy and robustness.

Z

X

Y

Q

A

dist (Q, A)

cos θ

Figure 5: Schematic diagram of cosine similarity and Euclidean
distance.
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4.1. Implementation Details

4.1.1. Datasets. In this part, we mainly introduce two
public datasets, TREC-QA (8-13) dataset and Wiki-QA
dataset, and we also introduce the source, data charac-
teristics, and the number of Q&A pairs of these two
datasets in detail.

,e experiment is operated on the Text REtrieval Con-
ference 8-13 QA datasets (http://nlp.stanford.edu/mengqiu/
data/qg-emnlp07-data.tgz) to evaluate our model, which was
created by Wang et al. [35] and further elaborated by Yao
et al. [17]. As shown in Table 1, we use the 53417 Q&A pairs
in TREC 8-12 to train themodel, while using 1148Q&A pairs
and 1517 Q&A pairs in TREC 13 for development and
testing, respectively. Among them, per question in the de-
velopment set contains 2.7 positive answers and 11.3 negative
answers; per question in the test set contains 3.2 positive
answers and 14.0 negative answers. Following Yao et al. [17],
candidate answer sentences with more than 40 words and
questions with only positive or negative candidate answer
sentences are removed from the assessment.

Wiki-QA (https://www.microsoft.com/en-us/download/
details.aspx?id�52419) is an open domain Q&A dataset
provided by the Microsoft team in 2015. ,e questions in
Wiki-QA are mainly focused on the question of classifi-
cation, number, and personal information. ,ey are
collected and organized by real data of users. ,e candidate
answer statement comes from the topmost text paragraph
returned by the Wikipedia input page. As shown in Table 2,
after filtering out the question without the correct answer, a
total of 1242 Wiki-QA questions were obtained, and 293
correct answer sentences matched the problem, and the
data format of Wiki corpus is not much different from
TREC-QA (8-13).

In this paper, all experiments were performed on
Python, MATLAB, and their optimization toolboxes on a
computer with an Intel Core 2 Duo 2.93GHz processor and
a Windows 7 operating system.

4.1.2. Evaluation Metrics. Following the previous works of
Wang et al. [35] on this task, two evaluation metrics are
utilized for our task: mean average precision (MAP) and
mean reciprocal rank (MRR). MAP is the mean average
precision score for each query. It reflects the performance
of the retrieval system on all queries. ,e higher the order
of related documents returned by the system, the larger
the value of the corresponding MAP. MRR indicates the
location of the first correct answer associated with the
query. ,e more forward the answer stands, the larger the
corresponding MRR value is. Higher values for MAP and
MRR indicate better system performance. We resort the
official trec_eval (http://trec.nist.gov/trec_eval/) scripts
to calculate these metrics:

MAP �
1

Nq

􏽘
Nq

i�1

Pi(r),

Pi(r) � Pi(1) �
1

nai
􏽘
nai

k�1

k

rankk
,

MRR �
􏽐Nq

i�1 1/ranki( 􏼁
Nq

,

(13)

where Nq represents the number of all queries and nai
represents the number of all relevant correct answers for
query i. Pi(r) represents the average accuracy of the i-th
query with recall ratio r. rankk represents the position of the
k-th correct candidate answer in the entire answer sequence
after confidence ranking of the candidate answers for the
query. ranki represents the position in which the first correct
candidate answer for query i is located in the set of candidate
answers.

4.1.3. Experimental Setting. In this paper, different experi-
mental factors are set to test and evaluate our proposed
method, and then our method is compared with other most
advanced methods under the same dataset. ,e neural
network model is implemented with TensorFlow library. In
the course of training, we continuously observe the per-
formance on the test set and select the highest MAP and
MRR score parameters for final evaluation. Our imple-
mentation is as follows:

(1)Word Embedding. Pretrained GloVe (https://github.com/
stanfordnlp/GloVe) [36] is used as the word embedding layer
offered by the shared task with 400 dimensions. In addition,
each sentence is padded with OOV (out of vocabulary)
handling method to the maximum length of fixed lengths,
which is 40 words for question and answer. In the candidate
answer pool, we set the number of negative answers K� 5.

(2) Parameter Initialization. During training, we set the
minimum batch size to 40 and refer to the Adam [13] ex-
periment on the TensorFlow to initialize the learning rate to
0.001. ,e margin M is fixed to 0.2 and the regularization
parameter λ is set to 1e − 5. Furthermore, we experimented with
single-layer BiLSTM, stacked BiLSTM, and stacked BiLSTM
with coattention. Each layer of LSTM has a memory size of 200.

(3) Optimization Algorithm. Adam algorithm [37] is resorted
with the decay rate of 0.95 to update the parameters and
optimize our model. Subsequently, we add dropout layer
after word embedding to avoid overfitting and set dropout
rate to 0.5. In order to effectively control the weights within a
certain range to avoid gradient explosions, the clip gradients
method is used and the gradient threshold is set to 5.
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4.2. Results and Analysis. In order to verify the validity and
accuracy of the algorithm model of the fusion stacked
BiLSTM network and the coattention mechanism in the
intelligent question answering, we tested and verified the
TREC-QA (8-13) dataset and Wiki-QA dataset, re-
spectively, and the experimental results were analyzed and
summarized.

4.2.1. Results and Analysis of TREC-QA (8-13) Dataset.
We conducted a comparative experiment on single-layer
BiLSTM, stacked BiLSTM, and stacked BiLSTM with
coattention on the TREC-QA (8-13) dataset. Figure 6
compares the sentences of semantic analysis with or with-
out coattention. Figure 7 reveals the variation in evaluation
metrics with the epochs. Table 3 shows the details of ex-
perimental results for all mentioned baselines and our
proposed model.

(1) Different from the traditional work of Yih et al. [18]
and Yu et al. [38], who analyzed the problem from
the perspective of sentence structure, it can be ob-
viously discovered that both our experiments and
many previous studies such as BiLSTM [1] and CNN
[39] have achieved better performance. ,ese re-
searches show that the semantic analyses of sen-
tences are very necessary for NLP tasks and the deep
neural networks are able to make the sentence
vectors more representatives.

(2) We found that our experimental results of the
coattention mechanism were significantly better
than most of the above results [1, 8, 38]. Specifi-
cally, comparing the results of line 15 with Nie et al.
[8], our model achieved 3.52% gain for MAP and
3.83% gain for MRR. ,ese experimental results
strongly demonstrated that coattention mecha-
nism and attention mechanism play an important
role in improving NLP experimental results. ,e
proper use of them allows the model to pay at-
tention to the output vectors and extract the critical
information well in the case of flexible input

format. In this way, they can fix the lexical gap
between questions and answers while capturing
QA pair correlations.

(3) ,e experimental index of stacked BiLSTM is better
than single-layer BiLSTM when compared line 11
and line 12 with line 13 and line 14, respectively.
Furthermore, Wang and Nyberg [6] resorted three-
layer BiLSTM networks and achieved an increase in
MAP (1.52%) and MRR (1.49%) over single-layer
BiLSTM of line 11. In general, the appropriate
amount of multilayer BiLSTM networks helps to
understand the relationship between words and
words in a deep level and better extract the char-
acteristics of the sentence itself.

(4) ,e best MAP (0.7613) and MRR (0.8401) are ob-
tained by incorporating the coattention mechanism
into a stacked BiLSTM neural networks and com-
bining cosine similarity and Euclidean distance to
calculate the matching degree between two vectors.
Our experimental result outperforms the state-of-
the-art baselines of Tan et al. [1, 7] by MAP (0.83%)
and MRR (0.79%), respectively, which shows that
combining the cosine similarity and the Euclidean
distance balances the relationship between the angles
and distances of two vectors to more effectively
match questions and answers.

Firstly, we conducted comparative experiments in the
model training process, selected the question and answer
statement from the test set of TREC-QA (8-13) randomly,
trained the model with/without coattention mechanism,
and obtained the corresponding semantic vector repre-
sentation through different models. ,e specific content
verified that the presence or absence of a coattention
mechanism had an impact on the analytical representation
of the semantics of the statement. ,e comparison results
are shown in Figure 6.

In Figure 6, the top row of the four matrices represents
the semantic parsing results after the action of the coat-
tention mechanism. ,e following line does not have this
mechanism. It can be seen from the figure that after adding
the coattention mechanism, the more critical words of the
four sentences get more weights; they are more prominent
in the process of parsing the expression of the statement,
and the verbs such as “is” and “the.” ,e semantic weight
ratio of the articles is correspondingly reduced.,e analysis
shows that the coattention mechanism has the ability to
capture the relationship between the statement itself and
the statement and can make the semantic expression of the
statement more fully without adding additional artificial
conditions.

Table 1: Details of TREC-QA (8-13) dataset.

Set Source Questions Positive answers Negative answers Length

Train-All TREC 8-12 1229 6403 47014 ≤40
Dev TREC 13 84 222 926 ≤40
Test TREC 13 100 284 1233 ≤40
Total TREC 8-13 1411 6909 49173 ≤40

Table 2: Details of Wiki-QA dataset.

Set Questions
Positive
answers

Negative
answers

Length

Train-
All

873 1040 19320 16.27

Dev 126 140 2593 15.91
Test 243 100 5872 16.11
Total 1242 293 27785 16.17
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Secondly, we verified the epoch sensitivity of the above
several models under different iteration periods. Figure 7
shows the variation in MAP and MRR for each model. We
performed a comparative experiment of five models, in-
cluding BiLSTM, stacked BiLSTM, stacked BiLSTM with
coattention, BiLSTM with coattention, and stacked BiLSTM
with coattention; furthermore, we also presented changes in
MAP and MRR for the same model at different epochs.

We performed an epoch-number sensitivity analysis on
our proposed model, which varied from 5 to 35. Figure 7
displays the changes in the validation data for MAP and

MRR when we change the number of epochs. We observed
that both MAP and MRR changed with increasing the
number of epochs but tended to be stable after epoch 25.
However, the MAP and MRR values of some models have a
decreasing trend as the epoch number increases more than
30. It reflects that a certain range of iterations is able to
enhance the learning ability of the model and improve the
experimental results.

We presented an optimized deep model by using stacked
BiLSTM, coattention mechanism, attention mechanism, and
a combined similarity metric, and our experimental results
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Figure 6: Comparison of sentence semantic analysis with or without coattention.
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are shown in line 11 to line 15 of Table 3. We compared and
summarized our observations as follows.

4.2.2. Results and Analysis of Wiki-QA Dataset. We did
further comparison experiments on the Wiki-QA dataset.
Validation of the model on the Wiki-QA dataset makes the
proposed approach more convincing. ,e parameter ini-
tialization and preset aspects of the model on the Wiki-QA
dataset are basically consistent with the settings of the TREC
dataset, where the batch size of the dataset is 30. Because it is
also the order of information retrieval and candidate answer
rankings, according to the official evaluation data, the
evaluation metrics are selected as MAP and MRR.

We also validated the various models of the design under
different epochs on theWiki-QA dataset, as shown in Figure 8.
It can be seen from the figure that the model tends to be stable

as the epoch reaches 30 times. When the number of epoch
continues to increase, both MAP and MRR have a slight
downward trend. ,e experimental results not only prove that
the problem-solving of the model architecture analysis in this
paper is effective for the sentence semantics, but also prove that
the model has good accuracy and robustness.

,e experimental results of each model under the
Wiki-QA dataset are shown in Table 4. Compared with
the current related research, the model results are su-
perior to most baseline models [40, 41]. Comparing the
results of line 1 and line 5 of Table 4, it can be seen that the
stacked BiLSTM model is much more accurate than the
single-layer LSTM model. In addition, the best experi-
mental results of the model compared with the model in
[42], the average accuracy is 0.05% higher than the model
in [42].

Table 3: Experimental results of different baselines and our proposed model on Train-All data.

Idx Model MAP MRR

1 Probabilistic quasi-synchronous grammar [35] 0.6029 0.6852
2 Tree edit models [2] 0.6091 0.6917
3 Linear-chain CRF [17] 0.6307 0.7477
4 LCLR [18] 0.7092 0.7700
5 Bigram+ count [38] 0.7113 0.7846
6 ,ree-layer BiLSTM+BM25 [6] 0.7134 0.7913
7 Convolutional deep neural networks [39] 0.7459 0.8078
8 BiLSTM/CNN with attention [7] 0.7111 0.8322
9 Attentive LSTM [1] 0.7530 0.8300
10 BiLSTM encoder-decoder with step attention [8] 0.7261 0.8018
11 BiLSTM 0.6982 0.7764
12 Stacked BiLSTM 0.7127 0.7893
13 BiLSTM with coattention 0.7325 0.7962
14 Stacked BiLSTM with coattention 0.7451 0.8114

15
Stacked BiLSTM with coattention
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0.7613 0.8401
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Figure 8: Variation in evaluation metrics with the epochs: (a) MAP and (b) MRR.
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In the field of intelligent question answering, these data
results confirm that the model has some excellent performance
in the statement semantic capture representation of questions
and answers and can better represent semantic features.

5. Conclusion

In this paper, we proposed a stacked BiLSTM neural
network based on the coattention mechanism for question
answering. Stacked BiLSTM is used to sentence semantic
understanding and modeling; coattention mechanism and
attention mechanism are utilized to obtain the co-
dependent representation of questions and answers; the
combination of cosine similarity and Euclidean distance is
used to calculate the similarity between the question and
the answer. As reported in Section 4.2, we conduct ex-
periments on the datasets of TREC-QA (8-13) and Wiki-
QA, and then experiments on the TREC-QA (8-13) dataset
demonstrated that the best MAP (0.7613) and MRR
(0.8401) are achieved by using our model. We obtained a
certain degree of improvement in MAP (0.83%) and MRR
(0.79%) compared with other optimal baselines. Experi-
mental results show that the proposed model is efficient for
question answering. Note that, the experiment was only
tested on two small datasets. ,e future work would focus
on the implementation of replacing the original coattention
mechanism with dynamic coattention network plus
(DCN+) and incorporating CNN into the model to im-
prove the experimental results. In addition, the imple-
mentation of the proposed model in other large-scale
datasets such as SQuAD and SemEval-cQA will be an
important issue for the next work.

Data Availability

,is work involved data from the Text REtrieval Conference
(TREC) 8-13 datasets and Wiki-QA datasets. We used the
53417 Q&A pairs in TREC 8-12 to train the model, while
using 1148 Q&A pairs and 1517 Q&A pairs in TREC 13 for
development and testing, respectively. All researchers can
access the data in the following site: http://nlp.stanford.edu/
mengqiu/data/qa-emnlp07-data.tgz, https://www.microsoft.
com/en-us/download/details.aspx?id�52419. ,e data are
divided into train data and development/test data.
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