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Internet of things (IoT) devices and applications are dramatically increasing worldwide, resulting in more cybersecurity challenges.
Among these challenges are malicious activities that target IoT devices and cause serious damage, such as data leakage, phishing
and spamming campaigns, distributed denial-of-service (DDoS) attacks, and security breaches. In this paper, a stacked deep
learning method is proposed to detect malicious traffic data, particularly malicious attacks targeting IoT devices. The proposed
stacked deep learning method is bundled with five pretrained residual networks (ResNets) to deeply learn the characteristics of
the suspicious activities and distinguish them from normal traffic. Each pretrained ResNet model consists of 10 residual blocks.
We used two large datasets to evaluate the performance of our detection method. We investigated two heterogeneous IoT
environments to make our approach deployable in any IoT setting. Our proposed method has the ability to distinguish between
benign and malicious traffic data and detect most IoT attacks. The experimental results show that our proposed stacked deep
learning method can provide a higher detection rate in real time compared with existing classification techniques.

1. Introduction

Internet of things (IoT) devices are increasingly growing in
number and playing very critical roles in our daily lives.
IoT devices are behind many popular technology solutions
and concepts, such as home automation, autonomous cars,
smart cities, Internet of Medical Things, and advanced
manufacturing. In IoT, physical devices and everyday objects
can be assigned Internet protocol IP addresses and have
Internet connectivity. These devices use embedded sensors,
processors, and communication hardware to gather, process,
and send the data that they capture from their surrounding
environments. Thus, they are exposed to many cybersecurity
threats [1, 2]. In May 2017, a survey by Synopsys indicated
that 67% of manufacturers believe that medical devices are
prone to attacks and that medical devices are the most likely
to be compromised within 12 months, but only 17% of man-
ufacturers apply procedures to prevent these attacks [3]. A
2020 report by McAfee indicated that cybercriminals are tak-
ing advantage of the COVID-19 coronavirus pandemic, lead-
ing to a significant increase in several threat categories such

as IoT malware, mobile malware, and PowerShell malware.
Specifically, McAfee labs perceived 375 cyberthreats per min-
ute during the first quarter of 2020 [4]. Thus, critical systems
such as medical IoT devices and healthcare networks have
been targeted by cybercriminals as the disease continued to
spread [5].

One of the most devastating IoT environment flaws is
the lack of security measures. This deficiency makes IoT
devices vulnerable to various attacks, such as denial-of-
service (DoS), spoofing, data leakage, insecure gateways,
and eavesdropping.

These vulnerabilities can cause great harm to hardware
and lead to system blackouts, which render services unavail-
able and even cause physical damage to individuals [6].
Therefore, the security capabilities of IoT devices in IoT tech-
nology do not satisfy minimum security requirements, such
as CIA (confidentiality, data integrity, and availability). The
reasons for the insufficiency of security capabilities of IoT
devices are twofold: the heterogeneity of IoT devices with
respect to hardware, software, and protocol diversity and
limited computational power [7]. In general, it is difficult
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for an IoT device with low computational power, limited
memory size, and restricted battery capability to perform
high-complexity security algorithms that demand intensive
computation and communication load [8]. Thus, imple-
menting and deploying security measures in IoT environ-
ments have been a long-lasting issue [9]. However, security
solutions such as NIDSs (network intrusion detection sys-
tems) that do not add overhead to IoT devices/environments
are effective that they are considered the first line of defense
against cyberattacks.

Lately, the main research area within NIDS has been
machine and shallow learning methods that are based on
well-known algorithms, such as naive Bayes (NB) [10], sup-
port vector machine (SVM) [11], and decision tree (DT)
[12]. Compared with rule-based expert system NIDS, con-
ventional machine learning-based NIDS approaches have
several advantages, such as minimal/no human expert inter-
action (an expensive process that requires labor-intensive
procedures) and reduced errors when constructing the data.
Deep learning (a subdomain of machine learning) has been
successfully used in many applications, such as computer
vision [13], natural language processing [14], and speech rec-
ognition [15], and it has achieved state-of-the-art results.
Motivated by the success of machine learning-based
approaches and the room for improvement in accurately
classifying network traffic and identifying attacks, we investi-
gated deep learning to improve the performance of NIDS,
especially in terms of accuracy.

1.1. IoT Challenges and Attack Scenarios. Smart things with
extensive heterogeneity reside in diversified IoT environ-
ments, and they connect to each other via assorted commu-
nication links and networking protocols. For instance,
devices that reside in smart homes differ from devices that
reside on smart grids. Smart home IoT devices include but
are not limited to smart appliances, security cameras, baby
monitors, connected lighting, smart meters, doorbells, ther-
mostats, solar panels, smoke alarms, and webcams. These
devices could reside in one IoT environment setting (i.e.,
smart home setting), but not in every IoT environment.
These devices communicate with each other using a specific

network protocol and connect with the gateway using the
same or another network protocol. Devices that reside in dif-
ferent IoT environments such as smart grids can range from
power generators, intelligent electronic devices (IEDs), brea-
kers, and substation switches. Some terms used in this sub-
section and their descriptions are shown in Table 1.

In this research, we investigated two attack scenarios
targeting two heterogeneous IoT environments, namely,
the smart home and smart grid, to validate our assertion.
The smart home environment attack scenario shown in
Figure 1 consists of various IoT devices, including doorbells,
thermostats, baby monitors, security cameras, and webcams.
These devices connect to WiFi access points, which act as
coordinators that relay traffic to the wired side of the network
through a data link layer device (i.e., a switch). Cyberattacks
can be launched using two famous botnets known as Bashlite
and Mirai.

The possible attacks launched by Bashlite botnet can be
in the form of the following:

(1) Scan: sniffing the network to find vulnerable devices
in order to launch other attacks

(2) Junk: launching spam messages

(3) User datagram protocol (UDP): traffic launched
using the UDP protocol to flood the network

(4) Transmission control protocol (TCP): traffic
launched utilizing the TCP protocol to flood the
network

(5) COMBO: launching spam messages and connecting
to a given IP address and port number

The possible attacks launched by Mirai are as follows:

(1) Scan: finding vulnerable devices by scanning the
network

(2) Ack: launching attacks to flood the network using ack
packets

(3) Syn: flood the network by launching syn packets

(4) UDP: launching UDP traffic to flood the network

Table 1: Description of some IoT terms.

Term Description

Smart meter
An IoT device that reports information such as gas,

water, or energy consumption of a home or
organization.

Thermostat

A device that senses a given system’s temperature
and carries out actions to maintain that

temperature. It also permits users to remotely
control home heating or air conditioning.

Gateway
A central hub that acts as a bridge that connects

sensors or actuators to the Internet.

Switch
A data link layer device that uses a 48-bit identifier

(a.k.a. MAC addresses) to convey data.

WiFi access
point

A networking device that connects WLAN devices
to the wire of the network through a router or a

switch.

Cyber attacked

Attacker

Figure 1: The first attack scenario where the attacker is in control of
smart home IoT devices through the used communication
technology.
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(5) UDPPlain: flood the network with UDP traffic using
fewer options

The smart grid attack scenario shown in Figure 2 consists
of various components that form the configuration of a
power system framework. The configuration comprises
power generators (denoted by G1 and G2) and intelligent
electronic devices (labeled R1 to R4), whose purpose is to
switch the breakers on or off. The breakers denoted by
BR1–BR4 are connected using two lines: one line connects
BR1 and BR2, and the other line connects BR3 and BR4.
Additionally, a distance protection scheme that tumbles the
breaker to detect faults is used by IEDs. This scheme is used
because there is no internal validation mechanism that
detects whether the detected faults are faked or valid. More-
over, operators can be used to launch commands to the IEDs
to tumble the breakers. The IEDs are connected to the wired
side of the network through a substation switch.

The following listed attacks (along with their purposes)
can be launched by intruders to harm the IoT environment
(i.e., industrial control system):

(1) Remote tripping command injection: the breaker is
open as a result of issuing a command (i.e., launching
remote tripping command injection) to a relay

(2) Data injection: this attack can be implemented by
tweaking values of parameters such as sequence com-
ponents, current, and voltage to mimic a valid fault,
and it affects the operator (the operator encounters
a blackout)

(3) Relay setting change: the attacker utilizes the distance
protection scheme (used to configure relays) to alter
the relay settings in order to block their functions.
Thus, the relay will not be able to trip for either a
valid command or a proper fault

1.2. Motivation. As we mentioned in Introduction, it is diffi-
cult to implement security solutions such as encryption that
require decent computation resources in low-constrained
IoT devices. The importance of NIDS comes into play here:
it can be implemented for powerful computers or even
servers at the edge of the IoT environment, and it acts as
the first line of defense for all the devices in the IoT environ-
ment. However, deploying a consolidated NIDS that works in
any IoT environment is a heavy-duty task since these hetero-
geneous smart things have different characteristics, and the
traffic generated by these devices is distinct (i.e., the traffic

of legitimate IoT devices in a given IoT environment might
be different from traffic generated by legitimate IoT devices
in another IoT environment). Motivated by these challenges,
we propose an NIDS that can deeply learn the characteristics
of IoT devices and detect intruders that intend to harm the
IoT environment. We evaluated our proposed method on
two heterogeneous IoT environments consisting of heteroge-
neous IoT devices.

To the best of our knowledge, the architecture of the pro-
posed stacked deep learning approach is novel and improves
the performance (in terms of accuracy) of current NIDSs
deployed in the IoT paradigms. The contributions of this
research paper are the following:

(1) A novel stacked deep learning architecture compris-
ing five pretrained residual network (ResNet) models
is proposed to accurately identify IoT cyberattacks

(2) The proposed method achieved promising results on
two widely used datasets involving IoT traffic

(3) The proposed method was evaluated on two hetero-
geneous IoT environments, making the method more
thorough and able to detect more attacks than previ-
ously proposed methods

The rest of the paper is constructed as follows: Section 2
surveys the related work. The deep learning and stacked gen-
eralization ensemble background are introduced in Section 3.
Section 4 presents our proposed stacked deep learning
approach. Section 5 introduces the empirical evaluation and
results. Section 6 analyzes the results. Section 7 concludes
our research paper.

2. Related Work

Several methods for the detection of IoT attacks have been
previously proposed. For example, a recent research study
[16] proposed a feature selection method based on the cor-
rentropy and correlation coefficient to evaluate and measure
the strength and importance of network traffic features.
Then, the AdaBoost ensemble method was used to combine
three classification techniques, namely, NB, artificial neural
network (ANN), and DT, to detect any malicious events.
The proposed method was tested on two datasets, which
are designated for IoT traffic and IoT botnet attacks in par-
ticular. The proposed method yielded a promising result
compared with NIDSs based on conventional algorithms.
However, this method is not comprehensive and cannot
detect all the attacks that target IoT networks because it
was evaluated using DNS and HTTP traffic only, and the
generated malicious traffic contained IoT botnet attacks
exclusively.

Mirsky et al. [17] proposed an online anomaly detection
framework using an unsupervised learning method based
on ensemble autoencoders that can efficiently detect abnor-
mal patterns in network traffic. The framework consists of a
feature extractor to extract useful features, a feature mapper
to map the features to one of the autoencoders, and an anom-
aly detector to classify and detect anymalicious packets in the

Attacker

Cyber attacker Substation
switch

BR1 BR2 BR3 BR4

R4R3R2R1
G2G1

Figure 2: The second attack scenario where the attacker is in
control of power system architecture through the substation switch.
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network traffic. Some inherent limitations of anomaly detec-
tion can markedly affect this approach, taking into consider-
ation the heterogeneity of IoT devices and their unexpected
generated traffic. First, attackers can bypass this approach
by generating traffic that is similar to normal traffic but
includes malicious activities. Second, traffic from legitimate
devices that have software defects might be treated as abnor-
mal traffic and thus increase the number of false alerts.

Meidan et al. [18] proposed deep learning autoencoders
to detect any attacks launched from IoT bots. In this work,
the deep autoencoder was trained on benign instances that
exhibited normal behavior only so that it could be trained
to reconstruct its inputs. Thus, it succeeded at reconstructing
normal observations, but it failed at reconstructing abnormal
observations (unknown behaviors). When the reconstruction
error accrued, then the given observations were classified
as anomalies. A threshold value was used to discriminate
between benign and malicious activities. The framework
was evaluated on one dataset and was able to detect the
abnormal traffic effectively. However, the framework was
not evaluated using different IoT settings other than a smart
home (i.e., normal traffic was generated through nine smart
home devices, such as a doorbell, security camera, and ther-
mostat). Thus, its effectiveness in detecting other IoT attacks
and IoT environments has not been investigated. It is an
approach designed for a specific purpose: IoT botnet attacks
that target smart home devices. This technique might not
work in other IoT environments as effectively as it does in
smart home settings because of the heterogeneity of IoT envi-
ronments, in which it is hard to make profiles for the normal
traffic of IoT devices. Marcelo et al. [19] designed an adaptive
network layer scheme consisting of several building blocks
to analyze the network behavior of the Mirai and Bashlite
botnet families and develop signatures that can help block
the attacks. Prokofiev et al. [20] used the logistic regression
model to detect the IoT botnets at early operational steps.
These approaches share the same limitation, which is their
design to detect IoT malware families (i.e., Mirai and Bash-
lite). Other attacks that target IoT devices can bypass the
NIDS and affect the IoT environment. Derhab et al. [21]
proposed an intrusion detection system. Their system uti-
lizes the random subspace ensemble method and k-nearest
neighbors (KNN) to detect forged command attacks that
are sent to degrade the industrial control process perfor-
mance. The random subspace (also known as bagging) uses
subsets of the features that are taken randomly instead of
utilizing the whole feature set. The random subspace is
always bundled with a classifier (usually a decision tree clas-
sifier) to perform supervised learning. The authors investi-
gated KNN, which achieved promising results, and then,
they used random subspace as an ensemble method consist-
ing of KNN to further improve the performance. Although
the proposed method yielded promising results, it was only
tested on one dataset that was designed for the smart grid
environment. When tested in other IoT settings, its effective-
ness might deteriorate.

Wang et al. [22] proposed a method based on an artifi-
cial recurrent neural network (RNN) known as long short-
term memory (LSTM) to detect a data injection attack in

the industrial control process. The authors utilized an LSTM
characteristic that is capable of predicting temporal sequences
and deals with discrete data by constructing the correspond-
ing correlation. The LSTM was trained using normal traffic
and tested using the traffic that was generated from the sen-
sors in the testbed. Subsequently, the authors utilized a
Euclidean detector (i.e., a detector employing a Euclidean
distance mechanism) to measure the deviation of new unseen
traffic to detect attacks. The proposed method is a specific-
purposed strategy that was introduced to detect data injec-
tion attacks in the industrial control process. Thus, its effec-
tiveness in the detection of other attacks that target IoT
environments was not investigated. Additionally, the authors
only used one dataset, which is not sufficient for evaluating
the performance of the proposed method.

Most previously proposed solutions utilized conventional
machine learning algorithms to detect IoT cyberattacks.
However, these solutions are lacking in terms of accuracy.
While there are few solutions based on deep learning, these
used off-the-shelf architectures that are designed for solving
other problems; hence, they are not accurate enough to detect
IoT cyberattacks. Moreover, all of these solutions only seek to
address a part of the problem, e.g., detecting smart home
cyberattacks (i.e., none of these solutions were evaluated on
heterogeneous IoT environments).

3. ResNet and Stacked Ensemble Background

This section discusses the two techniques that we utilized to
detect IoT cyberattacks. Deep learning in general and ResNet
architecture in particular and the stacked generalization
ensemble are introduced in Sections 3.1 and 3.2, respectively.

3.1. ResNet Model Background. Deep learning is considered a
subset and evolution of machine learning. Deep learning has
reshaped the field of machine learning and has recently
gained the attention of the machine learning research com-
munity due to its powerful performance. It can extract mean-
ingful data representation and features. Moreover, it can
handle a massive amount of data in short span of time, while
maintaining outstanding performance. Furthermore, some
deep learning algorithms such as the convolutional neural
network (CNN) do not require any preprocessing steps. Deep
learning algorithms have been able to solve many compli-
cated problems. Particularly, CNN is an advanced deep
learning method that has achieved state-of-the-art results in
many fields, such as facial, gait, action, and speech recogni-
tion; visual object recognition; and object detection. CNN is
composed of multiple processing layers, such as convolu-
tional, subsampling, and fully connected layers. The ultimate
goal of these layers is to extract and learn the important fea-
tures and representations of data. Although CNN is making
major advances in solving very complicated issues that can-
not be solved by other algorithms, optimizing and finding
the best CNN model are still complicated issues. In the last
decade, researchers have proposed many advanced deep
CNN models, such as AlexNet [23], ResNet [24], Xception
[25], visual geometry group (VGG) [26], and Inception
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[27]. ResNet has shown great performance and has achieved
state of the art compared with other CNN architectures.

The ResNet model consists of many ResNet Blocks. A
ResNet Block has a special underlying mapping and the
“identity shortcut connection” feature, which skips one or
more layers.

3.2. Stacked Generalization Ensemble. Stacked generalization
[28] or simply stacking was proposed by Wolpert in 1992. A
stacked generalization ensemble is a technique that combines
multiple base-level classification models via a metaclassifier
or metalearner. The outputs of these trained base-level
models are combined and used as features to train the meta-
classification model. The procedure of stacked generalization
is as follows: two disjoint sets of data are split from the train-
ing set, the base-level classification models are trained by uti-
lizing the first part, the base-level classification models are
tested using the second part, and the predictions generated
from the base classification models are used as inputs and
the ground truth table as outputs to train the metaclassifica-
tion model. Note that the training and the testing parts of
stacked generalization are similar to cross-validation; how-
ever, the base-level classification models are combined (very
likely nonlinearly) instead of utilizing a winner-takes-all
technique. The accuracy resulting from stacking has been
proved to be higher than that of individual classifiers [29].

4. Our Proposed Method

The approach proposed in this paper uses one of the most
advanced machine learning algorithms to detect cyberattacks
against IoT devices. Our method is based on deep learning.

We stacked five deep ResNet models Ci = c1,⋯, ci, and the
outputs of these models are connected to a new model that
takes their output as new training data. The following Algo-
rithm 1 explains the function of our Stacked ResNet Models.

D is the dataset, xt is the input sample, yt is the label for
that sample, and t is the index.

In each ResNet model, all 10 ResNet Blocks have two
convolutional layers. Given the input X, which is fed into
the convolutional layer (L), the operation of the ResNet block
is defined as

Xi+1 = Ln Xð Þ,

Xi+2 = Ln+1 Xi+1
� �

,

Xi+3 = Ln+2 Xi+2
� �

+ X,

ð1Þ

where n is the index of the layers. The architecture of our pro-
posed model is shown in Figure 3. Each sub-ResNet model
consists of 10 ResNet blocks. Each ResNet is trained individ-
ually with training data D. Then, an entirely new model is
trained to learn how to best combine the contributions from
all five submodels. Thus, as shown in Figure 3, at the testing
stage, each of the five submodels receives an input (a single
vector) and transforms it through a series of layers. Then,
the outputs of all five models are combined to form a new

training dataset Dh, which is fed directly to the new meta-

algorithm H. The new meta-algorithm consists of two dense
layers followed by Softmax to output the class scores. The
first dense layer consists of 40 neurons, and the second dense
layer consists of 20 neurons. All five ResNet models have the
same settings.

Each convolutional layer has 16 convolutional filters
(kernels) that output 16 feature maps. One convolutional
layer is used. The size of each convolutional filter is 9, with
a stride of 1. The values of these parameters are determined
empirically. Moreover, in our case, a 1D convolutional layer
is used since the input is one-dimensional. The output of
each filter is fed directly to the ReLU activation function,
which transforms each value v to the same if it is positive,
or it will output zero, as shown in

f xð Þ =max 0, υð Þ, ð2Þ

where v is the input value to the activation function. The
operation of each convolutional kernel is defined as follows:

Xi = R Kn
∗mn−1 + βn� �

, ð3Þ

where ∗ is the convolution operator. It convolves the kernel

K i with the input image mi−1, adds the bias term β, and then
applies the rectifier function R, as defined in Equation (2), to
produce a feature mapmi. The output of each filter is padded
with zeros so that the output feature map has the same length
as the input. At the beginning of training our network, the
bias terms in our model are initialized to 0, and the weight
matrix of each kernel is initialized using the Glorot (Xavier)
uniform initializer [30]. The Xavier initializer draws samples
from a uniform distribution within the limits −l and l, where

l =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6/f in + f out
p

, ð4Þ

and where f in is the number of input units in the weight
matrix and f out is the number of output units in the weight
matrix.After the last ResNet block, average pooling (avg
pooling) is used to reduce the size of the data, as shown in
Figure 3. We found that average pooling has a slightly better

Input: Training Data D = fxt , ytg in
Output: ensemble classifier H out
Initialisation:

Step 1: learn base-level classifiers Ci

for i =1 to 5 do
Learn Ci based on D.

end for
Step 2: form new data set of predictions Dh

for i=1 to 5 do

Dh={xp, yt}, where xp = fc1ðx1Þ,⋯ciðxtÞg
end for
Step 3: learn a meta classifier

Learn H based on Dh

return H

Algorithm 1: Algorithm for stacked deep ResNet models.
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result than max pooling. Our model uses an average pooling
size of 2, with a stride of 2, to reduce and downsample the
feature maps. The average pooling is defined as

y =
1

k
〠
k

l=1

ml, ð5Þ

where k is the size of the average pooling. The input to aver-
age pooling is divided into rectangular pooling regions.

Each regionm is downsampled by computing the average
of its values.

At the fully connected layer, Softmax is used for classifi-
cation. Softmax is defined as

f i sð Þ =
esi

J j=1e
s j
for i = 1,⋯, J , ð6Þ

where s is an input vector, and it outputs a vector that has
values between zero and one and that has a sum of one.We
also used cross entropy during the training which has a loss
function and Adam optimizer for the optimization of our
model. We used default parameter values, as suggested in
the original paper. Thus, we set the values of β

1
to 0.9, β

2

to 0.999, and the learning rate decay to 0. We chose Adam
optimizer because it has the advantages of both the RMSProp
optimizer and AdaGrad optimizer.

5. Empirical Evaluation and Results

We utilized Keras (the deep learning library for Python pro-
gramming language) [31] to implement our proposed
method. The methods that we compared with our method
were implemented using scikit-learn (the Python machine
learning library) [32]. All of the experiments were conducted

using a laptop running the Windows 10 operating system
with 16GB RAM.

5.1. Datasets. In our experiments, we endeavored to utilize
real-case study scenarios that were carried out in an indus-
trial control system (ICS) (i.e., a smart grid setting) [33]
and a smart home setting [18].

5.1.1. Power System Dataset. The first dataset that we used is a
power system dataset that is part of the ICS Cyberattack
Dataset collection. The power system dataset is divided into
three different subdatasets, categorized according to the
number of classes that they include (i.e., binary-class subda-
taset, three-class subdataset, and multiclass subdataset). In
this study, we only focused on the binary-class subdataset.
The binary-class subdataset has 15 different datasets.
Table 2 shows the number of instances in the binary-class
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1 + + + + + + + + + +
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1 2 2 3 4 5 6 7 8 9 10
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Figure 3: Our stacked deep learning method, which consists of five pretrained residual models. Each pretrained residual model is bundled
with 10 residual blocks.

Table 2: The number of instances in each subdataset of the power
system dataset.

Dataset Samples Dataset Samples Dataset Samples

1 4966 2 5069 3 5415

4 5202 5 5161 6 4967

7 5236 8 5315 9 5340

10 5569 11 5251 12 5224

13 5271 14 5115 15 5276

Table 3: Details of each N-BaIoT subdataset.

Dataset Benign Total

Ecobee Thermostat 39,100 835,876

Ennio Doorbell 13,113 355,500

Samsung SNH 1011 N Webcam 52,150 375,222
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subdataset. The number of samples is 78,377, in which the
number of normal class samples is 22,714, and the number
of abnormal class samples is 55,663. The number of fea-
tures is 128. The cyberattacks launched to generate abnor-
mal traffic are data injection, remote tripping command
injection, and relay setting change. Each sample (instance)
in the binary subdataset is classified into a normal event
or attack event. The power system and its details are pub-
licly available at https://sites.google.com/a/uah.edu/tommy-
morris-uah/ics-data-sets.

5.1.2. N-BaIoT: IoT Botnet Attack Dataset. The N-BaIoT
dataset [18] consists of nine subdatasets collected from nine
IoT devices: Danmini Doorbell, Ecobee Thermostat, Ennio

Doorbell, Philips B120N10 Baby Monitor, Philips B120N10
Baby Monitor2, Provision PT 737E Security Camera, Provi-
sion PT 838 Security Camera, Samsung SNH 1011 N Web-
cam, SimpleHome XCS7 1002 WHT Security Camera, and
SimpleHome XCS7 1003 WHT Security Camera. Each of
the nine sets has malicious data that can be divided into 10
attacks, which are carried by two botnets (i.e., these attacks
are integrated into the “attack” class), plus one class of
“benign.” The details of the three subdatasets of the N-
BaIoT dataset that we used in our experiments are shown
in Table 3. The N-BaIoT datasets and their details are
publicly available at http://archive.ics.uci.edu/ml/datasets/
detection_of_IoT_botnet_attacksN_BaIoT.

5.2. Results. There are 15 power system subdatasets in the
binary category. We split each of these 15 into 70% for
training and 30% for testing. For example, in the first sub-
dataset, we have 3790 training samples and 1625 testing
samples. Each sample is classified as attack or normal.
We pretrained each of the five base-level ResNet models

Table 4: The accuracy of our method compared with the tested methods on the power system datasets.

Model
Power system

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Ours 97.7 97.9 97.2 96.0 97.1 96.8 98.3 97.2 96.7 98.0 97.9 98.0 98.5 98.4 96.9

[16] 93.4 89.3 89.8 88.8 32.5 90.2 75.2 74.9 89.1 88.5 89.8 89.6 92.7 90.1 88.5

[21] 90.0 88.5 86.8 84.9 88.6 85.6 88.5 89.2 87.2 88.8 86.7 86.3 88.9 88.1 87.4

RF 93.8 93.1 94.5 93.3 94.0 93.4 94.3 94.0 93.2 94.0 94.3 93.9 96.0 94.8 92.9

LR 87.7 71.0 72.7 67.9 75.0 71.3 77.5 74.3 69.9 73.1 76.3 69.4 78.5 75.0 68.7

DT 92.5 90.0 89.5 89.4 92.3 91.3 89.2 92.3 90.1 87.9 91.2 89.7 92.7 90.6 88.5

LDA 77.6 73.2 72.1 69.0 76.2 72.3 78.7 74.0 70.5 73.2 77.6 69.6 79.1 74.9 70.0

QDA 50.2 51.4 48.8 50.7 44.9 47.5 49.3 47.8 52.8 50.6 43.2 54.3 49.7 46.4 57.3

KNN 89.4 87.4 86.7 85.1 89.2 85.8 88.0 89.2 86.6 88.4 86.0 86.0 88.9 88.1 87.5

NB 25.2 34.1 33.5 39.2 31.5 32.1 29.2 60.8 35.6 33.4 75.8 39.0 27.6 28.9 38.7

XGB 88.3 84.2 88.4 81.7 81.7 82.6 84.7 86.5 84.4 86.4 84.5 80.9 86.3 83.6 83.4

MLP 79.1 69.4 71.1 62.1 71.5 32.0 73.9 28.0 65.7 71.6 76.5 65.2 76.2 28.4 62.7

RSS 93.8 92.1 93.8 92.8 94.2 93.1 92.8 93.9 92.0 92.7 92.0 92.4 95.5 94.3 92.0

GB 90.0 85.7 87.5 82.5 83.5 83.9 85.6 87.3 85.5 87.7 86.0 84.6 87.1 85.7 85.3
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Figure 4: The average accuracy for each of the 15 power system
subdatasets is shown in subfigure (a), and the accuracy for three
N-BaIoT subdatasets is shown in subfigure (b).
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Figure 5: Convergence of the meta-algorithm during the training.
Subfigure (a) shows the accuracy against the number of epochs,
while subfigure (b) shows the loss against the number of epochs.
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individually using the training set. Using the 30% test
dataset, we fed the output of these five ResNets into the
metamodel as features. Thus, the metamodel was trained
on the outputs of the base-level models.

As described in this subsection, we evaluated the perfor-
mance of our method and three other similar approaches.
Two methods have been proposed recently to detect mali-
cious attacks in the industrial control system environment
[21] and smart home setting [16]. We also tested several
machine learning algorithms, of which random forest
achieved the best accuracy. The most accurate method (i.e.,
the random forest ensemble method) among the tested
methods was included in this study to further evaluate our
proposed method. As we mentioned in the previous subsec-
tion, the power system dataset and N-BaIoT dataset were uti-
lized to validate our proposed method, particularly binary-
class datasets. The first dataset contains 15 subdatasets. For
the binary class, our method achieved the best performance
in terms of accuracy on all subdatasets. The results of our
method when applied to the power system dataset are listed
in Table 4.

The average accuracy of our method and the accuracies
of the compared methods are shown in Figure 4. The average
accuracy was calculated as the accuracy of the tested methods
on each subdataset divided by the number of subdatasets. As
shown in Figure 4, our method outperformed the other
methods when tested on the power system dataset. The aver-
age accuracy of our method was 97.5%, which is better than
that of the other methods; the second most accurate method
was random forests (i.e., its accuracy was 94%).

We also applied our method to the N-BaIoT dataset. This
dataset has nine subdatasets. We only utilized three subdata-
sets to evaluate our proposed method. Similar to the first
dataset, we divided the subdatasets into 70% for training
and 30% for testing. The results of all methods, including
ours, are depicted in Figure 4, which shows that our method
achieved the best performance in terms of accuracy on the N-
BaIoT dataset. The accuracy of our method and the accuracy
of the second-best method (i.e., random forests) are 100%
and 99.9991%, respectively.

6. Discussion

As indicated in Results, our proposed method proves to be
more accurate than the other algorithms in detecting an
IoT cyberattack. All our network parameters, such the num-
ber of epochs, the number of filters, ResNet blocks, and the
number of neurons in the dense layers, were determined
empirically. For example, we empirically determined the
number of epochs that would most likely help our model to
learn the characteristics of the samples provided in the data-
set. During the training process, our model can be optimized
very smoothly and reaches the local optima, as shown in
Figure 5 (i.e., this shows the convergence of our meta-algo-
rithm). The figure shows both the accuracy and the loss func-
tion during the training process of our meta-algorithm.

We also noted that decreasing or increasing the number
of ResNet blocks reduced the accuracy. Further, we found
that the choice of five ResNet models was optimal. We noted
that decreasing the number of epochs above 200 decreases
the accuracy, while increasing the number of epochs above
200 does not significantly improve the result and only
increases the computation time.

Our method can detect intrusions in real time. The target
dataset to measure the detection time for one packet is the
power system dataset, and the number of samples on this
dataset is 78,377. We split the dataset into 70% for training
and 30% for testing for each subdataset. This gives us approx-
imately 23,513 samples for testing and the rest for training.
The total testing time for the 23,513 samples is 15,811ms.
The detection time for one packet is the number of samples
in the testing set (i.e., 23,513) divided by the total testing time
(i.e., 15,811ms). Thus, the testing time for one packet is
around 1.49ms, which is under the real-time limit.

We also investigated the performance of several opti-
mizers, namely, Adam optimizer [34], the RMSProp opti-
mizer, SGD optimizer, and AdaGrad optimizer [35]. We
found that Adam optimizer has the best performance, and
it has the advantages of both the RMSProp optimizer and
AdaGrad optimizer. Figure 6 shows the accuracy of our
model during the training phase when using each of these
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Figure 6: Test accuracy for four adaptive learning rate techniques. Adam optimization versus RMSProp optimizer is shown in (a), (b) shows
Adam optimization versus AdaGrad optimizer, and Adam optimizer versus SGD optimizer is shown in (c).
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optimizers. Moreover, this analysis proves that the Adam
optimizer, which is used in our model, is the optimal choice.

7. Conclusions and Future Work

Malicious attacks that target IoT devices are very challenging
issues. They target IoT devices and can cause serious prob-
lems, such as data leakage, phishing and spamming cam-
paigns, DDoS attacks, and security breaches. In this paper,
we propose a stacked deep learning method to detect mali-
cious traffic data, particularly malicious attacks that target
IoT devices. This method utilizes a residual block architec-
ture to identify activities that might harm the IoT environ-
ment. We investigated several machine learning algorithms
and two related work methods to compare with our proposed
approach. We evaluated our method using two well-known
datasets that are from two heterogeneous IoT environments.
Experimental results show that our method is able to deeply
learn the characteristics of heterogeneous IoT devices in two
different IoT environments. Thus, our proposed method has
better predictive performance compared with the related
approaches and can achieve good results. In the future work,
we plan to investigate transfer learning and several other
state-of-the-art pretrained models to improve the perfor-
mance of IoT IDSs in terms of accuracy and detection time.
We will also integrate other heterogeneous IoT environments
to prove that IoT network traffic generated by cybercriminals
is similar, and a general IDS can be deployed in heteroge-
neous IoT environments. We will also investigate the impact
of deceasing or increasing the number of ResNet blocks on
accuracy.

Abbreviations

DDoS: Distributed denial-of-service
ICS: Industrial control system
ReLU: Rectified-linear-unit systems
IoT: Internet of things
VGG: Visual geometry group
RAM: Random access memory
ResNet: Residual network
Xception: Extreme inception
IED: Intelligent electronic devices
NIDS: Network intrusion detection system
CIA: Confidentiality, data integrity, and availability
SVM: Support vector machines
RF: Random forest
NB: Naive Bayes
ANN: Artificial neural network
DT: Decision tree
KNN: k-nearest neighbors
RNN: Recurrent neural network
LSTM: Long short-term memory
LR: Logistic regression
LDA: Linear discriminant analysis
QDA: Quadratic discriminant analysis
XGB: eXtreme gradient boosting
MLP: Multilayer perception
RSS: Random subspace

GB: Gradient boosting
DNS: Domain name system
HTTP: Hypertext transfer protocol
WLAN: Wireless local area network
WiFi: Wireless fidelity
MAC: Media access control.

Data Availability

In our experiments, we endeavored to utilize real-case study
scenarios that were carried out in an industrial control sys-
tem (ICS) (i.e., a smart grid setting) [34] and a smart home
setting [18]. (1) Power system dataset: the first dataset that
we used is a power system dataset that is part of the ICS
Cyberattack Dataset collection [34]. The power system and
its details are publicly available at https://sites.google.com/
a/uah.edu/tommy-morris-uah/ics-data-sets. (2) N-BaIoT:
IoT Botnet Attack Dataset: the N-BaIoT dataset [18] consists
of nine subdatasets collected from nine IoT devices. The N-
BaIoT datasets and their details are publicly available at
http://archive.ics.uci.edu/ml/datasets/detection_of_IoT_
botnet_attacks_N_BaIoT.
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