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A Stackelberg Game Approach Towards

Socially-Aware Incentive Mechanisms

for Mobile Crowdsensing
Jiangtian Nie, Jun Luo, Senior Member, IEEE, Zehui Xiong,

Dusit Niyato, Fellow, IEEE, Ping Wang, Senior Member, IEEE

Abstract—Mobile crowdsensing has shown a great potential
to address large-scale data sensing problems by allocating sens-
ing tasks to pervasive mobile users. The mobile users will
participate in a crowdsensing platform if they can receive a
satisfactory reward. In this paper, to recruit effectively and
efficiently sufficient number of mobile users, i.e., participants, we
investigate an optimal incentive mechanism of a crowdsensing
service provider. We apply a two-stage Stackelberg game to
analyze the participation level of the mobile users and the optimal
incentive mechanism of the crowdsensing service provider using
backward induction. In order to motivate the participants, the
incentive mechanism is designed by taking into account the social
network effects from the underlying mobile social domain. We
derive the analytical expressions for the discriminatory incentive
as well as the uniform incentive mechanisms. To fit into practical
scenarios, we further formulate a Bayesian Stackelberg game
with incomplete information to analyze the interaction between
the crowdsensing service provider and mobile users, where the
social structure information, i.e., the social network effects,
is uncertain. The existence and uniqueness of the Bayesian
Stackelberg equilibrium is analytically validated by identifying
the best response strategies of the mobile users. Numerical
results corroborate the fact that the network effects significantly
stimulate higher mobile participation level and greater revenue
of the crowdsensing service provider. In addition, the social
structure information helps the crowdsensing service provider
to achieve greater revenue gain.

Index Terms—Crowdsensing, social network effects, incen-
tive mechanism, complete and incomplete information, Bayesian
game, Stackelberg game, uncertainty, social influence

I. INTRODUCTION

In the past decade, we have been witnessing a fast prolifera-

tion of mobile users and devices in our daily lives. The ubiqui-

tous mobile devices with various embedded functional sensors

have remarkably promoted the information generation process.

These advances stimulate the rapid development of mobile
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sensing technologies, and mobile crowdsensing becomes one

of the most attractive and popular paradigms. Mobile crowd-

sensing leverages the sensing capacity of worldwide available

smart phones, e.g., GPS, camera and digital compass, to collect

distributed sensory data.

A basic crowdsensing platform typically includes a cloud-

based system and a collection of smart phones or mobile users.

The platform can post a set of sensing tasks with different

purposes, and mobile users are actively involved to perform the

corresponding tasks. Realizing the great business potential, lots

of crowdsensing-based applications have been designed and

introduced in a number of areas. Sensorly [1] is dedicated for

WiFi coverage information, Waze [2] and GreenGPS [3] are

to collect road traffic information, DietSensor [4] is proposed

to share and track users’ diet and nutrition, and Noisetube [5]

is for monitoring noise pollution.

Nevertheless, voluntary participation in the crowdsensing

platform may not be sustainable. This is from the fact that the

mobile users need to spend their own resources, e.g., smart

phone battery, CPU computing power, storage memory, to

accomplish the sensing tasks. Another major concern that dis-

courages the mobile users from participation comes from the

potential privacy issues. Therefore, individuals are reluctant

to participate and share their collected information due to the

lack of sufficient motivation and incentive. Nevertheless, the

crowdsensing systems heavily rely on total user participation

level and the individual contribution from each user. To

stimulate and recruit users with mobile devices to participate

in crowdsensing, the crowdsensing platform administrator, i.e.,

the Crowdsensing Service Provider (CSP), usually provides a

reward for mobile users as a monetary incentive to compensate

their cost or risk.

It is challenging to design the incentive mechanism that

achieves a sustainable and profitable market for the CSP.

When the reward is small, the collected sensing information

from mobile participants is insufficient. Conversely, when

the reward is large, the CSP may incur excessive opera-

tion cost. Accordingly, an efficient incentive mechanism has

become an emerging topic of interest for a large number

of researchers. However, most of the existing works have

addressed the incentive mechanism for mobile crowdsensing

without considering the interdependent behaviors of mobile

users from social domain. This interdependency originates

from network effects. Traditionally, network effects refer to

the phenomenon that public goods or service is more valuable
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if it is adopted by more users. In crowdsensing services,

the participation behavior of mobile users can be deemed as

buying “public goods”, which means that the mobile users

are more willing to participate if the number of other users

is greater. For example, in a crowdsensing-based road traffic

information sharing application, a user can receive a better and

accurate traffic report if more users join and share their road

information. Consequently, the complex and interdependent

user behaviors post a remarkable challenge to the operation of

the crowdsensing platform. More importantly, network effects

frequently exist in densely connected social relationships,

which is one of the key criteria to promote the wisdom of

crowds [6], [7].

Nevertheless, only a few works [8], [9] have studied the

incentive mechanism for crowdsensing and exploited network

effects at the same time. The authors in [8], [9] investigated

the behaviors of mobile users under global network effects1,

which is not appropriate for the structure of an underlying

social domain. By contrast, social (local) network effects refer

to the case where each user is only influenced directly by the

decisions of other densely socially-connected users [11], [12].

For example, in a mobile crowdsensing platform for sharing

road traffic information, a user (driver) can get a better route if

more neighbourhood users (users in the same or nearby roads)

of this user join and contribute their traffic data [2], [3]. On

the contrary, this user cannot obtain any benefits if the users

in other distant roads join and share their traffic data. This

fact motivates us to explore the role of social (local) network

effects in designing the incentive mechanism of crowdsensing

services.

In this paper, we propose novel incentive mechanisms by

leveraging the underlying social network effects to attract

participants to crowdsensing platform. First, the crowdsensing

platform administrator, i.e., the CSP, determines an incentive,

i.e., the offered reward, to maximize its revenue. Then, based

on the given reward, the mobile users decide on their partic-

ipation level individually by taking the social network effects

into account. The above rewarding and participating decision

marking process can be inherently modeled as a hierarchical

Stackelberg game. Moreover, we consider the uncertainty of

social network effects, which commonly exists in the real-

world crowdsensing applications. As such, we formulate the

Bayesian Stackelberg game with incomplete information to

analyze and evaluate the impacts of uncertainty of social

network effects. The major contributions of this paper are

summarized as follows:

• To the best of our knowledge, this is the first work on

designing incentive mechanisms for mobile crowdsens-

ing with the consideration of complete and incomplete

information on social network effects. In particular, we

incorporate the social network effects in the game model,

which utilizes the structural properties from the under-

lying social domain, and fully characterizes the social

relations among the mobile users.

1Global network effects refer to as the phenomenon that a user will obtain
higher value when its behavior aligns with any other users [10].

• We model the interaction between the CSP and mobile

users as a two-stage Stackelberg game and analyze each

stage systematically through backward induction. We

investigate two types of incentive mechanism for the

crowdsensing platform with complete and incomplete in-

formation on social network effects, i.e., the Stackelberg

game based incentive mechanism and the Bayesian Stack-

elberg game based incentive mechanism, respectively.

• In the Stackelberg game based incentive mechanism, the

CSP and mobile users acquire the exact information

on underlying social network effects. We propose the

optimal incentive mechanism in terms of discriminatory

incentive and uniform incentive, in which the CSP offers

the different or the same reward to all the mobile users.

For both, we are able to obtain the analytical expression

for optimal reward.

• In the Bayesian Stackelberg game based incentive mech-

anism, the specific information on social network effects

is under uncertainty. We obtain a unique Bayesian Nash

equilibrium adopted by the mobile users in closed-form.

Thereafter, the existence and uniqueness of the Bayesian

Stackelberg equilibrium is proved by analyzing the best

response strategies of the mobile users.

• Performance evaluation is provided to demonstrate the

effectiveness of the proposed game theory based socially-

aware incentive mechanisms. Numerical results show that

the network effects play an important role to promote

higher participation level and thus greatly improve the

revenue of the CSP. Moreover, the information about

social relationship, i.e., social structure, helps the CSP

to achieve greater revenue gain.

The rest of this paper is organized as follows. Section II

provides the literature review. Section III describes the system

model and the game formulation. In Section IV, we analyze

the mobile user participation level and optimal reward using

backward induction. In Section V, we formulate a Bayesian

Stackelberg game where the social structure information is un-

certain, and study the Bayesian game equilibrium. Section VI

presents the performance evaluation and Section VII concludes

the paper.

II. RELATED WORKS

Recently, a large number of prior works have been dedicated

to designing incentive mechanisms [13]. Auction is a widely-

adopted method to design the incentive mechanisms. In [14],

the authors presented a mechanism for participation level

determination and reward allocation using optimal reverse auc-

tion, in which the CSP receives service queries and initiates an

auction for user participation. The authors in [15] explored the

truthful mechanism with strong requirements of data integrity

where the tasks are time window dependent. A reverse auction

framework is adopted to derive the optimal incentive, which

is computationally efficient and individually rational. In [16],

the authors investigated scheduling problem, where the CSP

announces a set of tasks and then mobile users compete for the

tasks based on the sensing costs and available time periods.

The approximation mechanisms for the CSP to schedule and
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reward the users under certain budget is provided. The authors

in [17] studied incentivizing user participation and assigning

location dependent tasks with capacity budget. A truthful one-

round auction with approximation algorithm is proposed to

obtain the optimal reward offered to the participants. In [18],

the authors considered the user-centric model where each

user can ask for reserve price, and designed the truthful and

scalable auction mechanism for the CSP to achieve revenue

maximization. The authors in [19] addressed how to maximize

the valuation of the covered interested regions under limited

budget for strategy-proof mobile crowdsensing. In [20], the

authors proposed a long-term dynamic incentive mechanism

to capture the dynamic nature of long-term data quality of par-

ticipants, where a truthful, quality-aware and budget feasible

algorithm is designed for task allocation with polynomial-time

computational complexity. The authors in [21] investigated the

auction based incentive mechanism considering social cost

minimization and privacy preservation. The participants are

selected based on predefined score functions by the CSP, and

the computational efficiency, individual rationality, truthful-

ness and differential privacy are guaranteed. To prevent the

Sybil attack where a user illicitly disguises other identities

to obtain benefits, the authors in [22] designed Sybil-proof

auction-based incentive mechanisms.

In addition to auction mechanism design, the incentive

mechanisms are examined with different objectives. For exam-

ple, the authors in [23] considered that the sensing information

has an attached time-sensitive value that decreases over time

and focused on the incentive design for cooperative data

collection of participants. In [7], the authors explored the

incentive mechanism with multiple CSPs, where the incentive

mechanism is modeled as a noncooperative game. The discrete

time dynamic inspired by the best response dynamics is

proposed to achieve the Nash equilibrium of the modeled

game. The authors in [24] presented a novel Vickrey-Clarke-

Groves game based incentive mechanism for sensing resource

sharing by the encouraged participants. The task allocation

and resource sharing algorithm is developed to achieve the

social fairness and efficiency tradeoff. The authors developed

a new framework called Steered Crowdsensing in [25], which

controls incentives by introducing gamifications with monetary

reward to location-based services. In [26], the authors incor-

porated the consideration of data quality into the mechanism,

and rewarded the participant depending on the quality of its

collected data. The authors in [27] applied Tullock contests

to design incentive mechanisms, where the reward includes

a fixed contest prize, and Tullock prize function depending

on the winner’s contribution. In [28], the authors proposed

a reward-based collaboration mechanism, where the CSP

announces a total reward to be shared among collaborators,

and the task and reward are allocated if sufficient number

of participants are willing to collaborate. In [29], the authors

studied a quality-aware Bayesian incentive problem for robust

crowdsensing, where the data quality and sensing cost of users

are drawn from known distribution.

In [30], the authors considered a sealed market for the

CSP, where the participants have imperfect information on

other participants behavior. The iterative game framework

Crowdsensing service provider Mobile users

Social tie

Reward
Task

Information

Cloud

(Leader)
(Followers)

User i

User jgij
Stage I

Stage II

Figure 1: Basic system model of mobile crowdsensing plat-

form with social network effects.

is introduced and the incentive mechanism is obtained by

best response dynamics with several iterations. The authors

in [31] formulated the one-to-many Nash bargaining game to

model the interaction between the CSP and participants. The

distributed algorithm that ensures the participators’ privacy and

reduces the computation load of the CSP is provided. The au-

thors in [32] proposed blockchain based distributed incentive

mechanism which can remove the security threats caused by a

“trustful” crowdsensing center. The participants with sensing

information contribution obtain the reward that is recorded in

transaction blocks. In our previous work [33], we considered

the social network effects that promote the participation level

while designing the incentive mechanism. In [34], the authors

also highlighted the importance of “network effects” on social

information sharing with the problem of dynamic routing.

For example, a user traveling on one route benefits from the

information collected by other users traveling on another route.

However, the scenario where the network effects is certain

has its limitation which may not be applicable to some of the

real-world applications such as crowdsensing. In this paper,

we consider the uncertain scenario where the social structure

information is not known exactly by the CSP and participants.

III. SYSTEM DESCRIPTION AND GAME FORMULATION

We model the interaction among the Crowdsensing Service

Provider (CSP) and the socially-aware participants, i.e., Mo-

bile Users (MUs), as a hierarchical Stackelberg game, where

the action of each MU is to choose an individual participation

level and the action of the CSP is to give the payment as

a reward to incentivize the MUs (Fig. 1). Consider a set

of MUs denoted by N
∆
= {1, . . . , N}. Each MU i ∈ N

determines its participation level or effort level, e.g., sensing

data transmission frequency or sensing resolution, denoted by

xi where xi ∈ (0,+∞).

Let x
∆
= (x1, . . . , xN ) and x−i denote the participation

levels of all the MUs and all other MUs except MU i,
respectively. The reward per effort unit provided to the MUs

is given as: r = [r1, . . . ri, . . . , rN ]⊤. Then, the utility of MU

i is given by

ui(xi,x−i) = fi(xi) + Φ(xi,x−i) + r(xi)− c(xi). (1)

The first term fi(x) represents the private utility or internal

effects that MU i obtains from the participation, which can
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Table I: Main Notations

Symbol Definition

N , N Set of MUs, and the total number of MUs, respectively

Ni Set of social neighbours of MU i

xi
Participation level of MU i, i.e., the effort level in
participation

x, x−i
The participation levels of all the MUs and all other MUs
except MU i, respectively

ri The offered reward to MU i from the CSP

ai, bi
The coefficients capturing the intrinsic value of different
MUs

gij The influence of MU j on MU i

c The MU’s unit cost associated to its participation level

µ
The parameter representing the equivalent monetary worth
of MUs’ participation level

s, t
The coefficients capturing the concavity of the profit
obtained from the total contribution of all MUs

ui The utility of MU i

Π The revenue of the CSP

γ Given social network effects coefficient

k The out-degree of MU

l The in-degree of MU

P (k) The out-degree distribution of MUs

H(l) The in-degree distribution of MUs

Avg(x−i)
The average participation level of social neighbours of
MU i

k̄ Average level of social network effects

σ2
k, σ

2
l The two variance of out-degree and in-degree distributions

be formulated as fi(xi) = aixi − bixi
2, where ai > 0 and

bi > 0 are the coefficients that capture the intrinsic value

of the participation to different MUs with heterogeneity [11],

[12]. For example, in a crowdsensing-based traffic information

sharing application, when a user reports speed and location on

a certain road more frequently, i.e., larger xi, the accuracy

of the traffic condition on that road is higher [2], [3]. As

in [11], the quadratic form of the internal utility not only

allows for tractable analysis, but also serves as a good second-

order approximation for a broad class of concave utility func-

tions. Additionally, the linear-quadratic function captures the

decreasing marginal returns from participation. In particular,

ai models the maximum internal participation willingness rate,

and bi is the willingness elasticity factor.

The second term, Φ(xi,x−i) denotes the external benefits

gained from the network effects, which is the key component

from Eq. (1). In crowdsensing applications, an MU can enjoy

an additional benefit from information contributed or shared by

the others [10]. The existing work explored the network effects

of global nature, where the additional benefits due to new

coming MUs are the same for all the existing MUs [8]. How-

ever, due to the structural properties from the underlying social

domain, it is more appropriate to consider the network effects

locally in crowdsensing service, i.e., the social network effects.

Then, we introduce the adjacency matrix G = [gij ]i,j∈N . The

elements in matrix gij indicates the influence of MU j on MU

i, which can be unidirectional or bidirectional. For example,

with a larger gij , the participation level of MU j can increase

the utility of MU i faster. Motivated by the idea of social

reciprocity [35], [36], a user’s social behavior to another is

likely to imitate the latter’s behavior to the former, and vice

versa. In other words, two friends in social network tend to

influence each other and then behave similarly. As a result, the

social ties from one MU to another MU, and vice versa tend

to be the same. Thus, we consider gij = gji in this paper, i.e.,

the social tie is reciprocal. Nevertheless, the proposed model

can be applied to asymmetric social ties straightforwardly,

interested readers can refer to Appendix C in [37]. Specifically,

we adopt
∑

j∈N gijxixj to represent the additional benefits

obtained from the network effects, similar to that in [11], [12],

[38].

The third term, r(xi), is the reward from CSP to the

MU i, which is equal to rixi , i.e., the reward is a linear

function to the effort or participation level. The last term c(xi)
denotes the cost associated to the participation level of the MU,

e.g., energy consumption and network bandwidth consumed.

Similar to [8], we assume that the cost is equal to cxi, where

c is the MU’s unit cost. It is noted that, the same approach

can be applied to the model with the heterogeneous unit cost

(e.g., cixi
2) straightforwardly, interested readers can refer to

Appendix D in [37]. Then the utility of MU i is expressed by:

ui(xi,x−i, r) = aixi− bixi
2+

N∑

j=1

gijxixj + rixi− cxi. (2)

The monopoly CSP operates and maintains the platform

with a fixed cost, which is ignored for the simplicity of the

analysis later. Then, the formulation of revenue for the CSP is

given by the payoff from total aggregated contribution of all

MUs minus the total reward paid to MUs, i.e.,

Π = µ

N∑

i=1

(sxi − txi
2)−

N∑

i=1

rixi. (3)

Similar to [12], we also use the linear-quadratic function for

tractability to transform the MUs’ participation level into the

monetary revenue of the CSP, which features the law of di-

minishing return. That is, an MU’s contribution increases with

the MU’s effort level but the marginal return decreases. µ is

an adjustable parameter representing the equivalent monetary

worth of MUs’ participation level, and s, t > 0 are coefficients

capturing the concavity of the function.

We first address the incentive mechanism by modeling the

strategic interactions between the CSP and the MUs as a two-

stage single-leader multi-follower Stackelberg game.

Definition 1. Two-stage reward-participation game:

• Stage I (Reward): The CSP determines the reward, aiming

at the highest revenue, i.e.,

r
∗ = argmax

r

{
µ

N∑

i=1

(sxi − txi
2)−

N∑

i=1

rixi

}
;

• Stage II (Participation): Each MU i ∈ N chooses the

participation level xi, given the observed reward r and

the participation levels of other MUs x−i, with the goal

to maximize its individual utility, i.e.,

x∗i = argmax
xi

ui(xi,x−i, r).

We solve this two-stage Stackelberg game by finding a

subgame perfect equilibrium for the cases of discriminatory

incentive mechanism and uniform incentive mechanism for all

MUs.
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IV. STACKELBERG GAME EQUILIBRIUM ANALYSIS WITH

COMPLETE INFORMATION

A. Stage II: MUs’ participation equilibrium

Based on the definition of the Nash equilibrium, each MU

chooses its participation level that is the best response. By

setting the first-order derivative
∂ui(xi,x−i)

∂xi
to 0, we obtain

the best response of MU i as follows:

x∗i = max



0,

ri − c+ ai
2bi

+
N∑

j=1

gij
2bi

xj



 , ∀i. (4)

Each MU’s best response includes two parts. ri−c+ai

2bi
is inde-

pendent from the strategies of the other MUs, and
N∑
j=1

gij
2bi
xj

is dependent on the other MUs’ participation levels due to

underlying social network effects. Although the participation

level strategy of each MU is obtained as in Eq. (4), the Nash

equilibrium cannot be ensured to be unique or even exist

since each MU may unboundedly increase its participation

level if the other MUs’ participation levels are large enough.

Therefore, we present a sufficient assumption, under which

there exists the unique Nash equilibrium as described in

Theorem 1. Regarding the assumption, the MU has the upper

bound on participation level, e.g., due to the battery capacity

of a mobile device, and thus Assumption 1 is reasonable.

Assumption 1.
N∑
j=1

gij
2bi

< 1, ∀i.

Theorem 1. Under Assumption 1, the existence and unique-

ness of MU participation equilibrium, i.e., the Nash equilib-

rium of Stage II in this Stackelberg game, can be guaranteed.

Proof. Existence of MU participation equilibrium: We

denote x
∗ as the strategy profile in the MU participation sub-

game, and x†i as the largest participation level in x
∗. Then,

we have

x†i =

(
ri − c+ ai

2bi
+
∑N

j=1

gij
2bi

xj

)+

≤
ri − c+ ai

2bi
+
∑N

j=1
x†i
gij
2bi

≤
|ri − c+ ai|

2bi
+
∑N

j=1
x†i

|gij |

2bi
.

Thus, under Assumption 1, we have x†i ≤
|ri−c+ai|

2bi−
N∑

j=1

|gij |

= x̂. As

a result, the strategy space [0, x̂] is convex and compact, and

the utility function ui(xi,x−i) is continuous in xi and x−i.

We also have the second-order derivative of MU’s objective

function as follows: ∂2ui

∂2xi
= −2bi < 0. Thus, the MU

participation sub-game is a concave game which always admits

the Nash equilibrium.

Uniqueness of MU participation equilibrium: Firstly, we

have

−
∂2ui
∂xi2

= −(−2bi + gii) = 2bi.

Then, based on Assumption 1, we have

−
∂2ui
∂xi2

>

N∑

j=1

gij =

N∑

j=1

|gij | =
N∑

j=1

∣∣∣∣−
∂2ui
∂xixj

∣∣∣∣, (5)

which satisfies the dominance solvability condition, i.e.,

Moulin’s Theorem [39]. As a result, the uniqueness of MU

participation equilibrium is guaranteed under Assumption 1.

The proof is then completed.

Then, we propose the best response dynamics algorithm to

obtain the Nash equilibrium with respect to MUs’ participation

level, as shown in Algorithm 1. The algorithm iteratively

updates the MUs’ strategies based on their best response

functions in Eq. (4), and converges to the Nash equilibrium of

MU participation sub-game.

Algorithm 1 Simultaneous best-response updating for finding

Nash equilibrium of MU participation sub-game

1: Input:

Precision threshold ǫ, x
[0]
i ← 0, x

[1]
i ← 1 + ǫ, k ← 1;

2: while

∥

∥

∥
x
[k]
i − x

[k−1]
i

∥

∥

∥

1
> ǫ do

3: for all i ∈ N do

4: x
[k+1]
i =

(

ri−c+ai
2bi

+
N
∑

j=1
x
[k]
j

gij
2bi

)+

;

5: end for

6: k ← k + 1;
7: end while

8: Return x
[k]
i ;

Proposition 1. Algorithm 1 achieves the Nash equilibrium of

MU participation sub-game.

Note that Algorithm 1 achieves the approximate Nash equi-

librium of MU participation sub-game, and the approximate

accuracy, which measured by the gap between the achieved

results and the actual solutions, depends on the precision

threshold ǫ. The convergence speed of the proposed algorithm

also depends on precision threshold ǫ. When ǫ is small, the

number of iterations needed is large but the achieved results

are more accurate. Conversely, when ǫ is big, the number of

iterations needed is small but the achieved results are less

accurate.

For ease of presentation, we have the following definitions,

B := diag(2b1, 2b2, . . . , 2bN ), a := [ai]N×1, 1 := [1]N×1,

G := [gij ]N×N , r := [ri]N×1 and I is an N × N identity

matrix. For the rest of the paper, similar to [12], [40], we

consider the practical situation where all the MUs have posi-

tive participation levels at the Stackelberg equilibrium, i.e., a

special case of Eq. (4). Then, with Lemma 1, we can rewrite

Eq. (4) in a matrix form as follows:

x = K (a+ r− c1) , (6)

where K = (B−G)
−1

.

Lemma 1. B−G is positive definite matrix, which is invert-

ible.

Proof. We first denote (B−G)ij as the value in the ith row

and the jth column of the matrix B−G, and it holds that

(B−G)ii = 2bi − gii = 2bi since we have gii = 0. Under



6

Assumption 1, we also have 2bi >
N∑
j=1

gij . Furthermore, we

observe that
N∑
j=1

gij = −
∑
j 6=i

(B−G)ij =
∑
j 6=i

∣∣∣(B−G)ij

∣∣∣.

Therefore, it holds that (B−G)ii = 2bi >
∑
j 6=i

∣∣∣(B−G)ij

∣∣∣.
Accordingly, B−G is strictly diagonally dominant and all

the diagonal elements, i.e., 2bi are larger than 0. Based on

Gershgorin circle theorem [41], every eigenvalue λ of B−G

satisfies

|(B−G)ii − λ| <
N∑

j=1

∣∣∣(B−G)ij

∣∣∣. (7)

Moreover, we know λ > 0, and thus B−G is a positive

definite matrix, from which its invertibility follows. The proof

is then completed.

B. Stage I: Optimal incentive mechanism

In this stage, the monopoly CSP determines the reward to

be paid to the MUs, the objective of which is to maximize the

CSP’s revenue. Specifically, we investigate the discriminatory

incentive mechanism and the uniform incentive mechanism,

respectively. The significance of each incentive mechanism is

as follows. Under the uniform incentive mechanism, the equi-

librium ensures a fair reward applied to all MUs. Moreover,

the uniform incentive mechanism is simple to implement in

the crowdsensing applications. However, the CSP has lim-

ited degree of freedom to maximize its profit. By contrast,

under the discriminatory incentive mechanism, the CSP can

customize the reward for each MU, matching with the MU’s

preference and capability. As such, the profit obtained under

the discriminatory incentive mechanism is expected to be

higher than that of the uniform incentive mechanism. This

is also confirmed in our numerical results.

1) Discriminatory incentive mechanism: Under reward dis-

crimination, the CSP is able to provide different reward for

different MUs as incentive to maximize its revenue. The

revenue maximization problem can be formulated as follows:

maximize
r

Π = µ
N∑

i=1

(sxi − txi
2)−

N∑

i=1

rixi

= µ(s1⊤
x− x

⊤tx)− r
⊤
x.

subject to x = K (a+ r− c1) .

(8)

By plugging x into the objective func-

tion in Eq. (8), we have Π =

µ
(
s1⊤

K (a+ r− c1)− t(a+ r− c1)
⊤
K

2 (a+ r− c1)
)
−

r
⊤
K (a+ r− c1). Taking the partial derivative of

the objective function in Eq. (8) with respect to the

decision vector r to zero, i.e., ∂Π
∂r

= 0, we obtain

µ
(
sK1− 2tK2 (a+ r− c1)

)
− K (a+ r− c1) − Kr = 0.

Then, we have µ
(
sK1− 2tK2 (a− c1)

)
− K (a− c1) =(

2K+ 2µtK2
)
r. Finally, we obtain the optimal value r

∗,

which is represented as follows:

r
∗ = (2I+ 2µtK)

−1
(µ (s1− 2tK (a− c1))− (a− c1)) .

(9)

2) Uniform incentive mechanism: In this case, the CSP can

only choose a single uniform reward to be paid to all the

MUs, i.e., ri = r, for all i. Then, the optimization problem is

given by

maximize
r

Π = µ

N∑

i=1

(sxi − txi
2)− r

N∑

i=1

xi

= µ(s1⊤
x− x

⊤tx)− r1⊤
x.

subject to x = K [a+ (r − c)1] .

(10)

Similarly, we eliminate x from the objective function in

Eq. (10), and we obtain Π = µ(s1⊤
K(a+ (r − c)1) −

t(a+ (r − c)1)
⊤
K

2 (a+ (r − c)1))− r1⊤
K (a+ (r − c)1).

Then, we evaluate its first-order optimality condition

with respect to the reward r, which yields
∂Π
∂r

= µ
(
s1⊤

K1− 2t(a+ (r − c)1)
⊤
K

2
1

)
−

1
⊤
K (a+ (r − c)1) − r1⊤

K1 = 0. As a result, with

simple steps, we obtain the optimal value of the uniform

reward, which is represented by

r∗ =
(
2µt1⊤

K
2
1+ 21⊤

K
)−1
{
µ
[
s1⊤

K1− 2t(a− c1)⊤

×K
2
1
]
− 1

⊤
K (a− c1)

}
. (11)

Until now, we have obtained the optimal incentive mecha-

nism in terms of uniform reward and discriminatory reward in

a closed-form solution with complete information, and hence

validated the uniqueness of the Stackelberg equilibrium.

V. BAYESIAN STACKELBERG GAME THEORETIC ANALYSIS

FOR SOCIALLY-AWARE INCENTIVE MECHANISM WITH

INCOMPLETE INFORMATION

Recall from Section IV, we assume that the MUs will

truthfully report their personal information (type) to the CSP.

This situation can happen when there exists a supervising

entity in the market that is capable of monitoring, sharing and

storing all behaviors to ensure that the MUs always report

the correct information. However, without the supervising

entity which is often the case in practice, the MU does not

reveal private information (type) to the CSP because of the

concern on privacy leakage or selfish behaviors. Therefore,

the incomplete information scenario is more suitable and

applicable to the real-world crowdsensing applications and

address the incentive mechanism therein. In this section, we

extend the analysis to the scenario where the social structure

information, i.e., the social network effects, is not exactly

known by the CSP and MUs. Thus, we formulate the incentive

mechanism as a Bayesian Stackelberg game [42], [43], and

evaluate the game equilibrium by defining and optimizing the

expected utility of MUs and the expected revenue of the CSP.

A. Problem formulation with social structure uncertainty

In the model proposed in Section III, the important social

structure information may be uncertain or unknown by the

decision makers, i.e., the CSP and MUs. Accordingly, this

game can be modeled as a Bayesian game where the Bayesian

analysis is adopted to predict the game outcome. In particular,
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the social relationship, i.e., social structure of each MU is

private information and is considered as the type of the fol-

lowers. Only its probability distribution is commonly known.

Such distribution information can be obtained through, e.g.,

historical information or long-term learning.

The mobile social structure is represented by an interaction

matrix, i.e., the adjacency matrix G. As aforementioned, the

element gij denotes the strength of the influence of MU j on

MU i. Recall from Section III, the utility of an MU can be

expressed as follows:

ui(xi,x−i, r) = xi −
1

2
xi

2 +

N∑

j=1

gijxixj + rixi − cxi. (12)

Note that we set ai = 1 and bi = 1/2 in order to concentrate

on the social structure uncertainty. Moreover, without loss of

generality, for all the social neighbours of MU i, i.e., j ∈ Ni,

gij = γ > 0, and γ is a given social network effect coefficient.

Thus, the above equation is rewritten as follows:

ui(xi,x−i, r) = xi −
1

2
xi

2 + γxi
∑

j∈Ni

xj + rixi − cxi. (13)

Therefore, the expected utility is expressed as follows:

Ui(xi,x−i, r) = E [ui(xi,x−i, r)] = xi −
1

2
xi

2

+ γxiE
[∑

j∈Ni

xj

]
+ rixi − cxi. (14)

The social structure leads to different in-degrees and out-

degrees of MUs. The in-degree denotes the number of other

MUs that a certain MU influences, the out-degree denotes

the number of other MUs influencing this MU. Thus, the in-

degree represents its influence and the out-degree represents

its susceptibility. The distribution2 of in-degree and out-degree

captures the social network effects from the network interac-

tion patterns [11], [44]–[47]. Note that the proposed model can

still be applied to the asymmetric social ties, since we consider

both the in-degree and out-degree distributions of each MU

instead of the degree distribution. For example, an MU Alice

has the social influence on MU Bob, but Bob may not have

the social influence on Alice. The reason is that Alice may

have different in-degree and out-degree.

The in-degree l ∈ D and out-degree k ∈ D, where

D = {0, 1, . . . , kmax} and kmax denotes the maximum

possible value. We define P : D → [0, 1] and H : D → [0, 1]
as the probability distributions of out-degree and in-degree,

respectively, and we have
∑
k∈D

P (k) =
∑
l∈D

H(l) = 1.

Furthermore, we assume that two probability distributions

are independent and their variances are denoted as σk
2

and σl
2, respectively. Due to consistency theory, we know

2Since the social ties/links are constructed by the in/out-degree information
of MUs, the social ties/links are also treated as random variables in some
sense. Note that γ in the model is a given social network effect coefficient,
which captures the strength of social ties/links. Although the value of γ is
given, the social ties/links follow certain probability distribution instead of
being a constant value. It is also noteworthy that γ can be treated as an
approximate term instead of an exact value. Nevertheless, the impacts of
uncertainty of γ can still be absorbed into the distribution of in/out-degree
since these impacts are interdependent.

∑
k∈D

P (k)k =
∑
l∈D

H(l)l = k, and thus k is referred to as

the mean value of social network effects. Moreover, we have

E


∑

j∈Ni

xj


 = ki ×Avg(x−i), (15)

where Avg(x−i) = E [xj |j ∈ Ni ] denotes the average partic-

ipation level of social neighbours of MU i.
In order to obtain the expression of Avg(x−i), we employ

the concept of “Configuration Model” in Network Science [48]

to model the random networks generated with only in-degree

distribution. According to Configuration Model’s property

(See Chapter 12.2 in [48]), to a user, the degree distribution of

its randomly chosen neighbor is H(l) = H(l)l∑

l′∈D

H(l′)l′ . In other

words, a randomly selected social neighbours of MU i has

the in-degree distribution as H(l) and out-degree distribution

as P (k). Thus, by denoting the participation level of the MU

with out-degree k and in-degree l as x(k, l), we have [46],

[47]

Avg(x−i) =
∑

l∈D

H̄(l)

(
∑

k∈D

P (k)x(k, l)

)
, (16)

where H(l) = H(l)l∑

l′∈D

H(l′)l′ . Note that given Avg(x−i), the

participation level of MU i only depends on the reward and

its out-degree k. Thus, the final expected utility of MU i is

expressed as follows:

Ui(xi,x−i, r, ki) = (1 + ri − c)xi −
1

2
xi

2 + γkixiAvg(x−i),

(17)

and the type of the MU is its in-degree and out-degree, which

is denoted as (l, k).
Since only the distribution of the in-degree and out-degree

information is known, instead of maximizing the revenue as

defined in Eq. (3), the objective of the leader, i.e., the CSP, is

to maximize its expected revenue, which is given as follows:

Π =
∑

l∈D

(∑
k∈D

H(l)P (k)
(
(µs− r(k, l))x(k, l)

− µtx2(k, l)
))
, (18)

where r(k, l) is the reward offered to the MU with out-degree

k and in-degree l.

B. Stackelberg game equilibrium analysis

We also adopt the backward induction to analyze the

Bayesian Stackelberg game.

1) Follower game: For the given incentive or the reward

determined by the CSP, we examine the Bayesain Nash

equilibrium in the follower game which is characterized by

the following theorem.

Theorem 2. The existence and uniqueness of the Bayesian

Nash equilibrium of the follower game can be guaranteed,

provided that the following condition

γkmax < 1 (19)

holds.
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Proof. The existence of Bayesain follower game: To prove

that there exists at least one Bayesian Nash equilibrium in the

follower game (Proposition 1 in [49]), we need to ensure that

the following condition

∂Ui(x,x−i, r, ki)

∂xi
≤ 0,

∀i ∈ N , k ∈ Z+, r ∈ R
+, ∃x ≥ 0, ∀x ≤ x (20)

holds, where x = Avg(x−i). Since we have

∂Ui(x̄,x−i, r, ki)

∂xi
= (1 + ri − c)− x̄+ γkiAvg(x−i)

≤ (1 + ri − c)− x̄+ γkmaxx̄

= 1 + ri − c+ (γkmax − 1)x̄, (21)

we can ensure that the condition in Eq. (20) holds provided

that γkmax < 1 is satisfied.

The uniqueness of Bayesain follower game: The proof

of the uniqueness of the pure Bayesian Nash equilibrium

can be directly derived from [49]. In particular, the sufficient

condition that implies there exists at most one Bayesian Nash

equilibrium is given as follows (Proposition 3 in [49]):
∣∣∣∣
∂2Ui(x̄,x−i, r, ki)

∂xi∂Avg(x−i)

/
∂2Ui(x̄,x−i, r, ki)

∂xi∂xi

∣∣∣∣ < 1, ∀i ∈ N .

(22)

With simple steps, we have∣∣∣∂
2Ui(x̄,x−i,r,ki)
∂xi∂Avg(x−i)

/∂2Ui(x̄,x−i,r,ki)
∂xi∂xi

∣∣∣ = |γki| ≤ |γkmax|.

Thus, if γkmax < 1 holds, the condition given in Eq. (22) is

guaranteed. The proof is then completed.

To obtain the closed-form expression of the unique Bayesian

Nash equilibrium point in the follower game, we first apply

partial derivative of the expected utility given in Eq. (17), i.e.,
∂Ui(x̄,x−i,r,ki)

∂xi
= 0, as shown as follows:

x∗i = 1 + ri − c+ γkiE [xj |j ∈ Ni ] . (23)

Thus, we have

x(k, l) = 1 + r(k, l)− c+ γkE
[
x(k, l)

∣∣(k, l) ∈ D2
]
. (24)

From Eq. (16), we have

E
[
x(k′, l′)

∣∣(k′, l′) ∈ D2
]
=
∑

l′∈D

H(l′)
∑

k′∈D

P (k′)x(k′, l′)

=
∑

l′∈D

(
H(l′)

∑

k′∈D

(P (k′)(1 + r(k′, l′)− c

+ γk′E
[
x(k′′, l′′)

∣∣(k′′, l′′) ∈ D2
]
))

)

= 1 + r − c+ γkE
[
x(k′′, l′′)

∣∣(k′′, l′′) ∈ D2
]
, (25)

where r =
∑
l∈D

H(l)
∑
k∈D

P (k)r(k, l) and k =
∑
l∈D

H(l)
∑
k∈D

P (k)k =
∑
k∈D

P (k)k. Since we also have

E
[
x(k′, l′)

∣∣(k′, l′) ∈ D2
]
= E

[
x(k′′, l′′)

∣∣(k′′, l′′) ∈ D2
]
,

(26)

it can be concluded from Eq. (25) with the following expres-

sion

Avg(x−i) = E [xj |j ∈ Ni ] =
1 + r − c

1− γk
. (27)

Therefore, we obtain the closed-form expression of the par-

ticipation level of the MU with type (k, l) in the Bayesian

follower game, which is given as follows:

x∗(k, l) = 1 + r(k, l)− c+ γk
1 + r − c

1− γk
. (28)

Note that Algorithm 1 can be implemented similarly in

incomplete information scenario. The only difference is that

the best-response function update policy in Line 4 of Algo-

rithm 1 is replaced by another update policy obtained from

Eq. (19). Since we have validated the existence and uniqueness

of the Bayesian Nash equilibrium, the modified Algorithm 1

can achieve the Bayesian Nash equilibrium [50]. Similar to

that in the complete information scenario, this Bayesian Nash

equilibrium is also the approximate equilibrium due to the

error ǫ.

2) Leader game: As the CSP has the information on the

degree distributions of MUs but has no information on MUs’

type, and thus can offer only a uniform reward3, i.e., r(k, l) =
r for all MUs. The optimal incentive mechanism obtained from

the leader game is characterized by the following theorem.

Theorem 3. The optimal reward offered by the CSP in

the Bayesian Stackelberg game is unique, which is given as

follows:

r∗ = c− 1 +
(µs+ 1− c)

(
1− γk

)

2
(
1− γk + µt+ µtγ2σk2

) . (29)

Proof. Please refer to the appendix for the details.

Furthermore, we study the benchmark case where the CSP

knows both the in-degree and out-degree of any individual

follower. In such a situation, the CSP is able to offer discrimi-

natory reward as incentive, r(k, l) for the MU with out-degree

k and in-degree l. Then, the revenue maximization problem

faced by the CSP is characterized in the following theorem.

Theorem 4. Provided that the CSP clearly knows the type of

each individual MU, the optimal discriminatory reward r(k, l)
offered to the MU with out-degree k and in-degree l, is unique.

Proof. Please refer to the appendix for the details.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed

socially-aware incentive mechanisms of the CSP in crowd-

sensing applications, and investigate the impacts of different

parameters of mobile networks on the performance.

3Note that the uniform incentive mechanism is more applicable in incom-
plete information scenario, where the CSP has no information on the specific
type of each individual MU. However, the in/out-degree distributions of MUs
can be obtained through, e.g., historical information or long-term learning,
which makes the uniform incentive mechanism feasible. This can also be
confirmed by the closed-form solution for the optimal uniform reward, since
the expression of the optimal reward only includes the mean and variance of
the in/out-degree distributions instead of the type of individual MU.
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Figure 2: The impact of total number of MUs on the

crowdsensing service provider and mobile participants.
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Figure 3: The impact of average value of social network

effects on the crowdsensing service provider and mobile

participants.

A. Investigation on Stackelberg game with complete informa-

tion on social structure

We consider a group of N MUs, i.e., mobile participants,

in a social network and set the parameters as follows. We

assume the intrinsic parameters of MUs, i.e., ai and bi follow

the normal distribution N (µa, 2) and N (µb, 2). In addition,

the social tie gij between any two users i and j follows a

normal distribution N (µg, 1). The default parameters are set

as: c = 15, µ = 0.1, s = 20, t = 0.05, µa = µb = 15, µg =
0.05 and N = 50. Note that some of these parameters are

varied according to the evaluation scenarios. As expected and

verified in Fig. 2 and Fig. 3, the discriminatory incentive yields

the larger revenue for the CSP, compared with the uniform

incentive. Intuitively, the reason is that the CSP can adjust the

reward according to individual MU’s effort and contribution,

which is proven by Fig. 4.

We next evaluate the impact of the total number of MUs

on the proposed incentive mechanisms, as illustrated in Fig. 2.

As the number of MUs increases, the total utilities of partici-

pants and the revenue of the CSP also increase under both

mechanisms. The reason is that when the total number of

MUs increases, the number of social neighboring MUs also

increases. Owing to the underlying social network effects, the

MUs are motivated by their social neighbours to have higher

participation levels, and the revenue of the CSP is improved

accordingly. In addition, with the increase of total number of

participants, the total offered reward increases since the CSP

tends to encourage more MUs to participate, in order to attain

a greater revenue gain. In particular, the discriminatory and

uniform incentive mechanisms enable the CSP to reduce the

reward paid to the MUs, i.e., the cost, and therefore achieve

a greater revenue gain in turn. Figure 3 depicts the impact

of average value of social network effects on two entities of

this network, i.e., the CSP and MUs. We observe that as the

social network effects becomes stronger, the total utilities of

participants and the revenue of the CSP also increase. Since

when the strength of social tie is stronger, the additional

benefits obtained from social network effects are greater. In

other words, the socially-aware MUs are motivated by each

other and have higher participation levels consequently. When

the participation levels are high enough, the CSP is able to

offer less reward to save money. In turn, the total utilities

of participants and the revenue of the CSP are improved.

Furthermore, we observe that the total offered reward under the

uniform incentive mechanism and the discriminatory incentive

mechanism have no big difference from both Figs. 2 and 3.

The reason is that the CSP under the discriminatory incentive

mechanism is able to achieve a balanced reward allocation

with the similar cost. For example, the CSP can offer more

reward to some MUs and less reward to some other MUs,

which leads to a greater overall participation level. This

intuition is demonstrated in Fig. 4. From the third sub-figure

in Fig. 3, we find that the uniform reward curve has several

fluctuations suffering from the randomness of the social tie

gij when network effects become stronger. Nevertheless, we

can observe that the uniform reward still remains largely

unchanged (around 50). This is different from the third sub-

figure in Fig. 2, where we cannot observe the fluctuations.

The reason is that Fig. 2 illustrates the impacts of the number

of MUs on the total offered reward from the CSP. Intuitively,

the total reward increases when the number of participants

increases. Thus, the slight fluctuations cannot be observed in

Fig. 2 since the reward keeps increasing.

Then, to explore the impacts of social network effects on

each specific participant, we investigate the optimal reward

and resulting MUs’ participation level with the number of 50
MUs, and we adopt the similar default parameters setting to

that in above discussions. The adjacency matrix G is generated
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Figure 4: A case illustration of distribution of normalized

reward and participation level.

as follows:



gi,i+1 = 0.2×
(
0.5−

(
0.5− i−1

N

)2)
, i ∈ [1, N − 1];

gi+1,i = 0.2×
(
0.5−

(
0.5− i−1

N

)2)
, i ∈ [1, N − 1];

gi,j = 0, otherwise.
(30)

From Eq. (30), only participants who are adjacent in partic-

ipant indexes (neighbours) can affect each other. From Fig. 4,

we observe that the CSP offers each participant the same

reward when it has no information about the value of matrix

G. Given the reward from the CSP, the MUs have different

participation level equilibrium as shown in Fig. 4, where we

observe that the participation levels of the MUs are socially

related to each other. In particular, the 27th MU is the most

susceptible or influenced one in this network because it has

the highest participation level given the same reward. On the

contrary, the 1st and the 51st MUs are the most influential

ones. Therefore, with the knowledge about the value of matrix

G, the CSP is likely to offer more reward to the 1st and the

51st MUs and less to the 27th MU, under the discriminatory

incentive mechanism. The reason is that the CSP tends to have

the highest participation level from the participant with the

lowest cost and thus have a greater revenue gain. However,

under the uniform incentive mechanism, the CSP can offer

only the same reward to the participants. As such, the CSP

usually offers more reward and promotes the participants to

attain higher participation level, but the incurred extra cost

is also very high, which decreases the revenue of the CSP

consequently.

B. Investigation on Bayesian Stackelberg game with incom-

plete information on social structure

Similar to the above discussions, we consider a group of

N MUs. The in-degree and out-degree of MUs follow the

normal distribution N (k, σ2
k) and N (k, σ2

l ), respectively. The

parameters are set as follows: γ = 0.01, k = 20, σ2
k = σ2

l =
10, µ = 10, s = 20, t = 0.05, c = 15, and N = 100.

103050

Out-degree

7090110130150
10

30
50

70
90

110

In-degree

130
150

20

0

40

120

100

80

60

T
h
e
 o

p
ti
m

a
l 
o
ff
e
re

d
 r

e
w

a
rd

Figure 5: The illustration of the optimal offered reward with

respect to different in-degrees and out-degrees.

We first study the optimal offered reward in terms of

different in-degrees and out-degrees, as illustrated in Fig. 5.

Interestingly, we find that the optimal offered reward increases

with the increase of in-degree, and increases with the decrease

of out-degree. Recall that the MU’s in-degree represents its

influence and the out-degree represents its susceptibility. As

the in-degree of the MU increases, this MU can encourage

more other MUs due to the underlying social network ef-

fects. In a crowdsensing-based road traffic information sharing

platform, we can treat the drivers in critical central paths as

the MUs with higher in-degree, i.e., greater influence. The

road information from these drivers plays a great role, i.e.,

the participation of these drivers can greatly promote the

participation of others. Thus, in the presence of social network

effects, the CSP tends to offer more reward to the MUs with

the higher in-degree, since they potentially motivate more

participation level of other MUs. On the contrary, for the MUs

with the higher out-degree, the CSP has no incentive to offer

more reward. The reason is that the MUs with the higher out-

degree are more susceptible, and these MUs are potentially

positively affected by others. Consequently, the CSP is able to

offer less reward to save the cost.

Furthermore, we investigate the impacts of mean value of

social network effects on the players of Bayesian Stackelberg

game in Fig. 6. As expected, we observe that the optimal

offered reward decreases when the mean value of social

network effects increases. The reason is that as the mean

value of social network effects become stronger, the MUs

can motivate each other to have higher participation level

due to the interdependent participation behaviors. The total

utilities of MUs become greater, and thus the CSP tends to

offer less reward to save the cost. Consequently, the CSP

achieves the greater revenue gain. In addition, comparing

different curves with different value of µ, we find that when

µ, i.e., the equivalent monetary worth of MUs’ participation

level increases, the CSP tends to offer more reward as the

participation incentive. The reason is that the CSP is more

inclined to arouse the enthusiasms of MUs when the CSP can

transform the participation level of MUs to more monetary
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Figure 7: The impacts of variance of the distribution of in/out-degree.

revenue efficiently. Therefore, to extract more surplus from

MUs, the CSP offers more reward and thus achieves a greater

revenue gain.

Figure 7 illustrates the impacts of variance of the distri-

bution of social network effects on the players of Bayesian

Stackelberg game. As the variance of social network ef-

fects decreases, the achieved revenue under uniform incentive

mechanism is close to that under discriminatory incentive

mechanism. The reason is that the heterogeneity of MUs

is reduced when the value of variance decreases. We may

consider an extreme case when the value of variance is zero,

i.e., the MUs are homogeneous, the discriminatory incentive

mechanism yields the same results as those of the uniform

incentive mechanism. On the contrary, when the value of

variance increases, the achieved revenue under the discrim-

inatory incentive mechanism increases. The reason is that

discriminatory incentive mechanism enables the CSP to exploit

the different preference, i.e., parameters of utility function, for

each of MUs, which leads to the decrease of total utilities

of MUs and the increases of the revenue. Moreover, when

the participation cost of MUs increases, the utility of MUs

from participation is discounted. As such, the CSP tends to

offer more reward to compensate the participation cost for

improving their motivation. Meanwhile, the total utilities of

MUs still decrease due to the increasing participation cost.

Similarly, the revenue of the CSP decreases.

Lastly, both Figs. 6 and 7 demonstrate the fact that the

discriminatory incentive mechanism performs better in terms

of the achieved revenue compared with uniform incentive

mechanism. The intuition is that, with the certain social

structure information, the CSP can set different reward for

different MUs, as verified by the Fig. 5. As such, the CSP can

significantly encourage the greater participation level of MUs.

In particular, the social structure information guides the CSP

to extract more surplus from the MUs’ participation, which

results in the greater revenue gain.

In summary, we draw the following engineering insights:

• The network effects tremendously stimulate higher MU

participation level, which leads to the greater total utilities

of MUs as well as the greater revenue of the CSP.

• The discriminatory incentive mechanism yields the

greater revenue of the CSP than that of the uniform

incentive mechanism in both the complete and incomplete

information scenarios.

• The revenue gap between the uniform and discriminatory

incentive mechanisms depends on the variance of network

effects.

• The CSP has an incentive to offer more reward to the

influential MUs and less reward to the susceptible MUs,

in order to promote a greater overall participation level.

VII. CONCLUSION

In this work, we have developed a two-stage Stackel-

berg game theoretic model, and obtained the equilibrium

using backward induction. The Crowdsensing Service Provider

(CSP) determines the incentive in the first stage, and the
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Mobile Users (MUs) decide on their participation level in

response to the observed incentive in the second stage. Taking

the social (local) network effects among MUs into account, we

have proposed two incentive mechanisms, i.e., discriminatory

incentive and uniform incentive, where we have obtained the

closed-form expression for optimal incentive. Moreover, we

have formulated the Bayesian Stackelberg game to analyze

the incentive mechanism, when the social network effects are

uncertain. We have validated the existence and uniqueness

of the Bayesian Stackelberg equilibrium by identifying the

best response strategies of MUs. Performance evaluations have

demonstrated that the network effects significantly improve

the participation levels of MUs and the revenue of the CSP.

Additionally, it has been confirmed that the social structure

information helps the CSP to achieve greater revenue gain.

The joint considerations of uncertainties of internal utility and

social influence in the model are well worth studying in the

future works.

APPENDIX

A. Proof of Theorem 3:

Proof. Similar to that in Section IV, we first apply the

unique Bayesian Nash equilibrium of the follower game given

in Eq. (28) into the objective function given in Eq. (18).

Since r(k, l) = r for all MUs under the uniform incentive

mechanism, we know that the unique participation level of

the MU only depends on its out-degree k from Eq. (28), i.e.,

x∗(k, l) = x∗(k). The expected revenue of the CSP given

in (18) is then expressed as follows:

Π =
∑

k∈D

P (k)
(
(µs− r)x∗(k)− µt(x∗(k))

2
)
. (31)

In particular, we have the mathematical transformations as

shown in Eq. (32).

Then, we evaluate its first-order optimality condition with

respect to the reward, and we have ∂Π
∂r

= ∂Π
∂ 1+r−c

1−γk

∂ 1+r−c

1−γk

∂r
,

which yields

(
(µs+ 1− c)− 2

(
1− γk + µt+ µtγ2σk

2
)

×

(
1 + r∗ − c

1− γk

))
1

1− γk
= 0. (33)

Thus, we can conclude that

1 + r∗ − c =
(µs+ 1− c)

(
1− γk

)

2
(
1− γk + µt+ µtγ2σk2

) . (34)

Therefore, the optimal uniform reward under Bayesian formu-

lation is uniquely determined, which is given as follows:

r∗ = c− 1 +
(µs+ 1− c)

(
1− γk

)

2
(
1− γk + µt+ µtγ2σk2

) . (35)

B. Proof of Theorem 4:

Proof. The CSP determines r(k, l) for the MU with out-
degree k and in-degree l to maximize its expected revenue.
The derivation of the optimal reward follows the similar steps
discussed in Section IV. We have the expected revenue of the
CSP, which is expressed as follows:

Π =
∑

l∈D

(

∑

k∈D

H(l)P (k)

(

(µs− r(k, l))
(

1 + r(k, l)− c+

γk
1 + r − c

1− γk

)

− µt
(

1 + r(k, l)− c+ γk
1 + r − c

1− γk

)2
)

)

. (36)

By taking the first derivative with respect to r with any out-
degree m ∈ D and in-degree n ∈ D, we have Eq. (37). Since
we know ∂Π

∂r(m,n) = 0, we conclude that

0 = H(n)P (m)

(

−

(

1 + r(m,n)− c+ γm
1 + r − c

1− γk

)

+ µs

−r(m,n)− 2µt

(

1 + r(m,n)− c+ γm
1 + r − c

1− γk

))

+γ
H(n)P (m)

1− γk

∑

l∈D

∑

k∈D

H(l)P (k)k

(

µs− r(k, l)− 2µt

×

(

1 + r(k, l)− c+ γk
1 + r − c

1− γk

)

)

. (38)

With simple steps, we obtain the following expression

r
∗(m,n) =

1

2(1 + µt)

(

c− 1− γm
1 + r − c

1− γk
+ µs− 2µt

(

1−

c+ γm
1 + r − c

1− γk

)

+
γn

1− γk

(

µs− 2µt (1− c)−

2µtγ (1 + r − c) (σk
2 + k

2
)

(1− γk)k

)

− γn
1 + 2µt

1− γk
ψ

)

,

(39)

where

ψ =
∑

l∈D

∑

k∈D

1

k
kH(l)P (k)r(k, l). (40)

Moreover, based on the definition of r, we have

r =
∑

m∈D

∑

n∈D

H(n)P (m)r(m,n)

=
1

2(1 + µt)

(

c− 1− γk
1 + r − c

1− γk
+ µs− 2µt

(

1− c+

γk
1 + r − c

1− γk

)

+
γk

1− γk

(

µs− 2µt (1− c)−

2µtγ (1 + r − c)
(

σk
2 + k

2
)

(1− γk)k

)

− γk
1 + 2µt

1− γk
ψ

)

. (41)

Thus, we have

r =
1

2(1 + µt)

(

−

(

1− c+ γk
1 + r − c

1− γk

)(

2µt

1− γk
+ 1

)

+
µs

1− γk
−

2µtγ2σk
2 (1 + r − c)

(

1− γk
)2

(

1− c+ γk
1 + r − c

1− γk

)

−γk
1 + 2µt

1− γk
ψ

)

. (42)
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Π = (µs− r)

(

1 + r − c+ γk
1 + r − c

1− γk

)

− µt
∑

k∈D

P (k)

(

1 + r − c+ γk
1 + r − c

1− γk

)2

= (µs− r)
1 + r − c

1− γk
− µt (1 + r − c)2 − 2µt (1 + r − c) γk

1 + r − c

1− γk
− µt

(

k
2
+ σk

2
)

(

γ
1 + r − c

1− γk

)2

= (µs− r)
1 + r − c

1− γk
− µtγ2σk

2

(

γ
1 + r − c

1− γk

)2

−

(

µt (1 + r − c)2 + 2µt (1 + r − c) γk
1 + r − c

1− γk
+ µtk

2
(

γ
1 + r − c

1− γk

)2
)

= (µs+ 1− c)
1 + r − c

1− γk
−

(

1− γk + µt+ µtγ2σk
2
)

(

1 + r − c

1− γk

)2

(32)

∂Π

∂r(m,n)
=

∂

∂r(m,n)
H(n)P (m)

(

(µs− r(m,n))

(

1 + r(m,n)− c+ γm
1 + r − c

1− γk

)

− µt

(

1 + r(m,n)− c+ γm
1 + r − c

1− γk

)2
)

+
∂

∂r(m,n)

∑

l 6=n

∑

k 6=m

H(l)P (k)

(

(µs− r(k, l))

(

1 + r(k, l)− c+ γk
1 + r − c

1− γk

)

−µt

(

1 + r(k, l)− c+ γm
1 + r − c

1− γk

)2
)

= H(n)P (m)

(

−

(

1 + r(m,n)− c+ γm
1 + r − c

1− γk

)

+

(

1 + γm
H(n)P (m)

1− γk

)

(µs− r(m,n))

−2µt

(

1 + r(m,n)− c+ γm
1 + r − c

1− γk

)

(

1 + γm
H(n)P (m)

1− γk

))

+
∂

∂r(m,n)

∑

k 6=m

∑

l 6=n

H(l)P (k)

×

(

(µs− r(k, l)) γk
H(n)P (m)

1− γk
− 2µtγk

H(n)P (m)

1− γk

(

1 + r(k, l)− c+ γm
1 + r − c

1− γk

)

)

(37)

Likewise, based on the definition of ψ given in Eq. (40), we

know

ψ =
∑

l∈D

∑

k∈D

1

k
kH(l)P (k)r(k, l). (43)

Thus, we have Eq. (44).

The two expressions given in Eq. (42) and Eq. (44) to-

gether formulate a full rank linear equation system with

two variables, i.e., r and ψ. Thus, we can derive the

closed-form expression for both r and ψ [51]. In particular,

the closed-form expression for the variable r is obtained

as Eq. (45), where ρ = 1 + γk

2(1+µt)−γk

(
1 + 2µt

1−γk

)
+

µtγ2σk
2(1+r−c)

(1−γk)
2
(1+µt)

− (1+2µt)γ2σk
2

2(2+2µt−γk)(1−γk)(1+µt)

(
1 + 2µt

γk

)
. Like-

wise, the closed-form expression for the variable ψ can be

derived through similar steps. Accordingly, r(m,n) can be

obtained after plugging these two closed-form expressions into

Eq. (39), and thus the solution of r(m,n) is unique. The proof

is then completed.
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