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Abstract 

Background: Acute myocardial infarction (AMI) is a serious cardiovascular disease, followed by a high readmission 
rate within 30-days of discharge. Accurate prediction of AMI readmission is a crucial way to identify the high-risk 
group and optimize the distribution of medical resources.

Methods: In this study, we propose a stacking-based model to predict the risk of 30-day unplanned all-cause hospi-
tal readmissions for AMI patients based on clinical data. Firstly,we conducted an under-sampling method of neighbor-
hood cleaning rule (NCR) to alleviate the class imbalance and then utilized a feature selection method of SelectFrom-
Model (SFM) to select effective features. Secondly, we adopted a self-adaptive approach to select base classifiers from 
eight candidate models according to their performances in datasets. Finally, we constructed a three-layer stacking 
model in which layer 1 and layer 2 were base-layer and level 3 was meta-layer. The predictions of the base-layer were 
used to train the meta-layer in order to make the final forecast.

Results: The results show that the proposed model exhibits the highest AUC (0.720), which is higher than that of 
decision tree (0.681), support vector machine (0.707), random forest (0.701), extra trees (0.709), adaBoost (0.702), boot-
strap aggregating (0.704), gradient boosting decision tree (0.710) and extreme gradient enhancement (0.713).

Conclusion: It is evident that our model could effectively predict the risk of 30-day all cause hospital readmissions for 
AMI patients and provide decision support for the administration.

Keywords: Acute myocardial infarction, Hospital readmission, Clinical data, Machine learning, Self-adaptive, Stacking-
based model learning
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Background
Acute myocardial infarction (AMI) is a critical global 

health issue which causes more than 7 million deaths 

worldwide per year [1]. According to the evaluation 

of Healthcare Cost and Utilization Project (HCUP), 

approximately one in six patients with AMI would have 

readmission within 30 days of discharge [2]. �e high 

readmission rate poses a tremendous burden on both the 

patient and the healthcare system. �ere is an increas-

ing interest in the rate of readmission as an indicator of 

the quality of hospital care and prognosis of patients [3]. 

Effective prediction of 30-days all-cause readmission for 

AMI patients is capable of identifying patients with high 

risk for readmission, maximizing the potential for suc-

cessful intervention, and simultaneously optimizing the 

allocation of scarce medical resources [4, 5].

To date, several methods have been applied to predict 

the risk of readmission. �e most commonly used one 

is the LACE index, a simple yet effective tool with four 

attributes including L (Length of stay), A (Acuity of the 
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admission), C (Comorbidity) and E (Emergency depart-

ment visits) [6]. However, Cotter et al. [7] concluded that 

the LACE index performed poorly in predicting 30-day 

readmission with the area under the receiver operat-

ing characteristic curve (AUC) of 0.55, while that of 

the logistic regression (LR) model was 0.57. Regression 

analysis method is a process of estimating the probabil-

ity of target variables given some linear combination of 

the predictors, and has been widely applied to predict the 

readmission risk [8, 9]. However, it is difficult to solve the 

nonlinear problem or multicollinearity among risk fac-

tors based on detailed clinical data.

In recent years, machine learning (ML) approach has 

become a promising technique that can be applied to 

integrate clinical data and improve the predictive ability 

of the readmission risk [10–12]. Mortazavi et al. [13] used 

different ML and regression models to predict 30-day all-

cause readmission prediction and found that the AUC of 

random forest (RF) improved by 17.8% compared with 

LR. However, the application of ML in predicting read-

mission for AMI patients based on clinical data is limited. 

Walsh and Hripcsak [14] compared the performances 

of regularized regression (LASSO) with support vector 

machine (SVM) in predicting the readmission risk, con-

cluding that both models performed equally. Gupta et al. 

[15] conducted a comparative analysis of various ML 

methods, including SVM, naïve bayes (NB), RF and gra-

dient boosting decision tree (GBDT), in predicting AMI 

readmission based on 204 routinely available clinical var-

iables. Nevertheless, the results showed that ML models 

did not provide a discriminative improvement compared 

with the LACE model and other regression models. 

�erefore, it is necessary to develop more accurate pre-

dictive models for predicting AMI readmission.

Given that each ML approach is likely to be outper-

form others or flawed in different situations, it is natural 

to think of a way to integrate multiple ML approaches to 

get better performance. �ere are three main ensemble 

learning methods: Bagging, Boosting, Stacking. Bagging 

[16], introduced by Breiman, trains several base learn-

ers by a different bootstrap sample, then combines them 

and votes for the final result. Boosting [17], introduced 

by Freund and Schapire, updates the weights of training 

data after each training iteration, then combines the clas-

sification outputs by weighted votes. Although the voting 

algorithm (Bagging and Boosting) is the most common 

in classification tasks, it still belongs to a simple combi-

nation strategy, which makes it difficult to find complex 

information from different classifiers. Stacking technique 

[18], which uses the predictions of multiple base learn-

ers as features to train a new meta learner, is a much 

more powerful ensemble technique and has been suc-

cessfully applied in predicting the risk of readmission. 

Radovanović et al. [19] proposed a framework that inte-

grated domain knowledge in form of hierarchies into LR 

model through stacking method to forecast readmission 

of six diseases. �e results suggested that the proposed 

framework improved the AUC by an average of 9% com-

pared with LR model. Yu et  al. [20] presented a joint 

ensemble-learning model, using stacking algorithm to 

integrate the base ML model and boosting algorithm to 

predict readmission risk. �e results showed that com-

pared with the benchmark method LACE model, the 

proposed stacking model improved by 22.7% in recall, 

from 0.726 to 0.891. However, the stacking technique is 

rarely applied in predicting AMI readmission.

In this study, we attempted to adopt stacking technique 

to predict the 30-day unplanned all-cause hospital read-

missions of patients with AMI based on detailed clinical 

data. �e main contributions of this study are summa-

rized as follows:

• A stacking-based model was proposed to predict 

AMI readmissions, which has not ever been used in 

studies of AMI readmission prediction.

• �e base classifiers could be self-adaptively selected 

and applied to the base-layer of the stacking model.

Methods
Overview of the research framework

�e flow diagram of the proposed stacking model is 

shown in Fig.  1. Firstly, the clinical data were collected 

and pre-processed. Secondly, an under-sampling method 

of neighborhood cleaning rule (NCR) was applied to res-

ampling the data. �irdly, a feature selection method of 

SelectFromModel (SFM) was utilized to select effective 

features according the feature importance of each model. 

Finally, a stacking model based on multiple models was 

developed for the final prediction.

�e details are discussed in the following sub-sections.

Data collection and preprocessing

Data source

Clinical data were derived from West China Hospital, 

Sichuan University. �is study was approved by the Eth-

ics Committee of West China Hospital, Sichuan Uni-

versity (approval no. 2019–165). �e Ethics Committee 

exempted informed consent because of the retrospec-

tive nature of this research. Prior to the analysis, patients’ 

data were anonymized and de-identified.

Data extraction

�e total samples were from the patients who were diag-

nosed with cardiovascular disease with discharge dates 

between December 1, 2014 and December 31, 2017 in 
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West China Hospital, Sichuan University. In this study, 

we included the patients who were hospitalized for a pri-

mary diagnosis of AMI (the 10th revision of the Inter-

national Statistical Classification of Diseases (ICD-10) 

Codes: I21.0, I21.1, I21.2, I21.3, I21.4 and I21.9) and 

excluded the patients who were younger than 18 years, 

without any laboratory tests and medications informa-

tion, or died in hospital. In the end, our dataset con-

tains 3283 samples, including 425 readmission samples 

and 2858 non-readmission samples. Figure 2 shows this 

study’s patient selection process.

Each record of the data consists of demographics, hos-

pitalization information, medical history, past hospi-

talization history, comorbidities, physical examinations, 

procedures, cost information, ultrasonic examinations, 

laboratory tests and medications. Clinical variables such 

as some laboratory tests had a low sampling frequency 

as the result of the lack of necessity in some clinical situ-

ations. Here, the variables with more than 20% missing 

rates were eliminated, because their distributions are 

difficult to estimate [15, 21, 22]. �ese discarded vari-

ables included some laboratory tests (prothrombin time, 

Fig. 1 Process flow diagram of the proposed stacking model
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fibrinogen, etc.) and physical examinations (height and 

weight, etc.). For ultrasonic examinations data which 

were important in cardiovascular disease studies, we cat-

egorized those features with a missing rate greater than 

30% according to their normal range (e.g., ‘normal’ rep-

resents the value within the normal range, ‘abnormalities’ 

represents the value outside the normal range, ‘unknown’ 

represents the missing value).

Since one single laboratory test could be performed 

several times during the medical treatment, the median, 

min, and max values were calculated to reflect the trend 

of change to improve the prediction performance. Finally, 

there were 293 features for analysis. Table  1 shows the 

various categories of clinical variables, along with the 

number of variables and some examples. An additional 

table file shows these clinical variables in more detail (see 

Additional file 1).

Data preprocessing

Before data preprocessing, the datasets were split into the 

training set and the testing set by stratified sampling with 

the ratio of 8: 2 (2626 and 657 samples respectively) in 

which the proportion of minority samples and majority 

samples in the training set and testing set was the same.

Data preprocessing included missing data imputation, 

one-hot encoding and normalization. �e details are as 

follows:

1 Missing data imputation: although variables with 

more than 20% missing rates have been removed, 

some variables also have missing values in the data-

set. We applied the following imputation strategy. If 

the missing data belonged to a categorical feature, 

we replaced it with a new value (e.g., ‘unknown’). If 

the missing data belonged to a continuous feature, 

we used the average of the corresponding feature 

instead.

2 One-hot encoding: considering that the values of the 

categorical variables were unordered, the categorical 

variables were encoded as one-hot-encoding vectors. 

A feature with n categories could be converted into n 

features, as shown in Eq. (1).
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Fig. 2 Flow diagram of the selection process
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3. Normalization: in order to eliminate numerical dif-

ferences between variables, all variables were nor-

malized to zero mean and unit variance, which can 

be defined as Eq. (2). x is the input feature, mean 

and σ represent the average and standard deviations 

of the input feature respectively, and x∗ indicates the 

output value after normalization.

Under-sampling

In supervised classification, learning algorithm tends to 

put more weights over the majority class, thus causing an 

imbalance problem which may impact the performance 

of models [23]. Readmission prediction is an essentially 

imbalanced problem [8]. �e level of class imbalance 

of a dataset is represented by the imbalance ratio (IR), 

and an IR of 1:5 indicates that for each minority sample 

there are 5 majority samples. �e IR of our dataset was 

1:6.72, and it was more imbalanced than the IR of 30-day 

all-cause readmissions estimated by Jencks et al. [24]. In 

order to select an appropriate technique to alleviate the 

class imbalance in our dataset, we made a preliminary 

experiment using five-fold cross-validation in a training 

set to compare three class imbalance addressing tech-

niques, including the over-sampling method SMOTE 

[25], the cost-sensitive method [26] and the under-

sampling method NCR. An additional table file shows 

(2)x∗ =

x-mean

σ

the comparison results (see Additional file 2), and NCR 

performed better compared with other class imbalance 

addressing techniques in most models. �erefore, we 

applied the under-sampling method NCR [27], which 

could remove some redundant majority samples from 

the majority subset. �e detailed steps for the NCR treat-

ment are as follows.

Firstly, find three nearest neighbors for each sample in 

the training set N. Secondly, as shown in Fig.  3a, if the 

sample belongs to the majority subset N− and at least 

two of its three nearest neighbors belong to the minority 

subset N+, we would remove the sample from the train-

ing set. �irdly, as shown in Fig. 3b, if it belongs to the 

minority subset N+, we would remove those of its nearest 

neighbors that belong to the majority subset N− from the 

training set.

Feature selection

Feature selection is the process of selecting the optimal 

feature subset that have important impact on the pre-

dicted results [28], which can be efficient to improve 

model performance and save enormous running time. 

�ere are three common feature selection methods: fil-

ter, wrapper and embedded [29]. Since the embedded 

method has better predictive performance than the filter 

method in general and runs much faster than the wrap-

per method [30], the embedded method was adopted for 

our study to select informative variables for the read-

mission classification. We implemented the embedded 

method using SFM from scikit-learn package in Python. 

Table 1 Description of Clinical variables

ICD-10 the 10th revision of the International Statistical Classi�cation of Diseases, ICD-9-CM-3 International class�cation of diseases clinical modi�cation of 9th revision 

operations and procedures

Category Number 
of variables

Examples

Demographics 8 Sex, Age, Ethnic, Work, Marital status, Address, Physical condition of mother, Physical condition of father

Hospitalization information 5 Length of stay, The month of discharge, Payment Method, Admission condition, Admission pathway

Medical history 5 History of infection, History of trauma, History of surgery, History of allergy, History of blood transfusion

Past hospitalization history 5 Frequency of hospitalizations in the past 1 week, Frequency of hospitalizations in the past 1 month, 
Frequency of hospitalizations in the past 3 months, Frequency of hospitalizations in the past 6 months, 
Frequency of hospitalizations in the past 1 year

Comorbidities (ICD-10) 25 e.g., Hypertensive diseases (I10-I15), Diabetes mellitus (E10-E14), Renal failure (N17-N19), Malignant neo-
plasms (C00-C97), Diseases of liver (K70-K77), The total number of comorbidities

Physical examinations 14 e.g., Heart rate, Respiratory rate, Body temperature, Pulse, Edema, Cardiac Murmurs

Procedures (ICD-9-CM-3) 11 e.g., Procedures on blood vessels (00.6), Angiocardiography using constrast material (88.5), Intravascular 
imaging of blood vessels (00.2), Puncture of vessel (38.9)

Cost information 17 e.g., Total expenses, Treatment expenses, Western medicine expenses, Bed expenses, Board expenses, 
Surgery expenses

Ultrasonic examinations 19 e.g., Ejection Fraction, Interventricular septal thickness, Stroke volume

Laboratory tests 168 e.g., Calcium max, Calcium min, Calcium median, Hemoglobin max, Hemoglobin min, Hemoglobin median

Medications 16 e.g., β-receptor blocker, Calcium channel blockers, Angiotensin converting enzyme inhibitors, Angiotensin 
receptor blocks, Statins, Diuretic
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�is method selects features by setting a threshold which 

is determined by feature importance obtained by train-

ing each model on the training set. �e features whose 

feature importance is larger than the threshold would be 

selected and whose feature importance is smaller than 

the threshold would be removed. In our study, we tra-

versed all feature subsets according to feature importance 

of highest to lowest to find the feature subset with the 

best AUC result. �e specific procedures are as follows.

Firstly, the feature importance of all the features are 

obtained by training the model on the training set. Sec-

ondly, set the threshold to the value of the feature impor-

tance of each feature, and we could get different feature 

subsets corresponding to different threshold. Finally, the 

model performs five-fold cross-validation [31] for each 

feature subset on the training set to get the average result 

of AUC for each feature subset, and the feature subset 

corresponding to the best average result of AUC is the 

optimal feature subset.

Model building

Considering that our SFM approach requires the model 

to have attribute of feature importance, we selected eight 

broadly representative models as our candidate mod-

els, including decision tree (DT), SVM, RF, extra trees 

(ET), adaBoost (ADB), bootstrap aggregating (Bagging), 

GBDT, extreme gradient enhancement (XGB) [32–39]. 

�e models’ parameters were optimized with five-fold 

cross validation, and the values of the parameters for 

each model are shown in Table 2.

Firstly, we self-adaptively selected base classifiers for 

the stacking model. �en, we constructed a three-layer 

Fig. 3 a NCR treatment for the sample belongs to the majority subset; b NCR treatment for the sample belongs to the minority subset. The green 
ball represents the majority sample; the red ball represents the minority sample; the green triangle and the red triangle represent the majority 
and minority samples for analysis, respectively; the samples in the dotted ellipse circle represent the sample to be analyzed and its three closest 
neighbors

Table 2 The parameters of the eight candidate models

DT Decision tree, SVM Support vector machine, RF Random forest, ET Extra trees, GBDT Gradient boosting decision tree, ADB AdaBoost, Bagging Bootstrap aggregating, 

XGB Extreme gradient boosting

Model Parameters

DT max_depth = 10, min_samples_leaf = 20, min_samples_split = 300, random_state = 1

SVM kernel = linear, C = 0.001, tol = 0.0001

RF bootstrap = True, max_depth = 5, n_estimators = 50, random_state = 1

ET bootstrap = False, max_depth = 3, n_estimators = 50, random_state = 1

GBDT learning_rate = 0.05, max_depth = 3, n_estimators = 50, subsample = 0.6, random_state = 1

ADB base_estimator = DecisionTreeClassifier (max_depth = 3), learning_rate = 0.01, n_estimators = 100, random_state = 1

Bagging base_estimator = DecisionTreeClassifier (max_depth = 5), n_estimators = 300, bootstrap = True, max_features = 0.6, 
max_samples = 0.6, random_state = 1

XGB learning_rate = 0.01, max_depth = 5, n_estimators = 200, subsample = 0.6, colsample_bytree = 0.8, random_state = 1
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stacking model in which layer 1 and layer 2 were base-

layer and level 3 was meta-layer. �e base-layer used 

self-adaptively selected base classifiers to yield predic-

tions by five-fold stacking. Finally, we applied LR for the 

meta-layer to make the final results based on these pre-

dictions. �e framework of the stacking-based model is 

illustrated in Fig. 4a. M1 to M8 and f1 to f8 represent the 

eight candidate models and their corresponding feature 

subsets respectively. Mt1 to Mt3 and ft1 to ft3 indicate the 

base classifiers and their corresponding feature subsets 

respectively. fin is the intersection of the three feature 

subsets (ft1 to ft3). p1_Mt1 to p1_Mt3 indicate the predic-

tion result of the base classifiers in layer 1. tp1_Mt1 to 

tp1_Mt3 indicate the average prediction result of the base 

classifiers in layer 1. p2_Mt1 to p2_Mt3 represent the pre-

diction result of the base classifiers in layer 2. tp2_Mt1 

to tp2_Mt3 represent the average prediction result of the 

base classifiers in layer 2. �e detailed procedures of the 

stacking-based model are described as follows.

In the process of adaptively selecting base classifiers, 

we could get eight candidate models (M1 to M8) and their 

corresponding feature subsets (f1 to f8) after feature selec-

tion. �en, each of the models applied five-fold cross-val-

idation on their corresponding feature subsets to get the 

average result of AUC for each model in the training set, 

and then we selected three models with the best average 

results of AUC as our base classifiers. �e base classifiers 

Fig. 4 a Framework of the stacking-based model; b Classifier Mi five-fold stacking process
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(Mt1 to Mt3) and their corresponding feature subsets (ft1 

to ft3) were used to construct the stacking model.

In the first layer, for each selected classifier (Mt1 to Mt3), 

with the corresponding feature subsets (ft1 to ft3) as input, 

the predictions of base classifiers (p1_Mt1 to p1_Mt3 in 

training set, tp1_Mt1 to tp1_Mt3 in testing set) were gen-

erated by five-fold stacking. We utilized classifier Mi to 

illustrate the detailed steps of the five-fold stacking pro-

cess. As shown in Fig. 4b, we divided the training set into 

five-fold for cross-validation. In each iteration, four-fold 

were applied to train classifier, and the remaining one-

fold was used for prediction. Meanwhile, in each itera-

tion, the trained classifier predicted testing set. After five 

iterations, the prediction result for the training set could 

be obtained (p_Mi). �e average prediction values in test-

ing set were identified as the prediction result of the clas-

sifier in testing set (tp_Mi).

In the second layer, for each base classifier, the input 

not only included its corresponding generated predic-

tions from the layer 1 (e.g. p1_Mt1 generated by Mt1 in 

training set, tp1_Mt1 generated by Mt1 in testing set), but 

also additionally added the intersection of the three fea-

ture subsets (fin). �en the predictions of base classifiers 

(p2_Mt1 to p2_Mt3 in training set, tp2_Mt1 to tp2_Mt3 in 

testing set,) were generated by five-fold stacking as men-

tioned above.

In the third layer, since the features of this layer had 

been extracted based on complex non-linear transforma-

tions, there was no need to choose complex classifiers 

in the output layer. LR [40] is a good candidate classi-

fier because of its simple structure and the advantage of 

L2 regularization which can further prevent over-fitting 

[41]. �erefore, we used LR as the prediction model to 

train on the training set predictions generated by the 

layer 2 (p2_Mt1 to p2_Mt3), and made the final predictions 

based on the testing set predictions generated by the 

layer 2 (tp2_Mt1 to tp2_Mt3).

Evaluation metrics

According to the systematic review of hospital risk read-

mission [8], AUC [42] was used as the preferred model 

evaluation metric in more than 75% of the studies of 

predicting readmission. In our study, we applied AUC as 

our main evaluation metric, and took AUC as the perfor-

mance criterion on which the parameter adjustment and 

feature selection are based.

In order to further comprehensively compare our pro-

posed model with other models, the evaluation met-

rics of the confusion matrix were also utilized. Included 

accuracy, sensitivity and specificity, as shown in (3), (4) 

and (5), where TP = True Positive, FP = False Positive, 

TN = True Negative, FN = False Negative.

Experimental setup

Our project was implemented in Python 3.7.2. Packages 

of imblearn 0.0 and scikit-learn 0.21 were utilized for 

under-sampling and feature selection. All the analyses 

were executed on a computer running the Intel Core i5 

3.40 GHz processor, Windows 10 operating system, and 

8 GB RAM.

Considering the small sample size of this study and the 

randomness of the experimental results, we used differ-

ent random seeds to hierarchically split the dataset for 10 

times, and the average result of 10 datasets were applied 

as the final result. �e results were represented in the 

form of mean ± standard deviation.

Results
Results of under-sampling

�ere were 2626 samples in training set before NCR 

treatment, of which 2286 were majority. After NCR treat-

ment, there were 1762 majority samples, and 524 redun-

dant majority samples were removed. We used AUC 

and sensitivity to compare the performances of the eight 

candidate models between before and after NCR treat-

ment, and the results are shown in Table 3. �e average 

result of AUC for SVM, RF, ET, GBDT, Bagging, XGB 

(3)Accuracy =
TP + TN

TP + TN + FP + FN

(4)Sensitivity =
TP

TP + FN

(5)Specificity =
TN

TN + FP

Table 3 The results for  the  eight candidate models 

between before and after NCR treatment

Font bold: the better values; *: there is a statistically signi�cant di�erence 

between before and after NCR treatment (p-value < 0.05). DT Decision tree, 

SVM Support vector machine, RF Random forest, ET Extra trees, GBDT Gradient 

boosting decision tree, ADB AdaBoost, Bagging Bootstrap aggregating, XGB 

Extreme gradient boosting

Model AUC Sensitivity

Before After Before After

DT 0.665 ± 0.03 0.664 ± 0.02 0.287 ± 0.09 0.385 ± 0.08*

SVM 0.621 ± 0.01 0.662 ± 0.02* 0.161 ± 0.02 0.393 ± 0.03*

RF 0.700 ± 0.02 0.701 ± 0.02 0.338 ± 0.04 0.444 ± 0.03*

ET 0.705 ± 0.02 0.709 ± 0.02 0.289 ± 0.04 0.453 ± 0.03*

GB 0.698 ± 0.02 0.702 ± 0.02 0.338 ± 0.04 0.460 ± 0.04*

ADB 0.684 ± 0.03 0.680 ± 0.03 0.351 ± 0.04 0.424 ± 0.04*

Bagging 0.700 ± 0.02 0.705 ± 0.02 0.399 ± 0.04 0.498 ± 0.04*

XGB 0.702 ± 0.02 0.706 ± 0.02 0.371 ± 0.04 0.468 ± 0.03*
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were improved after NCR treatment, in which SVM was 

greatly improved with statistically significant difference 

(p-value < 0.05), while the improvement of other models 

showed no statistically significant differences. Although 

the AUC results for most models were not significantly 

improved after NCR treatment, the sensitivity results 

for all models were improved and showed statistically 

significant differences. �e results showed the effective-

ness of NCR treatment in alleviating the problem of class 

imbalance.

Results of feature selection

�ere were 392 features in our dataset before feature 

selection. After SFM, the feature numbers for DT, SVM, 

RF, ET, GBDT, ADB, Bagging and XGB were 15, 29, 

117, 118, 42, 21, 226 and 114, respectively. Each model 

removed a large number of redundant features, especially 

for DT, SVM, and ADB, which highly reduced the run-

ning time. We used AUC as evaluation metric to compare 

the performances of the eight candidate models between 

before and after SFM, and the results are shown in Fig. 5. 

�e results of after SFM showed better performance 

than that of before SFM in the most of the eight candi-

date models. Specifically, after SFM, the average result 

of AUC for DT, SVM, GBDT, ADB, and XGB improved 

by 2.56, 6.80, 1.14, 3.24 and 0.99%, respectively, and all of 

them showed statistically significant differences except 

for GBDT. Although the average result of AUC for Bag-

ging decreased after SFM, it only decreased by 0.001 and 

with no statistically significant difference. Moreover, after 

SFM, the outliers of XGB, GB and DT were eliminated, 

which indicated that SFM could improve the generaliza-

tion ability of the model. �erefore, for most candidate 

models, our feature selection method SFM is efficient.

Results of model comparison

As shown in Table  4, the proposed stacking model 

achieved higher performance compared with the 

eight candidate models in all evaluation metrics, in 

which AUC, accuracy, sensitivity and specificity were 

0.720 ± 0.02, 0.772 ± 0.01, 0.515 ± 0.04 and 0.810 ± 0.01, 

respectively. For AUC, the stacking model improved 

nearly 1% compared with the best candidate model XGB. 

For accuracy and sensitivity, compared with the best can-

didate model in the corresponding evaluation metrics, 

the stacking model improved by 0.39 and 0.39%, respec-

tively. For specificity, although the stacking model was 

equal to DT, the standard deviation of the former is less 

Fig. 5 Box plot of the AUC for the eight candidate models between before and after SFM. °: the outliers of box plot, *: there is a statistically 
significant difference between before and after SFM (p-value < 0.05). DT: decision tree; SVM: support vector machine; RF: random forest; ET: extra 
trees; GBDT: gradient boosting decision tree; ADB: adaBoost; Bagging: bootstrap aggregating; XGB: extreme gradient boosting
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than the latter, which means that the stacking model has 

better generalization performance than DT.

Discussion
�is study proposes a stacking-based model to predict 

the risk of 30-day readmission in patients with AMI. �e 

comparison results among the eight candidate models 

in Table 4 illustrated that the ensemble learning models, 

including RF, ET, GBDT, ADB, Bagging and XGB out-

performed DT and SVM in sensitivity, suggesting that 

the ensemble learning models perform better to iden-

tify minority samples. �e specificity of DT was highest 

among the eight candidate modes, while its AUC and 

sensitivity were lower, indicating that DT, as a simple 

machine learning model, functioned in the majority sam-

ples of the majority class instead of its prediction effect. 

�e AUC of XGB was best among the eight candidate 

modes, and it also performed well in other evaluation 

metrics, which inferred XGB might have outstanding 

performance in the prediction of readmission [43, 44]. 

Compared with XGB, the AUC, accuracy, sensitivity and 

specificity of the proposed stacking model improved by 

0.98, 0.52, 0.38 and 0.49%, respectively, suggesting that 

our model could further improve the overall predictive 

performance compared with the best individual model. 

Moreover, compared with the eight candidate models 

which only performed well in part of evaluation metrics, 

the stacking model achieved in all of them, indicating 

that the stacking model could integrate the advantages of 

different individual models into generate better predic-

tions. �e standard deviations of the stacking model in 

terms of AUC, accuracy, sensitivity and specificity were 

0.02, 0.01, 0.04 and 0.01, respectively, among which AUC, 

accuracy and specificity were the lowest compared with 

other models, demonstrating that our model had good 

generalization ability.

However, we also noted that the sensitivity of the stack-

ing model was only 0.515, indicating that the ability of 

our stacking model to identify the readmitted patients 

was weak. �ere are two main reasons for the low sen-

sitivity. On the one hand, the sensitivities of the eight 

candidate models were low, except for XGB and Bag-

ging which were greater than 0.510, all the other models 

were around 0.500 or less than 0.500. Stacking technique, 

which uses the predictions of multiple base learners as 

features to train a new meta learner, may not achieve a 

good forecast performance if the base classifiers does not 

perform well. On the other hand, in our study, the crite-

ria for adjusting the parameters of each candidate model 

and selecting the base classifiers were based on AUC 

rather than sensitivity. In addition, we found that some 

heart failure readmission studies had relatively low sensi-

tivity [10, 13, 45].

In addition to achieve better prediction performances 

compared with individual ML model, our proposed 

stacking model has the characteristic of self-adaptively 

selecting the base classifiers. So far it is an open question 

that how to obtain an effective combination of base clas-

sifiers in stacking methods. Although many studies enu-

merated all the combinations of classifiers to choose the 

best combination, it is time-consuming and laborious. 

In our stacking model, the base classifiers could be auto-

matically selected according to the average results from 

five-fold cross-validation for the candidate models. �e 

result in Table 4 shows that the base classifiers selection 

method is effective for constructing the stacking model.

Considering the enormous burden of AMI readmission 

in the healthcare system [46, 47], accurate prediction of 

readmission could improve the administration of the hos-

pital and save cost. �erefore, several models have been 

established to forecast 30-day readmissions in patients 

with AMI. However, many existing forecasting models 

use data that is not available until a long time after dis-

charge (e.g., registry or administrative claims) [48], thus 

limiting their applicability for clinical use. We overcame 

the limitation by only using data collected during the 

patient’s hospitalization. Our study included all available 

clinical data, including demographics, hospitalization 

information, medical history, past hospitalization his-

tory, comorbidities, physical examinations, procedures, 

cost information, ultrasonic examinations, laboratory 

tests and medications, and the detailed clinical data from 

real world were applied to train the predictive model 

which made our model more convincing. Meanwhile, it 

is important to identify some important clinical features 

from these various clinical features. In the second layer 

of our stacking-based model, for each base classifier, 

Table 4 Performance comparisons of  our stacking model 

and the eight candidate models

Font bold: the optimal values. DT Decision tree, SVM Support vector machine, 

RF Random forest, ET Extra trees, GBDT Gradient boosting decision tree, ADB 

AdaBoost, Bagging Bootstrap aggregating, XGB Extreme gradient boosting

Model AUC Accuracy Sensitivity Speci�city

DT 0.681 ± 0.02 0.768 ± 0.03 0.487 ± 0.06 0.810 ± 0.04

SVM 0.707 ± 0.03 0.765 ± 0.01 0.480 ± 0.03 0.808 ± 0.01

RF 0.701 ± 0.02 0.768 ± 0.01 0.502 ± 0.05 0.807 ± 0.01

ET 0.709 ± 0.02 0.760 ± 0.02 0.500 ± 0.03 0.798 ± 0.02

GBDT 0.710 ± 0.02 0.764 ± 0.02 0.501 ± 0.04 0.803 ± 0.02

ADB 0.702 ± 0.02 0.769 ± 0.03 0.502 ± 0.03 0.809 ± 0.03

Bagging 0.704 ± 0.02 0.769 ± 0.01 0.512 ± 0.03 0.808 ± 0.01

XGB 0.713 ± 0.02 0.768 ± 0.02 0.513 ± 0.03 0.806 ± 0.02

Stacking 
Model

0.720 ± 0.02 0.772 ± 0.01 0.515 ± 0.04 0.810 ± 0.01
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the input not only included its corresponding generated 

predictions from the layer 1, but also additionally added 

the intersection of the corresponding feature subsets of 

the three base classifiers. �e features in the intersection 

of these feature subsets is very important for our study, 

including age, length of stay, some cost information, and 

some laboratory tests. Our selected features confirmed 

some of the risk factors known to be influential in stud-

ies of readmission prediction, such as age, length of stay 

[49–51]. We also found other less considered risk factors 

like cost information, including total expenses, treat-

ment expenses. But our study was not able to examine 

these factors because few studies used the detailed cost 

information.

It is quite challenging to compare the outcomes of 

our stacking-based model with the results of the related 

works in this field. �e primary cause is that different 

studies have great differences in terms of the dataset and 

the processing procedure of the dataset. However, com-

parisons with previous studies are still considered a valu-

able approach to increase awareness of AMI readmission. 

Table 5 shows the comparison results from our study and 

previous works. None of the three previous works used 

any method for class imbalance, and IR of them ranged 

from 1:3.76 to 1:5.12. Our study applied NCR to allevi-

ate the class imbalance based on IR of 1:6.72. �e result 

in Table 3 indicates that the effectiveness of NCR treat-

ment in alleviating the problem of class imbalance, and 

could be applied to more readmission studies. Feature 

selection, as a process of selecting the optimal feature 

subset, plays a significant role in improving the predic-

tion performance of the model. Yu et al. [53] and Gupta 

et  al.  [15] lacked feature selection in their studies. �e 

feature selection method used by Krumholz et  al. [52] 

was stepwise logistic regression [54] method, which was 

frequently utilized in clinical research. However, its use 

is disputed to some extent because it relies on automatic 

feature selection that often takes advantage of random 

chance factors in a given sample. �e feature selection 

method applied in our study was SFM, which has the 

characteristics of fast running speed. �e result shown 

in Fig. 5 also indicates that SFM is effective on selecting 

important risk factors. �e three previous studies respec-

tively applied regression analysis method such as LR, lin-

ear-SVM and GBDT as the predictive models, and their 

AUCs ranged from 0.630 to 0.660. �e AUC of our stack-

ing model reaches 0.720, demonstrating that our model 

has better prediction performance than other models. 

Meanwhile, considering that the sample of this study 

is relatively small compared with other studies, it has a 

great influence on the prediction effect of the model. 

�erefore, the comparison results of AUC also indicate 

that our stacking model has good predictive performance 

on relatively small datasets.

Our study has some limitations that need to be 

addressed. First, since the feature selection method 

of SFM needs the attribute of feature importance, the 

model without the attribute of feature importance is not 

included in this study (e.g. artificial neural network, non-

linear kernel SVM), limiting the ability to compare with 

more different types of models. Second, some long text 

information were not included in this study (e.g. history 

of present illness, discharge summary), otherwise we 

could get the information about the time of the patient’s 

illness and the changes of some indicators during the 

patient’s hospitalization, and this information, thus fur-

ther improving the model accuracy. �ird, in our study, 

we only used data collected from the patient’s hospitali-

zation. Although this may help hospitals to perform post-

hospital interventions, it is evident that some specific 

interventions may be more valid in decreasing readmis-

sion if they were properly performed before discharge 

[48, 55].

Conclusions
�is study proposes a stacking-based model to predict 

the risk of 30-day unplanned all-cause hospital read-

missions of patients with AMI based on clinical data. 

Compared with general stacking model, the proposed 

stacking model has the characteristic of self-adaptively 

selecting the base classifiers. �e comparison results 

of different models showed that our model was supe-

rior to the individual model in all evaluation metrics, 

demonstrating that the stacking model could integrate 

Table 5 Comparison of our study and previous works

IR Imbalance ratio, NCR Neighborhood clean rule, SFM SelectFromModel, LR Logistic regression, linear-SVM, Linear support vector machine, GBDT Gradient boosting 

decision tree

Author Balance 
method

Feature selection Samples Variables IR Method AUC 

Krumholz [52] no Stepwise Logistic Regression 200,750 103 1:4.29 LR 0.630

Yu [53] no no 844 unknown 1:3.76 linear-SVM 0.660

Gupta [15] no no 7018 192 1:5.12 GBDT 0.641

Ours NCR SFM 3283 293 1:6.72 Stacking 0.720
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the advantages of different individual models to achieve 

better prediction performance. Moreover, detailed 

clinical data from real world were used to develop the 

proposed stacking-based model which made our model 

more convincing.

Effective readmission risk prediction models could pro-

vide the administration with valuable insights to iden-

tify high-risk patients and target them for early clinical 

interventions to reduce the probability of readmission. 

In future studies, the proposed stacking-based model 

could also be evaluated with more data from multi-health 

centers.
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