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)e problem of network intrusion detection poses innumerable challenges to the research community, industry, and commercial
sectors. Moreover, the persistent attacks occurring on the cyber-threat landscape compel researchers to devise robust approaches
in order to address the recurring problem. Given the presence of massive network traffic, conventional machine learning al-
gorithms when applied in the field of network intrusion detection are quite ineffective. Instead, a hybrid multimodel solution
when sought improves performance thereby producing reliable predictions. )erefore, this article presents an ensemble model
using metaclassification approach enabled by stacked generalization. Two contemporary as well as heterogeneous datasets,
namely, UNSW NB-15, a packet-based dataset, and UGR’16, a flow-based dataset, that were captured in emulated as well as real
network traffic environment, respectively, were used for experimentation. Empirical results indicate that the proposed stacking
ensemble is capable of generating superior predictions with respect to a real-time dataset (97% accuracy) than an emulated one
(94% accuracy).

1. Introduction

Network intrusion detection is a significant research area
since cyber attacks are increasing at an alarming rate [1].
Numerous studies have been put forward in order to pro-
pose noteworthy approaches for combating malicious cyber
activities. However, as and when cyber attacks become more
complex, the existing approaches fail to address the problem
effectively. Traditional defensive strategies like firewalls,
antivirus, and authentication seem to be inefficient for many
complex threats because cyber-attack vectors are highly
sophisticated [2]. Network intrusion detection is a major
decision-making problem that can be addressed by the
application of classification algorithms [3]. Several machine
learning algorithms like fuzzy logic, neural networks, sup-
port vector machine, Näıve Bayes, K nearest neighbor, and
decision trees have been employed in the field of network
intrusion detection [4]. Whenever a combination or an
ensemble approach is introduced, performance of individual

algorithms can be enhanced. Ensemble paradigm is a notable
machine learning approach wherein different algorithms are
employed to improve predictions. Some studies have also
demonstrated that the application of ensemble paradigm can
prove to be versatile and certainly boost prediction accuracy
and detection speed [5–8]. Going by the same assertion, the
proposed approach emphasises the application of supervised
machine learning algorithms to propose a classification
framework using a concept called stacked generalization. As
illustrated in [9–11], stacking or stacked generalization is
advantageous since the concept is based on combining
predictions from different individual classifiers that can
substantially improve generalization too.

)e advantage of stacking was explained in [12] to
perform protein classification, and desirable accuracy was
accomplished. As explained in [13], classifier ensembles or
combiners or committees offer better solutions by han-
dling bias-variance trade-off more effectively than indi-
vidual classifiers. A comparative analysis was conducted to
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analyse SVM’s performance along with classifiers like
AdaBoost, J48, random forest, BayesNet, and logistic re-
gression. It was conspicuous that all the algorithmic
combinations with SVM produced better results than
individual SVM [14]. )e implementation of the ensemble
learning algorithm called super learner resulted in im-
proved predictions using the MAWILab dataset [15]. One
such ensemble learning paradigm is stacking that con-
siders several machine learning algorithms, uses a meta-
model to combine predictions from individual algorithms,
and thereby improves overall performance. By combining
the advantages of multiple algorithms, detection effect can
be enhanced [16]. )e stacking method was employed to
detect malware on mobile devices that showed an im-
provement in accuracy and F measure [17].

2. Related Work

Several methods have been put forth by researchers to
perform network intrusion detection using a combination of
algorithms. )is section presents an overview of such
combinative approaches that focus on improving the overall
performance. An emerging approach for intrusion detection
involving an ensemble design was put forth using neu-
trosophic logic classifier, an extension to fuzzy logic. A
genetic algorithm was used to generate rules. )e aforesaid
design could decrease the false alarm rate to 3.19% as
compared to other approaches [18].

Support vector machine (SVM) is a well-known classifier
that can classify from a limited set of samples given to it but
still can optimize predictions [19]. It was demonstrated by
Chen et al. [20] that SVM was superior to artificial neural
networks (ANNs) in terms of detecting intrusions while
experimenting with basic security module (BSM) audit data
from Defence Advanced Research Projects Agency
(DARPA) intrusion detection dataset. )is is because ANN
requires lot of training data, whereas SVM can perform
better with relatively less data and can execute much faster.
However, SVM is known to excel primarily with respect to
binary classification, but when combined with other clas-
sifiers, SVM can yield better results for multiclass classifi-
cation too.

An ensemble design involvingmultilayer perceptron and
radial basis function demonstrated that superior perfor-
mance could be attained by consolidating two individual
models. Compared to individual models, the hybrid model
devised by Govindarajan and Chandrasekaran [21] seemed
to be more accurate. )is study used a dataset developed at
the University of New Mexico which consisted of both
normal and abnormal traces pertaining to mail application.

An intrusion detection system was designed using a
combination of SVM and K nearest neighbor (KNN).
Particle swarm optimization (PSO) generated weights were
used to create an ensemble design that accomplished an
improvement of 0.756% in accuracy as compared to the best
base expert [22].

Rangadurai Karthick et al. [23] developed an adaptive
intrusion detection approach by combining hidden Markov
and Näıve Bayesian models. Empirical results indicated that

the aforementioned combinative approach yielded favour-
able results and learned the nature of traffic quite efficiently.
Traces from Center of Applied Internet Data Analysis
(CAIDA) and DARPA datasets were used to implement the
hybrid model.

Another two-step hybrid method based on binary
classification and KNN was proposed to decrease the bias,
normally encountered pertaining to classwise predictions.
Step 1 involved the usage of binary classifiers, and an ag-
gregation module was employed to recognize abnormal
connections, whereas in Step 2, KNN was used to classify
those instances whose classes were undetermined after Step
1 [24].

A hybrid intrusion detection technique was proposed by
Malik et al. [25] using binary particle swarm optimisation
(BPSO) and random forest (RF) to classify probe attack
patterns. BPSO, being a good search optimizer, and RF, an
efficient classifier, contributed towards achieving better
performance. )is method was compared with eight other
classifiers, and it was interesting to note that BPSO-RF
combination yielded better results when compared to in-
dividual classifiers.

An ensemble classifier using random forest, C4.5, and
forest by penalizing attributes (FPA) was proposed by Zhou
and Cheng [26]. )is study used average of probability
(AOP) algorithm to merge the decisions from different
classifiers using a modern intrusion detection dataset CIC-
IDS2017. Results indicated a very good increase in accuracy,
i.e., 96.76%.

An insightful study was conducted by Khammassi and
Krichen [27] using a combination of genetic algorithm and
decision trees, wherein the genetic algorithm was used as a
search strategy and decision trees were used for classifica-
tion. It was observed that this approach achieved 81.42%
accuracy and 6.39% false alarm rate using the UNSWNB-15
dataset.

3. Implementation Strategy

)e objective of the proposed approach is to obtain reliable
predictions by using an ensemble technique called stacking.
)e proposed study delineates the results obtained from two
datasets captured in two diverse environments:

(i) Binary and multiclass classification results with re-
spect to UNSWNB-15 [28, 29] (an emulated dataset)

(ii) Results obtained using UGR’16 [30] (a cyclosta-
tionary dataset formulated through real traffic)

)e University of New South Wales Network based 2015
(UNSW NB-15) is a dataset created by a cyber security
research group at the Australian Center for Cyber Security
[28, 29]. )e IXIA Perfect Storm tool was used to capture
nine attack categories. )is tool incorporates all the updated
information needed to include newer attacks from Common
Vulnerabilities and Exposures (CVE) site.)is dataset has 47
features with two class labels. Tcpdump traces were collected
for a span of 31 hours to generate UNSW NB-15 dataset.
Since synthetic generation of network traffic was adminis-
tered to develop this dataset, it failed to trap genuine
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behaviors of the Internet [30]. )e University of Granada
(UGR’16) [30] dataset is a more pragmatic attempt made at
capturing netflow traces spanning more than four months of
network traffic from an Internet service provider (ISP).
Founders of this dataset mentioned explicitly that cyclo-
stationary nature of network was considered for the de-
velopment of this dataset. An important advantage of this
dataset is that the background traffic was adequately cap-
tured from sensors located in ISP network which normally
harbors heterogeneous profiles of clients [30]. )is dataset
comprising of 16,900 million unidirectional flows offers
immense scope to perform extensive experimentation [31].

Figure 1 depicts the stacking framework that comprises
base and metaclassifiers, namely, logistic regression (LR), K
nearest neighbor (KNN), random forest (RF), and support
vector machine (SVM), respectively. )e publication of the
article Super Learner [32] proclaimed that combination of
individual algorithms leads to optimal predictions. Stacking
or stacked generalization is a concept proposed by Wolpert
[33]. Different machine learning algorithms determine their
individual biases on a learning set ultimately filtering out
biases. )e implementation of a stacked ensemble involves
two kinds of models: (i) base models (level 0 classifiers) and
(ii) metamodels (level 1 or metaclassifier). )e core logic of
stacking lies in using themetaclassifier to predict the samples
by learning from level 0 classifiers. A significant advantage of
the stacking classifier was illustrated, wherein Yan and Han
[34] mentioned that stacking can improve the prediction
accuracy while considering unbalanced datasets. A study
[35] was conducted to emphasize upon the application of
artificial intelligence- (AI-) based classifiers. )e authors
explained that ensembles possess the ability to adapt to the
vigorous behaviors of malicious and normal traffic quite
effectively. Tables 1 and 2 enumerate the details of network
instances considered for experimentation from UNSW NB-
15 and UGR’16 datasets, respectively.

3.1. Preprocessing and Selection of Features. Preprocessing
was applied to handle miscellaneous data found in the
dataset. In order to remove noise and to resolve inconsis-
tencies found in the data, a statistical transformation tool is
necessary. In the proposed work, missing values and outliers
were compensated by making the distribution normal.
However, missing values depend on individual features.
While some features may have zero as amissing value, others
have zero as part of its value wherever binary data are
considered. In order to avoid predicaments, considering
relevant features that promise optimal predictions is nec-
essary. Hence, a combination of information gain (IG) and
hashing was used to extract the most desirable features.
Feature scaling was applied to ensure that those features
possessing a greater numeric range do not dominate the ones
in smaller numeric ranges. UNSWNB-15 has many features
but not all seem to be significant. )e essential features were
assigned weights in order to prioritise them, and only the
best features were extracted. Dimensionality of the features
was reduced using hashing technique. It is worthwhile to
mention that only eleven features were selected from UNSW

NB-15 dataset like sbytes, sttl, sload, tcprtt, smean, ct_srv_src,
ct_state_ttl, ct_src_dport_ltm, ct_dst_src_ltm, ct_srv_dst, and
service. Alternatively, the following five features were con-
sidered from UGR’16 dataset: source_ip, destination_port,
forwarding status, packets exchanged in the flow, and number
of bytes. For a detailed explanation of the abovementioned
features and different attack types, [28–30] can be consulted.

3.2. Classification. )e critical hyperparameters used for
tuning and optimizing the performance of the classifiers are
enumerated in Table 3. )e strategy to implement the
classification framework involved the application of multiple
classifiers to resolve the underlying intricacies of data found
in both packet-based and flow-based datasets.

Basically, KNN relies on a distance function that com-
putes similarity or difference between two network instances
found in the datasets under consideration. )e Euclidean
distance d(x, y) can be calculated by using the following
equation:

d(x, y) �

�����������
n
i�1

xi − yi( 2


, (1)

where xi refers to the i
th feature of the instance x, whereas yi

refers to the ith feature of the instance y. “n” refers to the total
number of features found in the dataset. Let
C � C1, C2, C3, . . .Cp . )ere are “p” labels in the dataset.
Let “x” be the new sample to be predicted. )e objective of
KNN classifier is to determine “k” vectors that are close to x.
If the majority of the vectors belong to class Cm, then x will
be assigned the class label Cm.

Radial basis function (RBF) is a preferred kernel function
for many classification problems in machine learning. )e
following equation defines the RBF:

(x, y) � exp −
x − y′
���� ����2

2σ2
⎛⎝ ⎞⎠, (2)

where ‖x − y′‖2 denotes the squared Euclidean distance
between two data points x and y. RBF kernel consists of two
significant components, namely, gamma and c. Gamma is
the decision region. c denotes the penalty for wrongly
classifying data points. Whenever “c” is large, SVM will be
penalized heavily. )e value of c is maintained as 1.0 which
indicates that SVM is fairly tolerant of misclassifications that
eventually lead to less variance. A higher value when
assigned to c can lead to overfitting (Algorithm 1).

4. Results and Discussion

)e credibility of any intrusion detection system can be
ascertained by four parameters: true positives, true nega-
tives, false positives, and false negatives. True positives
denote the correct classifications of normal network in-
stances. True negatives signify the correct classifications of
attack samples. False positives indicate the incorrect clas-
sification of attack samples into the normal class. False
negatives are the normal samples classified as attacks. Some

Security and Communication Networks 3



standard performance metrics defined in the study of net-
work intrusion detection are defined below:

accuracy �
TP + TN

TP + TN + FP + FN
, (3)

precision �
TP

TP + FP
, (4)

recall �
TP

TP + FN
, (5)

F 1 score �
2 × precision × recall

precision + recall
, (6)

false alarm rate �
FPR + FNR

2
, (7)

false positive rate �
FP

FP + TN
, (8)

false negative rate �
FN

FN + TP
. (9)

In order to precisely estimate the efficacy of the proposed
approach and corroborate the results obtained from stacked
ensemble, both binary and multiclass classification results
are presented in this section. Table 4 depicts the results
obtained upon classifying the network instances of the
UNSW NB-15 dataset into either attack or normal.

In order to testify the predictions and also to affirm that
the models do not overfit, mean training accuracy (MTA),
mean training precision (MTP), and mean training recall
(MTR) values are also mentioned in Table 5.

Table 6 represents actual versus predicted classifications
corresponding to each class, namely, normal (N), recon-
naissance (R), backdoor (B), denial of service (D), exploits
(E), analysis (A), fuzzers (F), worms (W), shellcode (S), and
generic (G).

)e highest detection rate (recall) of 98.32% is obtained
for generic attack type, whereas the least detection rate is
reported for backdoor attack type, i.e., 10.79%. However, it is
still a challenge to improve the detection rate of attack types
like analysis, denial of service (DOS), worms, and backdoor.
Precision refers to the relevant results presented by the
model.

)e netflow traces found in UGR’16 include real
background traffic for a substantial duration of four
months. )e primary reason behind considering this
dataset to develop the intrusion detection model can be
attributed to the presence of controlled attack traffic that
influences the cyclostationary evolution of traffic. )us
the validation of the proposed approach will be more
genuine and meaningful using this realistic dataset.
1,048,576 netflow traces of each attack type were con-
sidered to comprehend the performance of stacking
approach. Figure 2 is a pictorial representation to per-
ceive the performance of stacking ensemble on the
UGR’16 dataset by depicting the scores of accuracy,
precision, and recall pertaining to different attack types.

Table 3: Critical hyperparameters.

Model UNSW NB-15 UGR’16

Random forest
Estimators� 100 Estimators� 50
Criterion� gini Criterion� entropy

K nearest neighbor
(KNN)

Neighbors� 5 Neighbors� 6
Metric�Minkowski Metric�Euclidean

Logistic regression Penalty� L2 Penalty� L2
Support vector
machine

C� 1.0 C� 1.0
Kernel� rbf Kernel� rbf

Train 
data 

RF

LR

KNN

Predict

Predict

Predict

Stacking

Test
data

SVM Final 
predictions 

Figure 1: Stacking ensemble.

Table 2: Number of flows considered for experimentation from the
UGR’16 dataset.

Type Count

Blacklist

1,048,576 flows of each attack type

Spam
SSHscan
UDPscan
DOS
DDOS
Scan

Table 1: Number of samples considered for experimentation from
the UNSW NB-15 dataset.

Type Training Testing

Worms 130 44
Shellcode 1133 378
Backdoor 1746 583
Analysis 2000 677
Reconnaissance 10491 3496
DOS 12264 4089
Fuzzers 18184 6062
Exploits 33393 11132
Generic 40000 18871
Normal 56000 37000
Total 1,75,341 82,332
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As per the confusion matrix illustrated in Table 7, it is
evident that all the seven attack types found in the UGR’16
dataset were differentiated quite aptly by the stacking
classifier. )e highest attack detection rate was reported
for blacklist attack type. It can be noted that this kind of
attack detection ability when exhibited by intrusion

detection models can prove to be beneficial for counter-
acting emerging attacks like DDOS, DOS, and scan attacks.
Although network instances belonging to the aforesaid
attack types are found in conventional datasets like KDD
cup 99 and NSL-KDD, such attack traces are definitely
obsolete because newer attacks have emerged in recent

Input: Train data T � Xi, Yi mi�1 (Xi ∈ Rn, Yi ∈ Y)
Output: Predictions from the ensemble E

Step 1. Impose cross validation in order to prepare a training set for meta-classifier
Step 2. Randomly split T into “m” equal size subsets, i.e., T � T1, T2, T3 . . .Tm 
Step 3. for m⟵ 1 to M

Learn base classifiers namely random forest, KNN, and logistic regression
for n⟵ 1 to N

Learn a classifier Pmn from T or Tm
End for

Step 4. Formulate a training set for metaclassifier (SVM)
for each Xi ϵ Tm
Extract a new instance (xi’, yi), where xi’� Pm1(Xi), Pm2(Xi), Pm3(Xi), . . . , PmN(Xi) 
End for

End for
Step 5. Return yi � y1, y2, y3, . . . , yn  from ensemble

ALGORITHM 1: Strategy for implementing the stacking ensemble.

Table 4: Binary classification results obtained using the UNSW NB-15 dataset.

TP TN FN FP Accuracy Precision Recall F1 score AUC FAR (%)

42535 35365 2797 1635 0.94 0.96 0.93 0.95 0.99 5.2

Table 5: Training results obtained by 10-fold cross validation.

Folds Training accuracy Training recall Training precision

1 0.9291 0.9138 0.9499
2 0.9312 0.9134 0.9516
3 0.9248 0.9092 0.9471
4 0.9286 0.9095 0.9496
5 0.93 0.9112 0.9526
6 0.9327 0.9132 0.9473
7 0.9427 0.9037 0.9475
8 0.9266 0.9094 0.9522
9 0.9285 0.9134 0.9484
10 0.9251 0.9108 0.9510

MTA: 0.9285 MTR:0.9115 MTP: 0.9497

Table 6: Multiclass classification results obtained using the UNSW NB-15 dataset.

Index A B D E F G N R S W Recall (%)

Analysis 58 0 61 317 32 0 54 1 0 0 11
Backdoor 0 49 79 286 31 1 5 2 1 0 10.79
DOS 3 5 838 2354 66 13 41 11 12 0 25
Exploits 6 6 752 7622 187 33 169 160 25 7 85
Fuzzers 0 2 93 528 2936 7 1217 6 26 0 60.97
Generic 0 2 33 133 14 11512 10 1 2 1 98.32
Normal 19 0 38 163 1260 7 17075 16 16 1 91.82
Reconnaissance 0 2 112 556 5 1 17 2077 2 2 74.8
Shellcode 0 4 6 42 26 0 37 17 184 0 58.22
Worms 0 0 2 18 0 5 0 0 0 15 37.5
Precision (%) 67.44 70 41.6 63.41 64.42 99.42 91.67 90.65 68.65 57.69
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years despite similar nomenclature. Table 8 highlights the
classwise performance of the seven attack types found in
the UGR’16 dataset.

)e proposed ensemble model could detect the occur-
rence of blacklist attack type in the most efficient manner. In
order to present reliable results, performance metrics like
precision and recall were also considered in addition to
accuracy. Recall can be defined as the capability of the in-
trusion detection model to determine the positive cases
correctly, whereas precision refers to the ability of the model
to determine the percentage of positive predictions that were
correct.

Normally, there is a trade-off that occurs between recall
and precision. Since F1 score takes into account both pre-
cision and recall, it is often used as a performance metric to
assess the efficacy of intrusion detection systems. As ob-
servable from Table 8, the false alarm rate is considerably low

with respect to all the attack categories, and it is an indi-
cation that the overall performance of the ensemble model is
definitely good. Both false positives and false negatives
hamper the performance of network intrusion detection
systems. If legitimate traffic is reported as an intrusion, then
security analysts may unnecessarily invest their time and
resources trying to comprehend a traffic scenario that is
absolutely normal. A greater damage is caused when
malicious network traffic is identified as normal because
such adverse traffic situations may force security experts to
overlook some really detrimental traffic scenarios. Any in-
trusion detection system should not generate too many false
alarms. In the current study, the performance of the en-
semble model has been considerably good due to the low
false alarm rate reported during experimentation. From
Table 8, it is obvious that the false alarm rate is quite low
pertaining to different attack categories considered in the
study.

Typically, receiver operating characteristic (ROC) curve
is a pictorial representation of sensitivity vs. 1 − specificity
for the entire threshold value. Here, the term sensitivity
represents true positives which is projected as a positive rate
(which is similar to the recall measurement). It is also written
as P(Pred � positive | True � positive). Likewise, the term
specificity represents P(Pred � negative | True � negative).
Based on the ratio of true negatives predicted as negatives,
ROC curves are used to visualize the relationship between
detection rate and false positive rate of a classifier. With
respect to the UGR’16 dataset, different attack types have
true positive rate around 0.99 and false positive rate ranges
between 0.05 and 0.23. Hence, an average value has been
obtained for plotting the ROC curve as shown in Figure 3.

Network intrusion detection presents numerous
challenges to researchers like recurring cyber attacks, lack
of publicly available datasets, and problems associated
with benchmark datasets to name a few. Another im-
portant parameter for considering an intrusion detection
dataset is definitely the kind of network traffic environ-
ment used to generate it. Normally, intrusion detection
datasets are formulated in either real or emulated network
traffic scenarios.

)is work has considered two datasets for experimen-
tation (UNSWNB-15 and UGR’16) that are modern in their
approach and proposed an ensemble model using supervised
machine learning algorithms. Although the nomenclature of
attack types found in many intrusion detection datasets is
similar, the network traffic environment used to capture the
attack traces plays a vital role in deciding whether the in-
trusion detection framework can be closely modelled to the
real world or not. For example, denial of service attack traces
are found in KDD cup 99, UNSWNB-15, and UGR’16, but it
cannot be generalized that all these attack signatures are
similar because they were captured in emulated as well as
real network traffic scenarios, respectively, with substantial
differences pertaining to attack tools, traffic generators, and
test beds [28–31].

Likewise, the credibility of any approach proposed for
network intrusion detection can be ascertained by its po-
tential to differentiate between modern attacks (traces of

Table 7: Confusion matrix of all the 7 attack types found in
UGR’16.

0 1

Blacklist
0 944204 5709
1 7834 90829

UDPscan
0 892295 16466
1 18477 121338

Spam
0 932187 9532
1 13268 93589

DOS
0 936949 12311
1 9348 89968

Scan
0 927854 10710
1 10253 99759

SSHscan
0 940476 9728
1 8962 89410
DDOS (botnets)
0 927785 13583
1 60303 46905
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Figure 2: Evaluation metrics of the UGR’16 dataset.
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modern attack types are found in UNSW NB-15 and
UGR’16). It can be noted that 20 features were used in [27] to
achieve the results using the UNSW NB-15 dataset as
compared to the proposed approach wherein only 11 fea-
tures were used to accomplish a superior accuracy and a
reasonably lower false alarm rate.

Moreover, as noted in [27], three decision tree classifiers
were used to perform classification, but the proposed study
employed a diverse set of classifiers to achieve the desired
objective quite efficiently. Given the presence of massive
network traffic in the real world, it is prudent to consider
large number of instances for experimentation as in the case
of the UGR’16 dataset. With the advent of Internet of things
(IOT), network traffic will only become more and more
complex in the coming years [36, 37].

A very negligible false alarm rate has been reported
with respect to the UGR’16 dataset, and the least reported
false alarm rate is 0.54% pertaining to blacklist attack
type. Binary classification results tend to focus only on
either normal or attack classification whereby the
problem of misclassification between various attack types
tends to dissipate, often resulting in a higher accuracy.
Hence, multiclass classification becomes indispensable.
However, it is still a challenge to improve the attack
detection rates of some attack types. Such problems are
common while experimenting with multiclass datasets
that normally comprise of unbalanced samples. As
explained clearly in [38], ensemble of classifiers can be
considered as a feasible solution for class imbalance
problem. UGR’16 is relatively new and there are no
studies pertaining to the implementation of supervised
learning algorithms on this dataset. As elaborated in [30],

cyclostationary characteristics of the network are well
captured by this dataset.

Network traffic, in all possibilities, is cyclostationary
because unpredictable fluctuations can be observed that
strongly depend on the time of the day and year. As dis-
cussed in [30], network traffic exhibits temporal behaviour.
In essence, when cyclostationary characteristics are captured
by a dataset, it is possible to comprehend the dynamics of
network traffic and analyse periodic behaviour. In real
world, there is a need to design network intrusion detection
systems that take into account cyclostationary features.
Apart from the UGR’16 dataset, there is no publicly available
dataset at present where cyclostationarity has been captured.
)erefore, in order to validate the effectiveness of the
proposed approach in a better manner, a dataset that depicts
the characteristics of real traffic is also included in the study.

)e adoption of network flows in the field of network
intrusion detection is extremely important; a missing el-
ement in most of the traditional datasets is used for
evaluating the performance of intrusion detection systems.
An important advantage of the UGR’16 dataset is the
presence of unidirectional flows instead of packets unlike
the UNSW NB-15 dataset that can be used for decisive
anomaly detection. As described in [39], network flows
present an aggregated view of the network. )erefore, the
time spent to analyse such flows is considerably less.
Predominantly, the usage of any flow-based intrusion
dataset is advantageous over other datasets because they
can be used in a novel manner to detect intrusions in high-
speed networks [40].

5. Conclusion

)is work has proposed an ensemble approach using the
concept of stacking for effective network intrusion de-
tection. Two heterogeneous datasets like UNSW NB-15
(emulated) and UGR’16 (real-time) were used for ex-
perimentation. A combination of algorithms, namely,
random forest, logistic regression, K nearest neighbor,
and support vector machine, resulted in superior pre-
dictions with respect to a real-time dataset than an em-
ulated one. )e implementation strategy can be further
extended to conduct experimentation on different datasets
that include recent attack categories. Sophisticated
computing engines like Apache Spark can be used in
future to increase the processing speed and facilitate
scalability for large volumes of network data. From the
series of experimentation conducted during the course of
this research work, it can be inferred that the proposed
approach serves as a competitive perspective for real-time

Table 8: Classwise performance obtained using the UGR’16 dataset.

Metric Blacklist Spam Scan SSHscan UDPscan DOS DDOS Overall

Recall 0.9918 0.98597 0.98907 0.99056 0.9797128 0.99012 0.93897 0.9809
Precision 0.9940 0.98988 0.98859 0.98976 0.9818808 0.98703 0.98557 0.9881
FAR 0.0054 0.0062 0.0102 0.0093 0.0147 0.0117 0.0130 0.0101
Accuracy 0.9871 0.97826 0.98001 0.98218 0.9666758 0.97934 0.92954 97.19%

ROC curve (area = 0.95)
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Figure 3: ROC curve obtained for the UGR’16 dataset.
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network intrusion detection. Traffic periodicity and long-
term evolution of network traffic cannot be performed
using only conventional packet-based intrusion detection
datasets. )us, heterogeneous datasets when applied in the
field of network intrusion detection prove to be quite
instrumental for gaining better insights into building
secure applications.

Data Availability
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canberra-cyber/cybersecurity/ADFA-NB15-Datasets/ and
(2) https://nesg.ugr.es/nesg-ugr16/.
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