
0018-9162/00/$10.00 © 2000 IEEE66 Computer

A Staged Model for
the Software
Life Cycle

S
oftware engineers have traditionally consid-
ered any work after initial delivery as simply
software maintenance. Some researchers have
divided this work into various tasks, includ-
ing making changes to functionality (perfec-

tive), changing the environment (adaptive), correcting
errors (corrective), and making improvements to avoid
future problems (preventive),1 but still most have con-
sidered maintenance basically uniform over time.

Because software development has changed consid-
erably since its early days, this approach no longer suf-
fices. We describe a new view of the software life cycle
in which maintenance is actually a series of distinct
stages, each with different activities, tools, and business
consequences. Both business and engineering can bene-
fit from understanding these stages and their transitions.

SOFTWARE STAGES
As Figure 1 shows, according to our model, the soft-

ware life cycle consists of five distinct stages:

• Initial development. Engineers develop the sys-
tem’s first functioning version.

• Evolution. Engineers extend the capabilities and
functionality of the system to meet user needs,
possibly in major ways.

• Servicing. Engineers make minor defect repairs
and simple functional changes.

• Phaseout. The company decides not to undertake
any more servicing, seeking to generate revenue
from the system as long as possible.

• Closedown. The company withdraws the system
from the market and directs users to a replace-
ment system, if one exists.

A variation of this process is the versioned staged
model, shown in Figure 2, the backbone of which is

the evolution stage. At certain intervals, a company
completes a version of its software and releases it to
customers. Evolution continues, with the company
eventually releasing another version and only servic-
ing the previous version. Many companies use a nam-
ing scheme like <product>.<version>.<release>—for
example, MSDOS Version 6, Release 22—for this
process. The version refers to strategic changes dur-
ing evolution, and the release refers to servicing
patches.

Our work has been influenced by Franz Lehner,2

who provided empirical evidence that activities and
their frequency change during a system’s life cycle.
Manny Lehman3 documented the inevitability of the
evolution stage, demonstrating increases in size, com-
plexity, and functionality during evolution.

At first glance we seem to be simply reinventing the
waterfall life cycle model. However, the waterfall
model calls for the completion of technical deliverables
at the end of each stage, which is widely considered
impractical.4 We propose making iterations, but in our
model the iterations are very different in the early5 and
late stages of the life cycle.

Initial development
During initial development, engineers build the

software from scratch to satisfy initial requirements.
This stage is well documented using numerous well-
known tools and methods. From the point of view of
future iterations, this stage lays two important foun-
dations:

• Software team expertise. During initial develop-
ment, the team adds significantly to its knowledge
of the domain and the problem. This expertise is
critical for future evolution.

• System architecture. The system components,

While the industry still considers postdelivery work as simply software
maintenance, the process actually falls into stages, and both management
and developers can benefit by understanding them.

Václav T.
Rajlich
Wayne State
University

Keith H.
Bennett
University of
Durham

R E S E A R C H F E A T U R E

their interactions, and their properties, such as
functionality and efficiency, may aid or hinder
changes during evolution.

Evolution
If initial development is successful, the software

enters the evolution stage, when iterative changes,
modifications, and deletions to functionality occur.
Evolution partly results from the learning process. As
Michael Cusumano and Richard Selby noted,6 fea-
tures may change 30 percent or more as a direct result
of learning during an iteration. Customer demands
for additional functionality and competitive pressures
also cause evolution. In some domains, evolution may
respond to legislative action or to changes in business
practice or operating environment.

Sometimes companies release software immediately
after initial development, but most often the software
is released during evolution after the software has
gone through several internal iterations to address
glaring deficiencies and ensure a stable fault rate. The
release date is also based on sometimes-conflicting
technical and business considerations, such as time to
market, time to delivery, software stability, and fault
rates. The release can also occur in several steps,
including alpha and beta releases. Therefore, the
release—the traditional boundary between software
development and software maintenance—can be a
blurred and somewhat arbitrary milestone.

Servicing
To evolve easily, software must have both an appro-

priate architecture and a skilled development team.
When these are lacking, the software enters the ser-
vicing or saturation stage when it is considered aging,2

decayed, or legacy. During this stage, changes are both
difficult and expensive, so developers minimize them
or do them as wrappers, which are simply modifica-
tions to inputs and outputs, leaving the old software
untouched. Still, each change further degrades the
architecture, pushing it deeper into servicing.

Mission-critical software should never enter the ser-
vicing stage in which requests for large changes can-
not be honored. The Y2K problem is a good example.
It would have been relatively easy to resolve if soft-
ware had been in the evolution stage, but most legacy
systems were in the servicing stage, when such signif-
icant changes are very difficult. The problem caught
many managers unprepared because they did not
understand the difference between evolution and ser-
vicing.

Phaseout
During the phaseout or decline stage, the company

undertakes no more servicing and tries to generate rev-
enue, or other benefits, from the unchanged software

July 2000 67

Evolution changes

Initial development

First running
version

Loss of evolvability

Evolution

Servicing patches

Servicing discontinued

Servicing

Switchoff

Phaseout

Closedown

Evolution changes

Evolution changes

Initial development

First running
version

Evolution, version 1

Servicing patches

Servicing patches

Servicing, version 1

Phaseout, version 1

Closedown, version 1

Evolution of
new version

Evolution, version 2

Evolution of
new version

Evolution, version…

Servicing, version 2

Phaseout, version 2

Closedown, version 2

Figure 1. The simple staged model for the software life cycle consists of five distinct
stages.

Figure 2. The versioned staged model for the software life cycle emphasizes the evolu-
tionary nature of software development.

68 Computer

as long as possible.2 People may still use the
software, but with no changes made, it becomes
increasingly outdated, and users must work
around its deficiencies. It is difficult now to
return to the previous servicing stage because
of the growing backlog of change requests.

Closedown
During the final closedown stage, the com-

pany shuts down the software and directs users
to a replacement system, if one exists. Still, the
company may have residual responsibilities,
such as source code retention and legal liabil-
ity, which are particularly important in areas
such as outsourced software, where there are

contractual obligations. In some companies, manage-
ment of key organizational data is crucial, dominating
software decisions. As a system moves from phaseout
to closedown, managers must carefully plan and orga-
nize migration of data to a new system.

STAGE CHARACTERISTICS
Several characteristics of software and the devel-

opment team change substantially from one stage to
another, including staff expertise, software architec-
ture, software decay, and economics.

Staff expertise
Staff expertise is critical during both initial devel-

opment and evolution. The staff must understand the
domain, solutions to domain problems, program
properties, including software architecture, concept
location within the code, and basic computer science
principles and coding conventions. With this exper-
tise, the staff can evolve the program, implementing
substantial changes.

Staff expertise is less important during servicing
because big program changes are not allowed.
Expertise may be limited to inputs and outputs, with
the software considered a black box. Expertise is even
less important during phaseout, when it can be lim-
ited to simply knowing how to execute the program.

Software architecture
Software architecture can also change from one

stage to another. During initial development, the staff
establishes the architecture, which represents a sig-
nificant commitment—one that determines the ease of
future evolution. As changes accumulate, however,
the architecture loses its original lucidity and integrity,
sometimes requiring restructuring in which designers
partially rebuild the architecture to facilitate future
evolution.

During servicing, the architecture falls out of step
with the needs of evolution and becomes an obstacle,
limiting the scope of possible changes. Wrapping then

becomes common, further damaging the architecture
by making it cryptic and hard to understand. When
code changes are made, they need to be very tactical
to minimize the impact on other components.
Deterioration finally reaches a point where the archi-
tecture is no longer serviceable, and phaseout is the
only option.

Software decay
Software decay is the positive feedback between the

loss of staff expertise and the loss of architecture
coherence. As architecture degrades, there is a greater
need for expertise to recognize and exploit the core
design, to satisfy the main architectural constraints,
and possibly to significantly improve the architectural
design. Only experts can fully understand when a
change is tactical, when it will have profound effects
on the architecture, and when it will cause serious
problems. This expertise is nearly impossible to doc-
ument; it is almost always tacit.

However, as a project ages, staff with this expertise
tend to leave, and they are replaced by people having
less expertise—exactly the opposite of what is needed
to keep project architecture under technical control.
The positive feedback, then, is less expertise leading to
more degradation, with the system quickly lurching
into the service stage.

Reengineering is an attempt to reverse decay, but it
is slow and expensive, with many risks.7 Many
researchers have considered code-level rejuvenation,
but they have not successfully addressed returning to
evolution from servicing. Therefore, again, the cur-
rent solution to such problems is wrapping, with the
goal of eventually transferring functionality to a new
component or subsystem and then phasing out the
wrapped system.

Economics
Our model has been influenced by the work of pop-

ulation biologists who apply competition and predator-
prey relationship models to business.8 According to their
projections, a product’s sales follow a sigmoid curve in
which they reach a maximum and then trail off, even-
tually forcing the product’s withdrawal. In order to sus-
tain revenue, a company must plan successor products
well before the sales curve reaches a maximum.

Initial development involves heavy investment with
no return. Managers want to quickly ship the product,
both to generate revenue and to beat any competition.
They often discourage practices that could allow bet-
ter evolution because they represent higher costs and
deferred returns, but this investment can make evolu-
tion easier and less expensive.

With software, evolution occurs when sales are
buoyant, market demand is strong, and revenue is
good. As sales fall off, businesses should move soft-

The release—the
traditional boundary
between software

development
and software

maintenance—can
be a blurred and

somewhat arbitrary
milestone.

ware into its servicing phase. However, starting work
on the next version during the buoyant phase is criti-
cal. If this happens too late, companies cannot recover
their market position.

After release, the product’s success will largely deter-
mine the evolution stage. Success will bring strong and
urgent pressures to generate new enhancements and
make up for poorly understood requirements. Keeping
the original team together is crucial during evolution.

At some point, following the sigmoid curve, rev-
enues will peak and start to fall, causing key team
members to move to other projects. It’s at this point,
we believe, that software moves from evolution to ser-
vicing. Economics now change significantly, with rev-
enues strongly determining the level of work. Servicing
has these features:

• Staff undertakes only minor corrections,
enhancements, and preventive work, not at-
tempting evolution-size changes.

• Staff does not require the same expertise, handling
most work with partial software knowledge.

• Work is stable, well understood, and mature.
Cost prediction is relatively easy.

Servicing can therefore be outsourced. Decisions on
improving the code are based simply on whether work
will reduce servicing costs.

Because of difficulties in returning to evolution,
management must view servicing as irreversible.
Companies that view their software as a valuable asset
will seek to reuse it, usually through wrapping.
However, if the software’s internals are valuable,
senior personnel need to understand this and prepare
for changes during evolution, not servicing.

Legacy software is a significant concern.9 Because
the gap between business needs and capabilities is so
great, our analysis puts legacy software firmly in the
servicing stage. Management can apply reengineering
techniques only so far as the software is understood,
but companies often outsource this work. Legacy soft-
ware, though, is still destined for phaseout.

CASE STUDIES
In developing our model, we reviewed published

case studies and investigated a number of industrial
and commercial software projects, some of which
remain anonymous for proprietary reasons.

Microsoft software
Microsoft’s development process makes no sharp

division between initial development and evolution, and
the company often releases beta versions to gain expe-
rience from customers.6 Microsoft tries to avoid the tra-
ditional maintenance phase, realizing that its large user
base makes this logistically impossible. Its object code

patches—or service packs—fix only serious errors
and do not try to enhance the software.

Microsoft starts developing the next version
while the existing version is achieving major
market success. For example, Microsoft did not
wait until Windows 95 sales began to decline
before developing Windows 98, which would
have been disastrous. Microsoft bases its mar-
keting strategy on a rich and expanding set of
features, so Windows 98 replaced 95, which
never underwent evolution.

Microsoft does not support old versions but
simply phases them out and provides transition
routes to new versions. Interestingly, Microsoft
has not felt the need for substantial code documenta-
tion, indicating that its design teams are stable enough
to retain tacit knowledge. Evolution, then, is
Microsoft’s main activity, with relatively little effort
directed to servicing.

VME operating system
For more than 30 years, the virtual machine envi-

ronment (VME) operating system has run on
International Computers Ltd. and similar machines.10

The company has tended to use the classical X.Y
release form, with X representing the version and Y
representing minor, or servicing, changes. As with
Microsoft, major releases tend to represent market-
led developments, incorporating new or better facili-
ties.

The VME operating system is remarkable for the
length of time it has kept its original architectural
attributes despite a huge evolution in facilities. It’s
unlikely that original source code from the early 1970s
remains, yet VME clearly preserves its architectural
integrity. We therefore make these conclusions:

• VME made a heavy investment in initial devel-
opment, resulting in a meticulous architectural
design. Experts with many years of experience
evolved the system and were able to sustain archi-
tectural integrity.

• Each major release is subject to servicing and
eventual phaseout and closedown.

• The company does not reengineer from one
major release to another but relies on team exper-
tise and an excellent architecture to support evo-
lution of next versions.

Major billing system
One of the companies we investigated offers a major

billing system that is 20 years old, continues to gener-
ate revenue, and is of strategic importance. However,
in recent years the marketplace has changed, and the
billing system can no longer keep up.

Our analysis showed that this system has slid from

July 2000 69

If the software’s
internals are

valuable, senior
personnel need to

understand this and
prepare for changes

during evolution,
not servicing.

70 Computer

evolution into servicing without management
realizing it. Key designers have left, the archi-
tectural integrity has been lost, changes will take
far too long to implement, and revalidation
would be a nightmare. It is a classic legacy sys-
tem, and the only solution is to replace it, which
will be very expensive.

Embedded software
We looked at a small security company with

a niche market in specialized security devices.
The company’s products use rapidly changing
hardware peripherals, and the company must
always be concerned with product sophistica-

tion in order to keep ahead of the competition. The
devices use embedded software, mostly based on
Microsoft products, with vendor-supplied off-the-
shelf components, locally written components, some
legacy code, and glue written in C, C++, and Basic.
Such a conglomeration was not planned; it just hap-
pened.

The software is a constant source of problems:
New components must work with legacy code.
Powerful components are linked with low-level code.
Support for locally written components is becoming
difficult. From our perspective, the company has a
software system with some parts in initial develop-
ment, some in evolution, some in servicing, and
others ready for phaseout. There is no sustained arch-
itectural design.

Considering all of this, traditional software main-
tenance offers little help, but viewing components and
connectors according to our model should allow the
company to develop a support plan that takes into
account the diversity of stages.

Long-lived defense system
The long-lived defense system we examined was ini-

tially developed in assembly language many years ago
and now needs continual updating to reflect changes
in supporting hardware. According to our analysis,
the system is still evolving. We identified these char-
acteristics:

• The software is and will continue to be mission
critical to the organization. Software failure
would be a disaster.

• Many experts with in-depth knowledge of both
software and hardware understand the architec-
ture and work on the system. They are changing
it to meet radical new requirements, freeing it of
ad hoc patches, and producing consistent docu-
mentation. These experts understand the impact
of local changes on global behavior.

• However, the recent departure of some experts,
along with fresh signs of structural decay, indi-

cate a serious problem. The organization does not
consider reengineering feasible, partly because of
the lack of key expertise; however, if decay con-
tinues, the company will have to develop the sys-
tem again from scratch.

Printed circuits program
A department one of us managed developed a

printed circuits program for users in the same institu-
tion. The original programmers, some of the best per-
sonnel in the department, were evolving the program.
When the department experienced a backlog of pro-
jects requiring high expertise, the manager, who did
not then understand the difference between evolution
and servicing, tried to transfer evolution to less-qual-
ified personnel.

However, all attempts to train the new program-
mers failed, and they were unable to handle the
needed strategic program changes. The inability to
transfer this “maintenance” task baffled the manager,
but in hindsight it’s clear that evolution requires
expertise that is equivalent to or perhaps even greater
than the expertise required to create a program from
scratch. Ultimately, assigning new projects to new
programmers and leaving the printed circuit program
to the experienced developers proved more cost-
effective.

CAD tool
An automobile company developed a CAD tool to

design mechanical components such as engines and
transmissions. The tool was implemented in C++, with
every mechanical component modeled as a C++ class.
Equations described the component dependencies, cre-
ating a complex network. When users changed a para-
meter value, an inference algorithm traversed the
network and recalculated values for all dependent
parameters.

After initial implementation, an evolution stage fol-
lowed, radically changing or introducing new features
to about 70 percent of the original functionality. This
resulted mostly from user requests, and developers
responded quickly to add the needed functionality.
The original architecture, however, had never been
designed for changes of such magnitude. The system
showed typical symptoms of deterioration, including
proliferation of clones, misplacement of code, and
reliance on patches.

The program’s ability to evolve has continued to
decrease, and now making some changes is very dif-
ficult. For example, the program would benefit by
adding a commercially available inferencing compo-
nent that supports more-powerful inferencing algo-
rithms, but the clones and misplaced code make such
an addition infeasible.

This company recently decided to move the soft-

Evolution requires
expertise that is
equivalent to or
perhaps even

greater than the
expertise required to

create a program
from scratch.

ware into a servicing stage, outsource that work, and
stop all evolutionary changes. The servicing will meet
basic user needs while the company develops a new
version from scratch.

CONSEQUENCES
Our model’s stages exhibit different goals, staff

expertise, processes, measures, methods, tools, and
software properties. There are recognizable bound-
aries between the stages, but these boundaries are not
necessarily abrupt. It is important to understand stage
elements and transitions.

Transitions from one stage to the next can result
from deliberate business decisions or by default or
mistake. Managers must be conscious of the enormous
business consequences of unintentional transitions and
be aware of their symptoms so they can halt or reverse
them while there is still time. Managers should also
understand that attempts to return to previous stages
or to deal with software as if it’s in a previous stage can
be both expensive and risky.

In particular, managers should watch for situations
in which “software maintenance” is considered one
homogeneous phase and handed over to second-rate
programmers or outside contractors. Retaining highly
skilled staff from initial development through evolu-
tion is crucial because it is often impossible to codify
and make explicit the tacit knowledge of these experts.

Customers should know what stage software is in
and should explicitly ask for that information before
buying it. They should avoid any software in the
advanced servicing stage because the software is
unlikely to evolve with the user’s needs, and close-
down is probably near.

W e make these conclusions about the five
stages—initial development, evolution, ser-
vicing, phaseout, and closedown—in our

software process model:

• Each stage has very different technical solutions,
processes, staff needs, and management activi-
ties.

• Managers who have a better understanding of
stage transitions, their characteristics, and infor-
mation flow across them can plan better.

• Keeping systems within a particular stage for as
long as possible is important.

• Developers must design systems to allow high
flexibility during evolution because managers can-
not predict what new user requirements will arise.

The tendency now in software development is to
build from components—including COTS, legacy
components, and custom-built components—all

integrated with software glue. This means that each
component may be at its own individual stage dur-
ing the system’s lifetime. Our perspective provides a
way for developers to understand these increasingly
complicated systems before they reach the legacy
phase. ✸

References
1. B. Lientz and E.B. Swanson, Software Maintenance

Management: A Study of the Maintenance of Computer
Application Software in 487 Data Processing Organi-
zations, Addison-Wesley, Reading, Mass., 1980.

2. F. Lehner, “Software Life Cycle Management Based on
a Method for Phase Distinction,” Euromicro J., Aug.
1991, pp. 603-608.

3. M.M. Lehman, Program Evolution, Academic Press,
London, 1985.

4. B.W. Boehm, “A Spiral Model of Software Development
and Enhancement,” Computer, May 1988, pp. 61-72.

5. V. Rajlich, “Modeling Software Evolution by Evolving
Interoperation Graphs,” Ann. Software Eng., Vol. 9,
2000, pp. 235-248.

6. M.A. Cusumano and R.W. Selby, Microsoft Secrets,
Simon & Schuster, New York, 1998.

7. M.R. Olsem, “An Incremental Approach to Software
Systems Re-engineering,” Software Maintenance: Re-
search and Practice, May/June 1998, pp. 181-202.

8. C. Handy, The Empty Raincoat, Arrow Books, London,
1994.

9. K.H. Bennett, “Legacy Systems: Coping with Success,”
IEEE Software, Jan. 1995, pp. 19-23.

10. N. Holt, The Architecture of Open VME, ICL, Herts,
UK, 1994.

Václav T. Rajlich is a full professor and former chair in
the Department of Computer Science at Wayne State Uni-
versity. His current research interests include software
change, evolution, comprehension, and maintenance. He
received a PhD in mathematics from Case Western
Reserve University. Contact him at vtr@cs.wayne.edu.

Keith H. Bennett is a full professor and former chair
in the Department of Computer Science at the Uni-
versity of Durham. His current research interest is new
software architectures that support evolution. He
received a PhD in computer science from the Univer-
sity of Manchester. He is a chartered engineer and a
Fellow of the British Computer Society and the IEE.
Contact him at keith.bennett@durham.ac.uk.

July 2000 71

