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1 Introduction

Traditionally, standard bases, Groebner bases and cylindrical algebraic decom-
position are the fundamental tools of computational algebraic geometry. The
computer algebra systems CoCoA, Macaulay 2, Magma, Reduce, Singu-
lar have well-developed packages for computing standard bases or Groebner
bases, on which they rely in order to provide powerful toolkits to algebraic ge-
ometers.

Recent progress in the theory of regular chains has exhibited efficient algo-
rithms for doing local analysis on algebraic sets. One of the algorithmic strengths
of the theory of regular chains is its regularity test procedure. In algebraic terms,
this procedure decides whether a hypersurface contains at least one irreducible
component of the zero set of the saturated ideal of a regular chain. Broadly
speaking, this procedure separates the zeros of a regular chain that belong to
a given hypersurface from those which do not. This regularity test permits to
extend an algorithm working over a field into an algorithm working over a di-
rect product of fields. Or, to phrase it in another way, it allows to extend an
algorithm working at point into an algorithm working at a group of points.

Following that strategy, the authors of [8] have proposed an extension of
Fulton’s algorithm for computing the intersection multiplicity of two plane curves
at the origin. To be precise, this paper extends Fulton’s algorithm in two ways.
First, thanks to the regularity test for regular chains, the construction is adapted
such that it can work correctly at any point in the intersection of two plane
curves, whether this point has rational coordiantes or not.



Secondly, an algorithmic criterion, see Theorem 1, is proposed for reducing
intersection multiplicity computation in arbitrary dimension to the case of two
plane curves. This algorithmic criterion requires to compute the tangent cone
TCp(C ) of a space curve C at one of its points p. In principle, this latter problem
can be handled by means of standard basis (or Gröbner basis) computation.
Available implementation (like those in Magma or Singular) require that the
point p is uniquely determined by the values of its coordinates. However, when
decomposing a polynomial system, a point may be defined as one of the roots of a
particular sub-system (typically a regular chain h). Therefore it is desirable to be
able to compute the tangent cones of C at any points defined by a given regular
chain h. Similarly, and as discussed in [8], it is desirable to be able compute
the intersection multiplicity of a zero-dimensional algebraic set V at any points
defined by a given regular chain h. This type of tangent cone computation is
addressed in the present paper.

Tangent cone computations can be approached at least in two ways. First, one
can consider the formulation based on homogeneous components of least degree,
see Definition 1. The original algorithm of Mora [9] follows this point of view.
Secondly, one can consider the more “intutive” characterization based on limits
of secants, see Lemma 1. This second approach, that we follow in this paper,
requires to compute limits of algebraic functions. For this task, we take advantage
of [2] where the authors show how to compute the limit points of the quasi-
component of a regular chain. This type of calculation can be used for computing
the Zariski closure of a constructible set In the present paper, it is used for
computing tangent cones of space curves, thus providing an alternative to the
standard approaches based on Groebner bases and standard bases, respectively.

The contributions of the prepsent paper are as follows

1. In Section 3, we present a proof of our algorithm criterion for reducing inter-
section multiplicity computation in arbitrary dimension to the plane case;
this criterion was stated with no justification in [8].

2. In Section 4.1, with Lemma 2, under some assumption, we establsh a natural
method for computing TCp(C ); as limit of intersection of tangent spaces.

3. In Section 4.2, we relax the assumption of Section 4.1 and exhibit an algo-
rithm for computing TCp(C ).

This latter algorithm is implemented, in the AlgebraicGeometryTools subpack-
age [1] of the RegularChains library which is available at www.regularchains.
org. Section 4.4 offers examples. However, an issue with Maple’s algcurves[puiseux]
command that we have no control over prohibits us from providing meaningful
experimental results at this time. For those test cases which do not encounter
error from the algcurves[puiseux] command we indeed calculate the correct
tangent cone. We are currently re-implementing Maple’s algcurves[puiseux]
command and we will provide experimental results in a future report.

www.regularchains.org
www.regularchains.org


2 Preliminaries

Throughout this article, we denote by K a field with algebraic closure K, and by
An+1(K) the (n + 1)-dimensional affine space over K, for some positive integer
n. Let x := x0, . . . , xn be n + 1 variables ordered as x0 � · · · � xn. We denote
by K[x] the corresponding polynomial ring. Let h ⊂ K[x] be a subset and
h ∈ K[x] be a polynomial. We say that h is regular modulo the ideal 〈h〉 of
K[x] whenever h does not belong to any prime ideals associated with 〈h〉, thus,
whenever h is neither null nor a zero-divisor modulo 〈h〉. The algebraic set of
An+1(K) consisting of the common zeros of the polynomials in h is written
as V(h). For a subset W ⊂ An+1(K), we denote by I(W) the ideal of K[x]
generated by the polynomials vanishing at every point of W. The ideal I(W)
is radical and when K = K holds, Hilbert’s Nullstellensatz states that

√
〈h〉 =

I(V(h)).
In the next two sections, we review the main concepts used in this paper,

namely tangent cones and regular chains. For the former, we restrict ourselves
to tangent cones of a space curve and refer to [4] for details and the general3

case. For the latter concept, we refer to [3], in particular for the specifications of
the basic operations on regular chains.

2.1 Tangent Cone of a Space Curve

As above, let h ⊂ K[x]. Define V := V(h) and let p := (p0, . . . , pn) ∈ V
be a point. We denote by dimp(V) the maximum dimension of an irreducible
component C of V such that we have p ∈ C. Recall that the tangent space of
V(h) at p is the algebraic set given by

Tp(h) := V( dp (f) : f ∈ I(V))

where dp (f) is the linear part of f at p, that is, the affine form ∂f
∂x0

(p)(x0 −
p0) + · · · + ∂f

∂xn
(p)(xn − pn). Note that Tp(h) is a linear space. We say that

V(h) is smooth at p whenever the dimension of Tp(h) is dimp (V) and singular
otherwise. The singular locus of V(h), denoted by sing(h), is the set of the
points p ∈ V(h) at which V(h) is singular.

Let f ∈ K[x] be a polynomial of total degree d and p := (p0, . . . , pn) ∈
An+1(K) be a point such that f(p) = 0 holds. Let α = (α0, . . . , αn) ∈ Nn+1 be a
(n+ 1)-tuple of non-negative integers. Denote: (x− p)α := (x0 − p0)α0 · · · (xn −
pn)αn , where |α| = α0+ · · ·+αn is the total degree of x−p. Since the polynomial
f ∈ K[x] has total degree d, it writes as a K-linear combination of the form:

f =
∑
|α|=0

cα(x− p)α + · · ·+
∑
|α|=d

cα(x− p)α

3 Note that in the book [3], and other classical algebraic geometry textbooks like [12],
the tangent cone of an algebraic set at one of its points, is also an algebraic set. Two
equivalent definitions appear in [3] and are recalled in Definition 1 and Lemma 1.



with all coefficients cα belonging to K. Each summand hcp (f ; j) :=
∑
|α|=j cα(x−

p)α is called the homogeneous component in x − p of f in degree j . More-
over, the homogeneous component of least degree of f in x − p is given by
hcp (f ; min) := hcp (f ; jmin) where jmin = min(j ∈ N : hcp (f ; j) 6= 0).

Definition 1 (Tangent Cone of a Curve). Let C ⊂ An+1(K) be a curve
and p ∈ C be a point. The tangent cone of C at a point p is the algebraic set
denoted by TCp(C ) and defined by TCp(C ) = V(hcp (f ; min) : f ∈ I(C )).

One can show that TCp(C ) consists of finitely many lines, all intersecting at p.

Fig. 1. This figure displays the typical
“fish” curve, which is a planar curve given
by h = y2 − x2(x + 1) ∈ Q[x, y]. Clearly,
two tangent lines are needed to form a
“linear approximation” of the curve at the
origin. Elementary calculations show these
two lines actually form the tangent cone of
the fish curve at the origin.

If I(C ) is generated by a single polynomial then computing TCp(C ) is
easy. Otherwise, this is a much harder computation. Let h ⊂ K[x] be such
that V(h) = C . As pointed out by Mora et al. in [10], one can compute
〈hcp (f ; min) : f ∈ I(C ) 〉 by finding a graded Gröbner basis, say G, of the
homogenization of h (a process where an additional variable xn+1 is used to
make every h ∈ h a homogeneous polynomial in K[x][xn+1]). Dehomogenizing
G by letting xn+1 = 1 produces the tangent cone of h [4, Chapter 9 §7 Propo-
sition 4].

Tangent cones are intimately related to the notion of intersection multiplicity
that we review below. As mentioned in the introduction, computing intersection
multiplicities is the main motivation of the algorithm presented in this paper.

Definition 2. Let h ⊂ K[x]. The intersection multiplicity of p in V(h) is de-
fined by im(p; h) := dimvec(O/ 〈h〉) where O :=

{
f/g : f, g ∈ K[x], g(p) 6= 0

}
is the localization ring of K[x] at p and dimvec(O/ 〈h〉) is the dimension of
O/ 〈h〉 as a vector space over K. Note by [5, Chapter 4. §2 Proposition 11] we
may substitute the power series ring K[[x− p]] for O.

Example 1. Let x = [x, y, z] and h =
{
x, x− y2 − z2, y − z3

}
⊂ K[x]. Near the

origin we know x− y2 − z2 = −y2 − z2 so h = {x, y − z3, z2
(
z4 + 1

)
} and

K[[x]]/ 〈h〉 = K[[x]]/
〈
x, y − z3, z2

〉
= K[[x]]/

〈
x, y, z2

〉
= {a+ bz : a, b ∈ K}

implying im(0; h) = 2.



2.2 Regular Chain

Broadly speaking, a regular chain of K[x] is a system of equations and inequa-
tions defined by polynomials in K[x] such that each equation specifies, in an
implicit manner, the possible values of one of the variables xi as a function of
the variables of least rank, namely xi+1, . . . , xn. Regular chains are a convenient
way to describe the solution set of a polynomial system. More precise statements
follow.

Let h ∈ K[x] be a non-constant polynomial. The main variable of h is the
largest variable x ∈ x (for the ordering x0 � · · · � xn) such that h has a positive
degree in x. The initial of h, denoted init(h), is the leading coefficient of h w.r.t.
its main variable. For instance the initial of zx+ t is x in Q[x � y � z � t] and
1 in Q[t � z � y � x].

Let t ⊂ K[x] consist of non-constant polynomials. Then, the set t is said
triangular if any two polynomials in t have different main variables. When t is
a triangular set, denoting by It the product of the initials init(f) for f ∈ t, we
call saturated ideal of t, written sat(t), the column ideal sat(t) = 〈t〉 : I∞t and
we call quasi-component of t the basic constructible set W(t) := V(t) \V(It).

Definition 3 (Regular Chain). The triangular set t ⊂ K[x] is a regular chain
if either t is empty or the initial of f is regular modulo sat(t \ {f}), where f is
the polynomial in t with largest main variable.

Regular chains are used to decompose both algebraic sets and radical ide-
als, leading to two types of decompositions called respectively Wu-Lazard and
Kalkbrener decompositions. More precisely, we have the following definition.

Finitely many regular chains t0, . . . , te ⊂ k[x] form a Kalkbrener decompo-
sition of

√
〈h〉 (resp. a Wu-Lazard decomposition of V(h)) whenever we have√

〈h〉 =
√

sat(t0) ∩ · · · ∩
√

sat(te) (resp. V(h) = W(t0) ∪ · · · ∪W(te)). These
two types are different since the quasi-component of a regular chain t may not be
an algebraic set. One should note that the Zariski closure of W(t) (that is, the
intersection of all algebraic sets containing W(t)) is the zero set (i.e. algebraic
set) of sat(t). One should observe, however, that if sat(t) is zero-dimensional
then the quasi-component W(t) and the algebraic set V(t) coincide. Practically
efficient algorithms computing both types of decompositions appear in [3].

Regular chains enjoy important algorithmic properties. One of them is the
ability to test whether a given polynomial f ∈ K[x] is regular or not modulo the
saturated ideal of a regular chain t ⊂ K[x]. This allows us to specify an operation,
called Regularize, as follows. The function call Regularize (f, t) computes regular
chains t0, . . . , te ⊂ K[x] such that

√
sat(t) =

√
sat(t0)∩· · ·∩

√
sat(te) holds and

for i = 0, . . . , e, either f is zero modulo sat(ti) or f is regular modulo sat(ti).
When sat(t) is zero-dimensional, one can give a simple geometrical interpretation
to Regularize: this operation separates the points of V(t) belonging to V(f) from
those which do not lye on V(f).



3 Computing Intersection Multiplicities in Higher
Dimension

Our interest in a standard-basis free algorithm for computing tangent cones
comes by way of an overall goal to compute intersection multiplicities in ar-
bitrary dimension. As mentioned in the introduction, in a previous paper [8],
relying on the book of Fulton [7] and the theory of regular chains, we derived
an algorithm for computing intersection multiplicities of planar curves. We also
sketched an algorithm criterion, see Theorem 1 below, for reducing the computa-
tion of intersection multiplicities in arbitrary dimension to computing intersec-
tion multiplicities in lower dimension. When applicable, successive uses of this
criterion reduces intersection multiplicity computation in arbitrary dimension to
the bivariate case.

Theorem 1. For h = h0, . . . , hn−1, hn ∈ K[x] such that V(h0, . . . , hn−1, hn)
is zero-dimensional, for p ∈ V(hn), if the hyper-surface V(hn) is not singular
at p and if that the tangent space π of V(hn) at p intersects transversally4 the
tangent cone of the curve V(h0, . . . , hn−1) at p, then we have

im(p; h0, . . . , hn−1, hn) = im(p; h0, . . . , hn−1, π) ,

hence, there is a polynomial map which takes h to a lower dimensional subspace
while leaving the intersection multiplicity of V(h) at p invariant.

Checking whether this criterion is applicable, requires to compute the tangent
cone of the curve V(h0, . . . , hn−1) at p, which motivates the present paper. This
algorithmic criterion was stated in [8] without justification, although the authors
had a long and technical proof available in a technical report extending [8]. In
the PhD thesis of the fourth author [13], a simpler proof was obtained and we
present it below.

Proof. The theorem follows from results of [12, Chapter IV]; we reuse the same
notation as in that reference when feasible.

Since p is an isolated point of V(h), any irreducible component of V(h0, . . . ,
hn−1) through p must have dimension one. By Lemma 2 in [12, Chapter IV.1.3]
it follows O is a one-dimensional local ring, where

O := O/ 〈h0, . . . , hn−1 〉 .

Let C0, . . . ,Cr be the irreducible components of V(h0, . . . , hn−1) passing through
p and let p0, . . . , pr be their respective defining (prime) ideals in O. Our transver-
sality assumption ensures hn and π are both nonzero divisors in O and conse-
quently, since O is a one-dimensional local ring, we use Equation (6) from [12,

4 Two algebraic sets V0 and V1 in An+1(K) transversally intersect at a point p ∈ V0∩V1

whenever their tangent cones intersect at {p} only once or not at all. Note that if
one of V0 is a linear space, then it is its own tangent cone at p. Note also that, for a
sake of clarity, we have restricted Definition 1 to tangent cones of curves, although
tangent cones of algebraic sets of higher dimension are defined similarly, see cite[4].



Chapter IV.1.3] to deduce

im(p; h0, . . . , hn−1, hn) =

r∑
i=0

mi dim
vec

(O/〈 pi, hn 〉) (1)

and

im(p; h0, . . . , hn−1, π) =

r∑
i=0

mi dim
vec

(O/ 〈pi, π 〉) (2)

for some constants m1, . . . ,mr that we need not define more precisely.

Remark 1. In the original reference the dimensions above are written as lengths
but [6, Example A.1.1] permits us to use the vector space dimension instead.
This holds for all the dimensions written below as well.

Because 〈h0, . . . , hn−1 〉 ⊂ pi for all i, we can rewrite (1) and (2) as (resp.)
dimvec(O/〈 pi, hn 〉) and dimvec(O/〈 pi, π 〉). Hence it suffices to prove, exploiting
that 〈h0, . . . , hn−1 〉 has been replaced by a dimension one prime ideal, that

dim
vec

(O/〈 pi, hn 〉) = dim
vec

(O/〈 pi, π 〉)

for all i = 1, . . . , r to conclude.
Fix i for the remainder of this proof. The prime ideal pi defines a curve

C ⊂ Kn+1
. Let C ′ ⊂ Kn

′+1
be a normalization of C given by ν : C ′ → C ; thus

C ′ is non-singular. It follows from [12, Chapter IV.1.3.(9)] that

dim
vec

(O/〈 pi, hn 〉) =
∑

ν(p′)=p

dim
vec

(OC ′,p′/h
∗
n),

when OC ′,p′ is the local ring of C ′ at p′ and h∗n is the pull-back of hn by ν. A
similar expression holds for π.

Now fix p′ in the fiber ν−1(p). We prove

dim
vec

(OC ′,p′/h
∗
n) = dim

vec
(OC ′,p′/π

∗).

Without loss of generality shift to the origin, that is, assume p = 0 ∈ Kn+1
and

p′ = 0 ∈ Kn
′+1

and also let t be a uniformizer for C ′ at p′ (remember that C ′

is non-singular). Finally, write ν = (ν0, . . . , νn), with all νi in K[C ′].

Expanding ν = (ν0, . . . , νn) in power series at the origin permits us to view
them as in K[[t]]n+1. With this in mind, and without loss of generality, assume
ν0 has the smallest valuation among ν0, . . . , νn (otherwise, do a change of coor-

dinates in Kn+1
). Call this valuation r, so that we can write, for all i:

νi(t) = νi, r t
r + νi, r+1 t

r+1 + · · ·



It follows the component of the TC0(C ) corresponding to the image ν(C ′)
around p′ is the limit of secants having directions(

ν0(t)

ν0(t)
,
ν1(t)

ν0(t)
, . . . ,

νn(t)

ν0(t)

)
.

This limit is a line with direction(
1,
ν1, r
ν0,r

. . . ,
νn, r
νn, r

)
,

or equivalently (ν1, r, . . . , νn, r). Because we assumed p is the origin, hn has a
writing

hn(x0, . . . , xn) = π + higher order terms

with π = hn,0 x0 + · · ·+ hn,n xn; the transversality assumption implies

hn,0 ν0,r + · · ·+ hn,n νn,r 6= 0.

Using the local parameter t, the multiplicities

dim
vec

(OC ′,p′/h
∗
n) and dim

vec
(OC ′,p′/π

∗)

can be rewritten as the respective valuations in t of h∗n and π∗, that is, of

hn(ν0(t), . . . , νn(t)) and π(ν0(t), . . . , νn(t)).

The latter is easy to find; it reads

π(ν0(t), . . . , νn(t)) =

(hn,0 ν0,r + · · ·+ hn,n νn,r)t
r + (hn,0 ν0,r+1 + · · ·+ hn,n νn,r+1)tr+1 + · · · .

Due to the shape of hn, the former is

hn(ν0(t), . . . , νn(t)) = (hn,0 ν0,r + · · ·+ hn,n νn,r)t
r + higher order terms.

Since we know hn,0 ν0,r + · · · + hn,n νn,r 6= 0, both expressions must have the
same valuation r, so we are done. �

4 Computing Tangent Lines as Limits of Secants

From now on, the coefficient field K is the field C of complex numbers and the
affine space An+1(C) is endowed with both Zariski topology and the Euclidean
topology. While Zariski topology is coarser than the Euclidean topology, we have
the following key result (Corollary 1 in Section I.10 of Mumford’s book [11]):
For an irreducible algebraic set V and a subset U ⊆ V open in the Zariski
topology induced on V, the closure of U in Zariski topology and the closure of
U in the Euclidean topology are both equal to V. It follows that, for a regular



chain t ⊂ C[x] the closure of W(t) in Zariski topology and the closure of W(t)
in the Euclidean topology are equal, thus both equal to V(sat(t)). This result
provides a bridge between techniques from algebra and techniques from analysis.
The authors of [2] take advantage of Mumford’s result to tackle the following
problem: given a regular chain t ⊂ C[x], compute the (non-trivial) limit points
of the quasi-component of t, that is, the set lim(W(t)) := W(t) \W(t).

In the present paper, we shall obtain the lines forming the tangent cone of a
space curve at a point by means of a limit computation process. And in fact, this
limit computation will reduce to computing lim(W(t)) for some regular chain t.
To this end, we start by stating the principle of our method in Section 4.1. Then,
we turn this principle into an actual algorithm in Section 4.2 via an alternative
characterization of a tangent cone, based on secants.

4.1 An Algorithmic Principle

Let h = {h0, · · · , hn−1} ⊂ C[x] be n polynomials such that C = V(h) is
a curve, that is, a one-dimensional algebraic set. Let p ∈ C be a point. The
following proposition is well-known, see Theorem 6 in Chapter 9 of [4].

Lemma 1. A line L through p lies in the tangent cone TCp(C ) if and only if
there exists a sequence {qk : k ∈ N} of points on C \ {p} converging to p and
such that the secant line Lk containing p and qk becomes L when qk approaches
p.

Under some mild assumption, we derive from Lemma 1 a method for com-
puting TCp(C ). We assume that for each h ∈ h, the hyper-surface V(h) is
non-singular at p. This assumption allows us to approach the lines of TCp(C )
with the intersection of the tangent spaces Tq(h0) , . . . , Tq(hn−1) when q ∈ C is
an sufficiently small neighborhood of p. A more precise description follows.

For each branch of a connected component D through p of C = V(h)
there exists a neighborhood B about p (in the Euclidean topology) such that
V(h0) , . . . ,V(hn−1) are all non-singular at each q ∈ (B∩D)\{p}. Observe also
that the singular locus sing (D) contains a finite number of points. It follows
that we can take B small enough so that B ∩ sing (D) is either empty or {p}.
Define

v(q) := Tq(h0) ∩ · · · ∩ Tq(hn−1) ,

where Tq(hi) is the tangent space of V(hi) at p.
Lemma 2 states that we can obtain TCp(C ) by finding the limits of v(q) as q

approaches p. Since TCp(C ) is the union of all the TCp(D), this yields a method
for computing TCp(C ).

Lemma 2. The collection of limits of lines v(q) as q approaches p in (B ∩D) \
{p} gives the tangent cone of D at q. That is to say

TCp(D) = lim
q→p

v(q) = lim
q→p

Tq(h0) ∩ · · · ∩ Tq(hn−1) .



Proof. There are two cases, either

1. D is smooth at p and B ∩ sing (D) = ∅, or
2. D is singular at p and B ∩ sing (D) = {p}.

Case 1. Assume q ∈ B ∩ D is arbitrary and observe D is smooth within B and
thereby the tangent cone of D is simply the tangent space (i.e. TCq(D) = Tq(D)).

Notice Tq(D) is a sub-vector space of v(q). Indeed, let w ∈ Tq(D) be any
tangent vector to D at q. As D is a curve in each V(h) for h ∈ h it follows w is
a vector tangent to each V(h) as well. Correspondingly w ∈ Tq(h) for any h ∈ h
and thus w ∈ v(q).

Finally, since h0, . . . , hn−1 form a local complete intersection in B, we know
v(q) is a one-dimensional subspace of each Tq(h0). Since w ∈ Tq(h) for each
h ∈ h, the vector w must span this subspace. Thus, for each q ∈ B ∩ D , we have

Tq(D) = Tq(h0) ∩ · · · ∩ Tq(hn−1) .

Taking the limit of each side of the above equality, when q approaches p and
using again the fact that D is smooth at q = p, we obtain the desired result,
that is, TCp(D) = limq→p v(q) .

Case 2. Assume D ∩ B − {p} is a finite union of smooth curves D0, . . . , Dj .
These are the smooth branches of D ∩B meeting at the singular point p. Each
j corresponds to a unique line

Lj = lim
q→p

v(q) ⊂ Tp(D)

as q approaches p along Dj .

By Lemma 1 the tangent cone TCp(D) is the collection of limits to p of
secant lines through p in D . Such lines given by secants along Dj must coincide
with Lj . More precisely

L0 ∪ · · · ∪ Lj ⊂ TCp(D) .

Because each Dj is smooth there is only one secant line for each j and thereby

L0 ∪ · · · ∪ Lj = TCp(D)

as desired.

4.2 Algorithm

Under a smoothness assumption (which is potentially expensive to test) Lemma 2
states a principle for computing TCp(C ). Let us now turn this principle into a
precise algorithm and relax this smoothness assumption as well. To this end, we
make use of Lemma1.



Let q be a point on the curve C = V(h) with coordinates x. Further let p̂q
be a unit vector in the direction of pq (i.e. the line through p and q). To exploit
Lemma1 we must calculate the set{

lim
q→p
q 6=p

p̂q

}
,

which is indeed a set because C may have several branches through p yielding
several lines in the tangent cone TCp(C ).

Let t ⊂ C[y][x] be a zero-dimensional regular chain encoding5 the point p,
that is, such that we have V(t) = {p}. Note that the introduction of y for the
coordinates of p is necessary because the “moving point” q is already using x
for its own coordinates. Consider the polynomial set

s = t ∪ h.

and observe that the ideal 〈s〉 is one-dimensional in the polynomial ring C[xn−1 �
· · · � x0 � yn−1 � · · · � y0]. Let {t0, . . . , te} ⊂ C[y][x] be one-dimensional reg-
ular chains forming a Kalkbrener decomposition of

√
〈s〉. Thus we have

V(s) = W(t0) ∪ · · · ∪W(te).

Computing with the normal vector p̂q is unnecessary and instead we divide

the vector −→pq by xn − yn. Since the n-th coordinate of
−→pq

xn−yn is 1, this vector
remains non-zero when q approaches p. However, this trick enables a limit com-
putation only when xn − yn vanishes finitely many times in V(s). When this
is the case, the lines of the tangent cone, that not contained in the hyperplane
yn = xn, can be obtained via limits of meromorphic functions (namely Puiseux
series expansions) by letting xn → yn and using the techniques of [2]. Moreover
we are ensured there is an ordering of x for which xn−yn is regular, as we argue
below.

Since the tangent cone may have lines contained in the hyperplane yn = xn,
additional computations are needed to capture them. There are essentially two
options:

1. Perform a random linear change of the coordinates so as to assume that,
generically, yn = xn contains no lines of TCp(C ).

2. Compute in turn the lines not contained in the hyperplane yi = xi for
i = 0, . . . , n and remove the duplicates; indeed no lines of the tangent cone
can satisfy simultaneously yi = xi for i = 0, . . . , n.

Our experiments with theses two approaches have suggest that, although the
second one seems computationally more expensive, it avoids the expression swell
of the first one and is practically efficient.

5 In practice, we may use a zero-dimensional regular chain t ⊂ C[y][x] such that
{p} ⊆ V(t) ⊆ C holds. Then, the following discussion will bring the tangent cone
at several points of C instead of p only.



From now on, we focus on computing the lines of the tangent cone not con-
tained in the hyperplane yn = xn. Or, equivalently, we assume that the tangent
cone transversally intersects the hyperplane yn = xn.

We note that, deciding whether xn − yn vanishes finitely many times in
V(s) can, be done algorithmically by testing whether xn− yn is regular modulo
the saturated ideal of each regular chain t0, . . . , te. The operation Regularize
described in Section 2 performs this task.

Consider now tj , that is, one of the regular chains t0, . . . , te. Thanks to the
specifications of Regularize, we may assume w.l.o.g. that either xn−yn is regular
modulo sat(tj) or that xn − yn ≡ 0 mod sat(tj) holds.

Consider the latter case first. If xn − yn ≡ 0 mod sat(tj) then W(tj) ⊆
V(xn − yn) permits us to try to divide each component of pq by xn−1 − yn−1
instead of xn−yn. A key observation is that there is d ∈ [0, n] such that xd−yd 6≡
0 mod sat(tj) necessarily holds. Indeed, if xi − yi ≡ 0 mod sat(tj) would hold

for all i ∈ [0, n] then W(tj) ⊂ V(x0 − y0) ∩ · · · ∩ V(xn − yn) would hold as

well. Since the y coordinates are fixed by t, the algebraic set W(tj) would be
zero-dimensional—a contradiction.

Hence, up to a variable renaming, we can assume that xn−yn is regular mod-
ulo sat(tj). Therefore, the algebraic set V(xn − yn)∩W(tj) is zero-dimensional,
thus, each component of pq is divisible by xn − yn, when q is close enough to p,
with q 6= p. Define

m0 =
x0 − y0
xn − yn

, . . . , mn =
xn − yn
xn − yn

.

and regard m = m0, . . . ,mn as new variables, that we call slopes, for clear
reasons. Observe that the vector of coordinates (m0, . . . ,mn, 1) is a normal vector
of the secant line pq. Thus, our goal is to “solve for” m when xn approaches yn
with (y0, . . . , yn, x0, . . . , xn) ∈W(tj).

We turn this question into one computing the limit points of a one-dimensional
regular chain, so as to use the algorithm of [2]. To this end, we extend the regular
chain tj to the regular chain Mj ⊂ C[m][y][x] given by

Mj = tj ∪


m0(x0 − y0)− (xn − yn)
...

mn(xn − yn)− (xn − yn)

.

Note thatMj is one-dimensional in this extended space and computing lim(W(Mj)),
using the algorithm of [2], solves for m when xn → yn with (x,y) ∈ W(t0).
Therefore and finally, the desired set {limq→p,q 6=p p̂q} is obtained as the limit
points of the quasi-components of M0, . . . ,Mn.

Remark 2. Observe that the process described above determines the slopesm0, . . . , mn

as roots of the top n polynomials of zero-dimensional regular chains in the vari-
ables mn � · · · � m0 � xn � · · · � x0 � yn · · · � y0. Performing a change
of variable ordering to x � m � y expresses m0, . . . ,mn−1 as functions of the
coordinates of the point p only. We consider this a more desirable output.



4.3 Equations of Tangent Cones

In the previous section, we saw ho to compute the tangent cone TCp(C ) in
the form of the slopes of vectors defining the lines of TCp(C ). Instead, one
may prefer to obtain TCp(C ) in the form of the equations of the the lines of
TCp(C ). We explain below how to achieve this. Let S be an arbitrary point with
coordinates (X0, . . . , Xn). This point belongs to one of the lines of the tangent
cone (corresponding to the branches of the curve defined by W(tj)) if and only
if the vectors

−→pq
xn − yn

=


1

mn−1
...
m0

 and pS =


Xn − yn

Xn−1 − yn−1
...

X0 − y0


are collinear. That is, if and only if we have the following relations

Xn = mn(xn − yn) + yn
...

X0 = m0(xn − yn) + y0.

(3)

Consider a regular chain (obtained with the process described in Remark 2)
thus expressing the slopesm0, . . . ,mn−1 as functions of the coordinates y0, . . . , yn
of p. Let us extend this regular chain with the relations from Equation (3), so
as to obtain a one-dimensional regular chain in the variables Xn � · · · � X0 �
mn−1 � · · · � m0 � yn · · · � y0. Next, we eliminate the variables m0, . . . ,mn−1,
with the above equations. This is, indeed, legal since the only point of a line of
the tangent cone where the equation xn = yn holds is p itself. Finally, this elim-
ination process consists simply of substituting Xi−yi

xn−yn for mi into the equations
defining m0, . . . ,mn.

4.4 Examples

The following examples illustrates our technique for computing tangent cones
as limits. We write tangent cones using unions to save vertical space and to
separate slope from point.

Example 2. Consider calculating the tangent cone of the fish h = y2−x2(x+ 1)
at the origin. The Puiseux expansions of h at x = 0 in T are given by{

y = −T − 1
2 T

2 +O(T 3)

x = T
and

{
y = T + 1

2 T
2 +O(T 3)

x = T

and substituting these values into ym− x produces(
− 1

2 T
2 − T

)
m− T and

(
1
2 T

2 + T
)
m− T.



Call these expressions M0 and M1 respectively.
To find the value of m at T = 0 we find the Puiseux series expansions for

M0 and M1 at T = 0 in U ; these are respectively.{
m = −1 + 1

2 U −
1
4 U

2 +O(U3)

T = U
and

{
m = 1− 1

2 U + 1
4 U

2 +O(U3)

T = U
.

Taking U → 0 in the above produces the (expected) slopes of 1 and −1.

Fig. 2. Limiting secants along V
(
x2 + y2 + z2 − 1, x2 − y2 − z

)
.

Example 3. Consider Figure 2, i.e. secants along the curve h = {x2 + y2 + z2 −
1, x2−y2−z} ⊂ K[x, y, z] limiting to a point given by a zero dimensional regular
chain t =

〈
x+ y, 2y2 − 1, z

〉
.

TCt(h) =


m1 − 1

m2

m3

∪


2x2 − 1

2y2 − 1

z

or alternatively (using equations of lines instead)

TCt(h) =

{
z ± 4x√

2
+ 2, y − x± 2√

2

}
.

Notice the slope for four points are encoded here. In particular the points{(
1

±
√

2
,

1

±
√

2
, 0

)
,

(
− 1

±
√

2
,

1

∓
√

2
, 0

)}
have slope given by the vector 〈1, 0, 0〉.

Fig. 3. Secants along V
(
x2 + y2 + z2 − 1

)
∩V

(
x2 − y2 − z(z − 1)

)
limiting to (0, 0, 1).

Example 4. Consider Figure 3, i.e. secants along the curve h = {x2 + y2 + z2 −
1, x2 − y2 − z(z − 1)} ⊂ k[x, y, z] limiting to (0, 0, 1)

TC(0,0,1)(h) =


m1 +m2

2m2
2 − 6m2 + 3

m3

∪


x

y

z − 1



or alternatively (using equations of lines instead)

TC(0,0,1)(h) =
{
z − 1, y2 − 3x2

}
.

Notice the values of the slopes here are in the algebraic closure of the coefficient
ring. In particular, they are{(

3
2 +
√

6, 3
2 +
√

6, 0
)
,
(

3
2 −
√

6, 3
2 −
√

6, 0
)}

.

5 Conclusion

We presented an alternative and Gröbner-free method for calculating the tangent
cone of a space curve at any of its points. In essence, this is done by simulating a
limit calculation along a curve using variable elimination. From this limit we can
construct each line of the tangent cone by solving for the vector of instantaneous
slope along each tangents corresponding secant lines. Finally, this slope vector
can be converted into equations of lines.
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