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StephaneBlanc,16,17AlbertoG. Bonomi,18Carlijn V.C. Bouten,19Pascal Bovet,20Maciej S. Buchowski,21Nancy F. Butte,22
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(Author list continued on next page)

SUMMARY

The doubly labeled water (DLW) method measures total energy expenditure (TEE) in free-living subjects.

Several equations are used to convert isotopic data into TEE. Using the International Atomic Energy Agency

(IAEA) DLW database (5,756 measurements of adults and children), we show considerable variability is intro-

duced by different equations. The estimated rCO2 is sensitive to the dilution space ratio (DSR) of the two iso-

topes. Based on performance in validation studies, we propose a new equation based on a new estimate of

the mean DSR. The DSR is lower at low body masses (<10 kg). Using data for 1,021 babies and infants, we

show that the DSR varies non-linearly with body mass between 0 and 10 kg. Using this relationship to predict

DSR from weight provides an equation for rCO2 over this size range that agrees well with indirect calorimetry

(average difference 0.64%; SD = 12.2%). We propose adoption of these equations in future studies.

INTRODUCTION

The doubly labeled water (DLW) method1,2 is an isotope-based

technique for measuring rCO2 in free-living animals and hu-

mans.3 The method is based on the observation that the oxygen

in respiratory CO2 is in complete isotopic equilibriumwith the ox-

ygen in body water. Hence, isotopically labeled oxygen intro-

duced into the body water is eliminated as both water and

CO2. In contrast, a simultaneously introduced label of hydrogen

(such as deuterium) will be predominantly eliminated as water.

The difference in elimination rates of the two isotopes (hence

‘‘doubly labeled’’ water) gives a measure of rCO2. If the
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respiratory quotient (RQ) (the ratio of CO2 production to O2 con-

sumption) or food quotient (FQ) (the proportions of fat, protein,

and carbohydrate in the diet) is known, the rCO2 can be con-

verted to estimated energy expenditure using standard

equations.

The prohibitive cost of the isotopes limited early use of the

method to small animals.4 Advances in mass spectrometry,

which reduced the required dose, along with the declining cost

of the isotopes enabled the first applications to humans in the

early 1980s.5–7 Since then, use of the method has grown steadily

with currently approximately 100 papers published using the

method annually.8 However, costs continue to keep sample

sizes in most studies relatively small (typically less than 50 indi-

viduals). There has been an impetus in the last few years, there-

fore, to combine data across studies to extend or modify conclu-

sions about the main factors driving energy demands.9,10

The simple description of the technique above belies a great

deal of complexity in its theoretical basis.2,3,10,11 For example,
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isotopes fractionate as they leave the body, so that lighter iso-

topes are preferentially lost. This effect needs to be accounted

for in the calculation. Another issue is that the isotopes are

assumed to be turning over in the bodywater pool. The bodywa-

ter pool can be measured from the dilution space of the isotopic

doses, but the dilution space of 18oxygen (NO) differs from that

of deuterium (Nd), and both differ slightly from the total body wa-

ter (TBW). The oxygen dilution space is about 1% larger than the

TBW although the hydrogen dilution space is about 4% larger.

This difference stems primarily from hydrogen in body water

exchanging with labile hydrogen in proteins and other organic

molecules in the body. The relationship between Nd, No, and

TBW affect the calculation of rCO2, and thus, the dilution space

ratio (DSR), which is equal to Nd/ NO, turns out to be a critical

parameter in DLW studies.

A final complexity that must be considered is the choice of

equation used to calculate rCO2. Although there are only four

basic parameters that are derived from the isotope elimination

measurements (the two elimination constants for 18oxygen

[kO] and deuterium [kd] and the two isotope dilution spaces [NO

and Nd]), the best approach combining these parameters to es-

timate rCO2 was a matter of considerable debate throughout the

late 1980s and 1990s.3 These discussions never reached a

broad consensus, and hence, different studies have subse-

quently combined the parameters in slightly different ways.

Such differences are largely irrelevant if the objective is to

compare groups within a single study. However, if absolute

values of energy demand are required, such as might be needed

if the DLW method is being utilized as a validation method (for

example, for measurements of habitual food intake), to compare

total energy expenditure (TEE) across cultures and lifestyles, or if

comparisons are made to previous studies, the differences in

calculation could be significant. The consequences of this vari-

ability have never been thoroughly evaluated but have been

assumed to be small relative to the biological variation under

study. In this paper, we evaluate the impact of using different

equations and derive new standard equations based on perfor-

mance in validation studies for use in future studies. We address

this issue first for studies of children, adolescents, and adults

and then for studies of small infants and babies.

RESULTS AND DISCUSSION

Children, adolescents, and adults

We have compiled in the International Atomic Energy Agency

(IAEA) DLW database (v3.1; https://www.dlwdatabase.org) indi-

vidual data from 119 DLW studies comprising a total of 6,246

measurements of individuals aged 2–96 years.8 For 5,756 of

these measurements, we have access to the individual values

of ko, kd, No, andNd, allowing us to recalculate rCO2using a single

equation, and compare these to the original estimates made

using a diversity of calculation methods. To choose the best

equation for the common calculation, we compiled data from

six validation studies involving 61 adult humans, where rCO2

by DLW has been compared with simultaneous indirect calorim-

etry (Table 1).12–17 This comparison yielded three equations

where rCO2 did not differ significantly from the chamber values

(Table 1).3,18–22 The equation with the lowest average deviation

wasderived fromananalysis of dilution space ratios inSagayama

et al.20 Using the average dilution space ratio of 1.036, we modi-

fied the original Equation A6 proposed by Schoeller et al.15 and

derived a new equation here, for which the average discrepancy

between the DLW estimates of rCO2 and simultaneous chamber

estimates was �0.4% (SD = 7.6%; Table 1).

The new equation is as follows:

rCO2 = ½ðN=2:078Þ � ð1:007 � ko-- 1:043 � kdÞ

-- ð0:0246 � N � 1:05ð1:007 � ko-- 1:043 � kdÞÞ� � 22:26;

(Equation 1)
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Table 1. Validation results for carbon dioxide production (rCO2) for 61 individuals measured using the doubly labeled water method

simultaneous to chamber calorimetry

Source ID BM VCO2 IC Schoeller 1988

Racette et al.,

1994

Sagayama

et al., 2016

Speakman

1997

Speakman

et al., 1993

Coward and

Prentice 1985

kg L/d L/d % L/d % L/d % L/d % L/d % L/d %

Schoeller

and Webb12

M17 67.5 566.7 579.3 2.2 571.4 0.8 567.5 0.1 548.9 �3.2

F25 72.0 439.0 448.9 2.2 440.4 0.3 436.2 �0.6 417.9 �4.8

F27 57.1 436.8 382.1 �12.5 374.2 �14.3 370.3 �15.2 353.6 �19.0

M28 67.5 611.5 608.2 �0.5 596.6 �2.4 590.9 �3.4 565.8 �7.5

M58 88.2 486.1 521.8 7.4 514.3 5.8 510.5 5.0 493.0 1.4

Westerterp

et al.13
1 73.2 508.0 495.0 �2.6 487.1 �4.1 483.2 �4.9 465.4 �8.4

2 77.9 479.0 506.5 5.7 498.2 4.0 494.2 3.2 475.8 �0.7

3 57.6 356.0 352.0 �1.1 346.5 �2.7 343.8 �3.4 331.4 �6.9

4 72.0 457.0 441.4 �3.4 435.5 �4.7 432.6 �5.3 418.6 �8.4

5 58.1 437.0 422.9 �3.2 414.3 �5.2 410.1 �6.2 391.8 �10.3

6A 75.6 894.0 919.0 2.8 907.5 1.5 901.9 0.9 874.1 �2.2

7A 64.7 818.0 931.9 13.9 920.6 12.5 915.1 11.9 887.7 8.5

8A 71.0 981.0 947.5 �3.4 934.2 �4.8 927.7 �5.4 896.6 �8.6

9A 77.9 1,104.0 1,085.9 �1.6 1,070.4 �3.0 1,062.8 �3.7 1,026.8 �7.0

Seale et al.14 1 100.4 531.0 550.7 3.7 538.0 1.3 531.7 0.1 505.3 �4.8

2 50.3 392.0 407.4 3.9 398.5 1.7 394.2 0.6 375.5 �4.2

3 59.0 331.0 343.2 3.7 336.3 1.6 333.0 0.6 318.4 �3.8

4 52.6 451.0 442.1 �2.0 427.3 �5.3 420.1 �6.9 391.1 �13.3

5 82.7 530.0 545.9 3.0 535.0 0.9 529.7 �0.1 506.4 �4.5

6 86.2 550.0 545.2 �0.9 530.4 �3.6 523.1 �4.9 493.1 �10.3

7 87.4 515.0 531.0 3.1 522.2 1.4 517.9 0.6 498.2 �3.3

8 47.8 403.0 395.8 �1.8 383.8 �4.8 378.0 �6.2 354.2 �12.1

9 79.9 494.0 511.1 3.5 503.2 1.9 499.3 1.1 481.3 �2.6

Schoeller

et al.15
ID 75.3 559.0 570.6 2.1 564.5 1.0 561.1 0.4 543.4 �2.8

NM 75.6 614.0 598.5 �2.5 591.0 �3.7 587.3 �4.4 568.5 �7.4

ED 76.3 633.0 591.5 �6.6 582.8 �7.9 578.4 �8.6 557.9 �11.9

MK 69.5 541.0 543.6 0.5 531.5 �1.8 526.5 �2.7 537.2 �0.7 506.1 �6.5 529.3 �2.2

JD 64.1 504.0 440.0 �12.7 432.7 �14.1 428.8 �14.9 438.3 �13.0 410.7 �18.5 340.5 �32.4

DM 73.3 566.0 650.1 14.9 640.7 13.2 636.9 12.5 659.6 16.5 619.8 9.5 581.6 2.8

AB 56.7 468.0 460.2 �1.7 452.6 �3.3 449.5 �4.0 463.3 �1.0 435.4 �7.0 443.6 �5.2

LC 85.2 626.0 656.6 4.9 643.1 2.7 637.9 1.9 654.6 4.6 616.8 �1.5 632.3 1.0

DP 63.1 529.0 519.6 �1.8 512.0 �3.2 508.7 �3.8 525.5 �0.7 493.4 �6.7 515.4 �2.6

Ravussin

et al.16
1 124.6 499.0 462.1 �7.4 452.6 �9.3 448.6 �10.1 415.0 �16.8 432.0 �13.4 398.7 �20.1

2 61.4 356.0 413.3 16.1 404.7 13.7 401.2 12.7 370.9 4.2 386.2 8.5 318.8 �10.5

3 137.6 535.0 556.6 4.0 543.2 1.5 537.5 0.5 483.4 �9.7 514.2 �3.9 443.9 �17.0

4 80.9 393.0 503.8 28.2 489.9 24.7 483.9 23.1 422.8 7.6 459.9 17.0 321.3 �18.2

5 101.8 370.0 402.3 8.7 393.6 6.4 389.9 5.4 357.8 �3.3 374.8 1.3 318.5 �13.9

6 139.9 424.0 427.7 0.9 420.1 �0.9 416.9 �1.7 393.7 �7.1 403.4 �4.9 384.7 �9.3

7 190.9 711.0 733.7 3.2 718.0 1.0 711.4 0.0 653.8 �8.0 683.9 �3.8 541.5 �23.8

8 95.8 480.0 590.9 23.1 575.0 19.8 568.0 18.3 498.8 3.9 540.4 12.6 396.9 �17.3

9 151.5 672.0 683.3 1.7 662.0 �1.5 652.5 �2.9 551.9 �17.9 615.6 �8.4 510.6 �24.0

10 68.6 373.0 406.3 8.9 390.4 4.7 383.1 2.7 300.2 �19.5 355.6 �4.7 277.5 �25.6

(Continued on next page)
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where

N = ½ðNo=1:007Þ + ðNd=1:043Þ�=2: (Equation 2)

N is total body water. Using the dilution spaces of both iso-

topes to estimate N reduces the error due to analytical variation

in the derivation of either isotope space alone. However, if it is

felt that the analytical variation stems mostly from evaluation of

the deuterium dilution space Nd, then it is also acceptable to

calculate N from the oxygen dilution space alone (N = No

/1.007). The value 22.26 in Equation 1 is the gas constant for

carbon dioxide. Note that this differs from the value used pre-

viously in all DLW equations for calculation of rCO2 of 22.4,

which is erroneously high (by 0.7%) because CO2 does not

show ideal gas behavior.23

Equation 1 can be simplified for calculation purposes to

rCO2 = 0:4554 � N � ½ð1:007 � koÞ � ð1:043 � kdÞ� � 22:26

(Equation 3)

or

rCO2 = ½N � ðð0:45859 � koÞ � ð0:47498 � kdÞÞ� � 22:26;

(Equation 4)

where ko and kd are in units of d�1, No and Nd are in mols, and

rCO2 is in L/d.

Table 1. Continued

Source ID BM VCO2 IC Schoeller 1988

Racette et al.,

1994

Sagayama

et al., 2016

Speakman

1997

Speakman

et al., 1993

Coward and

Prentice 1985

kg L/d L/d % L/d % L/d % L/d % L/d % L/d %

11 69.4 332.0 354.2 6.7 344.4 3.7 340.0 2.4 296.4 �10.7 323.0 �2.7 234.7 �29.3

12 80.1 403.0 468.0 16.1 457.6 13.5 453.2 12.5 413.8 2.7 435.1 8.0 361.5 �10.3

Melanson

et al.17
1 63.0 310.6 299.4 �3.6 291.7 �6.1 286.6 �7.7 280.0 �9.8 263.8 �15.1 285.1 �8.2

2 82.8 457.4 447.0 �2.3 440.4 �3.7 436.6 �4.6 445.0 �2.7 418.1 �8.6 420.4 �8.1

3 74.8 455.8 476.2 4.5 467.5 2.6 463.5 1.7 474.2 4.0 445.5 �2.3 429.6 �5.7

4 61.0 346.8 361.6 4.3 354.6 2.2 351.0 1.2 356.6 2.8 335.2 �3.4 324.2 �6.5

5 93.8 471.3 465.4 �1.2 454.0 �3.7 449.0 �4.7 456.0 �3.2 428.7 �9.0 389.9 �17.3

6 48.9 293.4 325.6 11.0 318.5 8.6 314.6 7.2 316.0 7.7 297.2 1.3 291.0 �0.8

7 53.3 349.9 352.7 0.8 343.6 �1.8 339.1 �3.1 340.1 �2.8 320.0 �8.5 298.1 �14.8

8 91.5 444.2 447.8 0.8 437.8 �1.4 433.7 �2.4 444.1 0.0 417.3 �6.1 385.0 �13.3

9 71.6 442.8 429.6 �3.0 418.0 �5.6 412.6 �6.8 415.5 �6.2 390.9 �11.7 351.9 �20.5

10 111.6 514.4 550.8 7.1 539.5 4.9 533.7 3.7 540.7 5.1 508.3 �1.2 489.8 �4.8

11 95.0 437.1 540.4 23.6 526.7 20.5 519.7 18.9 520.7 19.1 489.9 12.1 461.6 5.6

12 115.0 423.1 470.5 11.2 461.6 9.1 457.5 8.1 468.0 10.6 439.7 3.9 421.2 �0.5

13 101.4 433.7 433.1 �0.1 423.7 �2.3 419.3 �3.3 426.5 �1.7 400.9 �7.6 376.7 �13.2

14 73.9 473.4 443.0 �6.4 428.9 �9.4 422.8 �10.7 424.5 �10.3 399.5 �15.6 335.1 �29.2

15 72.0 394.0 353.6 �10.3 344.8 �12.5 340.8 �13.5 344.8 �12.5 324.2 �17.7 296.4 �24.8

16 61.7 353.8 345.7 �2.3 335.6 �5.2 331.0 �6.5 332.3 �6.1 312.6 �11.6 274.7 �22.4

17 69.6 387.9 402.2 3.7 393.9 1.5 389.9 0.5 396.5 2.2 372.6 �3.9 354.4 �8.6

All subjects N 61 61 61 61 61 61 61 61 35 35 61 61 35 35

mean 80.5 497.52 509.71 2.74 499.49 0.60 494.69 �0.40 440.52 �2.08 473.96 �4.72 392.47 �12.89

SD 26.2 152.69 155.18 7.97 153.74 7.74 153.11 7.67 98.67 9.05 149.72 7.51 95.32 9.94

T 2.69 0.61 �0.4 1.36 �4.9 �7.7

P 0.009 0.55 0.68 0.18 <0.001 <0.001

Source is the reference where the original validation data were published. ID is the ID from the original study. BM is the mean body mass of the indi-

vidual in kg. rCO2 IC is the indirect calorimetry estimate of CO2 production in liters per day. For each DLW equation, the original data were used to

calculate rCO2 and the% difference between these estimates and the chamber CO2 production is calculated. At the bottom of the table, the summary

statistics across all 61 individuals are shown. Schoeller 1988 refers to Equation A6 in Schoeller et al.15 as modified in Schoeller.18 Racette et al., 1994

refers to Equation A6 in Schoeller et al.15with the revised dilution space constant provided by Racette et al.19 Sagayama et al., 2016 refers to Equation

A6 in Schoeller et al.15 with the revised dilution space constant provided by Sagayama et al.20 and detailed here as Equation 1. Speakman 1997 refers

to Equation 17.41 in Speakman.3Speakman et al., 1993 refers to Equation 3 in Speakman et al.,21 andCoward and Prentice 1985 refers to the two-pool

equation in Coward and Prentice.22 For some of the studies, Nd was not available from the original validations. Because the equations by Speakman

1997 and Coward 1985 require individual estimates of Nd, a comparison was not possible for these subjects, and the total statistics are based on n =

35. The t and p values refer to the difference of themean difference from an expectation of 0 (single sample t test). Three equations produced estimates

that were not significantly different to the chamber calorimetry data.
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We used the original RQ estimates from the publications to

convert rCO2 to TEE using the Weir equation.24

TEE ðMJ=dÞ= rCO2 � ð1:106 + ð3:94=RQÞÞ �
�

4:184=103
�

:

(Equation 5)

Figure 1A shows the estimates of rCO2 from the original publica-

tions, plotted against estimates using Equation 1. Although there

is a strong association between the estimates (r2 = 0.987), they

do not yield identical rCO2 values. Because the equation based

on Sagayama et al.20was derived here, none of the studies in the

database used this equation. Of the 5,756 individual data, the

rCO2 of 1,024 (17.7%) was made using the equation of Coward

and Prentice,22 883 (15.3%) were made using the Schoeller

et al.15 Equation A6 as modified in 1988,18 3,770 (65.3%) were

made using the Racette et al.19 equation, and 77 (1.3%) did

not state the equation they used. The Racette et al.19 equation

produces estimates very similar to those derived fromEquation 1

(Table 1), and the discrepancy in the sample of 3,770 using this

equation averaged 1.1% (SD 1.2). On average, the discrepancy

when using the Schoeller et al.15 A6 equation was 1.8% (SD 1.6),

and for the studies using the Coward and Prentice22 equation, it

was 4.4% (SD 4.6).

We compared the rCO2 values calculated using the three main

equations compared to Equation 1 using Bland-Altman plots

(Figures 1B–1D).25 For all three equations, there was no system-

atic bias. However, the Coward and Prentice22 equation gener-

ated far more variable estimates than the other two equations.

Coward and Prentice (1985)

Schoeller et al (1986) mod. Schoeller (1988) Racette et al (1994)

A

C D

B Figure 1. Comparison of published CO2 pro-

duction by doubly labeled water to that by

standard method

(A) Relationship between CO2 production (L/d) for

5,756 individuals extracted from the original studies

and the recalculated estimates using Equation 1.

(B–D) Bland-Altman plots25 comparing the published

rCO2 for studies using (B) the Coward and Prentice22

equation, (C) the Schoeller et al.15 A6 equation, and

(D) the Racette et al.19 compared with the standard

Equation 1 derived fromSagayama et al.20 In all plots,

dotted line is average difference, and solid blue lines

are plus and minus 2 SDs. The red lines define the

boundary for plus and minus 10% difference be-

tween methods. Data refer to 5,756 adult individuals

uploaded into the IAEA DLW database (v3.1).

This is expected because that calculation

utilizes individual values for No and Nd

instead of using an average Nd/No ratio,

which is used in the other two equations

and Equation 1. Indeed, of the 1,024 esti-

mates using the Coward equation, 103

(10.0%) differed by more than 10% from

the standard, compared to 1/883 (0.1%)

for the Schoeller et al.15 equation and 12/

3,770 (0.3%) for the Racette19 equation.

A second source of variation can be intro-

duced by using alternative equations to

convert rCO2 to TEE. This variation occurs

even when the RQ is known. To evaluate the variation introduced

from this source, we took the original rCO2 and converted this to

TEE using the Weir equation. We then compared the recalcu-

lated TEE with the published values. The relationship between

the recalculated and original TEE values (Figure 2A) was very

good (r2 = 0.99), and the average discrepancy between esti-

mates was only 0.08 MJ/d (SD = 0.19) or 0.8% (SD = 0.19).

The absolute discrepancy excluding the sign of the difference

was 0.11 MJ (1.1%; SD = 0.17). There was no significant trend

in the discrepancy with the magnitude of the TEE (Figure 2B).

When RQ is not known, the routine procedure is to approximate

the RQ using the FQ. The errors involved in this approximation

are beyond the scope of this paper and are not addressed here.

These data show that selection of the calculation method can

introduce substantial variation into the individual and to a lesser

extent average estimates of rCO2, as well as to variation in con-

version of rCO2 to TEE. For comparisons made within studies,

this discrepancy is unimportant. However, it may introduce

problems when comparisons are attempted between studies

or when the DLW method is used to validate other techniques,

particularly when small sample sizes are employed. With some

equations in common use, more than 10% of estimates are

greater than 10% divergent from the equation that performs

best in validation studies. Such differences between calculation

methods across studies might be erroneously attributed to bio-

logical factors. This potential problem is compounded by the

fact that some studies do not indicate the exact calculation

methods they employed to derive rCO2 and TEE estimates. To
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overcome these issues, we recommend adoption of Equation 1

in future studies of children, adolescents, and adults to derive

rCO2 and use of Equation 5 to convert this to TEE.

Small infants and babies

The recommendation above refers to subjects aged R2 years.

We have shown that the choice of equation has a significant

impact on the resultant calculation of rCO2 and TEE and that

the major factor driving this variation is the relative dilutions

spaces of No and Nd (the dilution space ratio DSR = Nd/No; Fig-

ure 3). There is evidence that, at younger ages, the DSR is below

the observed average of 1.036 in individuals aged >2 years.20,26

In a review of 36 studies of 1,131 young children, the weighted

dilution space ratio averaged 1.031,20whichmeans that applica-

tion of Equation 1 to younger individuals may yield underesti-

mates of rCO2 and TEE.

A

B

Figure 2. Comparison of published energy expenditure by DLW to

that calculated by standard method

(A) Relationship between the TEE (MJ/d) for 4,571 individual adults extracted

from the original studies and the recalculated TEE using the Weir equation.

(B) Bland-Altman plot25 comparing the published TEE with those generated

using the recommended equation. Dotted line is average difference. Data refer

to data for 4,571 adult individuals uploaded into the IAEADLWdatabase (v3.1).

The sample size is lower than in Figure 1, because for some individuals, esti-

mates of RQ or FQ were not available.
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Figure 3. Dilution space ratio as a function of body mass and per-

formance of new equation against indirect calorimetry

(A) Dilution space ratios (the hydrogen dilution space Nd divided by the oxygen

dilution space No) of 332 babies weighing <10 kg from the IAEA DLWdatabase

v 3.1 (open circles) combined with data from validation studies in preterm and

full-term babies (gray circles). For the sample from the database, there was a

linear relationship (blue dotted line that marginally failed to reach significance

p = 0.08). We fitted an asymptotic exponential to the combined dataset (red

line; r2 = 6.4%; p < 0.03).

(B) The results of validation studies of the DLW method in babies comparing

the DLW estimates of CO2 production (rCO2) derived from a combination of

Equations 9 and 10 presented here and rCO2 measured by indirect calorim-

etry. There was a strong linear relationship fitted by least-squares regression—

dotted blue line, with r2 = 0.90.
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There is a problem, however, in choosing the best equation to

use in young children, and that is the limitation on performing

validation experiments in this age group against gas exchange

measurements by indirect calorimetry (chamber respirometry).

Validation studies of DLW against indirect calorimetry will prob-

ably never be performed in young children because it would

require the child to be isolated within a respirometry chamber

for a protracted period lasting up to a week.

Nevertheless, a number of validation studies have been per-

formed in preterm babies and small neonates (<2 kg), comparing

continuous gas exchange with DLW.27–29 The problem, how-

ever, is that such very small children weighing less than 2 kg

have an even lower DSR,30 averaging around 1.019, significantly

lower than in infants weighing >2 kg.26,31 Hence, an equation

based on this DSR might work well for small babies weighing

less than 2 kg, but it might be unsuitable for infants weighing

2–10 kg. Fortunately, there is a single validation study of babies

weighing 2–4.2 kg,32 which can assist in selection of the best

equation in this size range.

We compiled data from the four available validation studies in

babies and used the published data in these studies on isotope

elimination rates of 18oxygen (ko) and deuterium (kd) and the

respective dilution spaces (No and Nd) to recalculate the rCO2

using five different alternative equations. We then derived two

new equations in which we replaced the DSR in Equation 1

with either the value 1.019 or the value 1.031. These are, respec-

tively, when the DSR = 1.019,

rCO2 = ½ðN=2:078Þ � ð1:007 � ko-- 1:026 � kdÞ

-- ð0:0246 � N � 1:05ð1:007 � ko-- 1:026 � kdÞÞ� � 22:26;

(Equation 6)

and when the DSR = 1.031,

rCO2 = ½ðN=2:078Þ � ð1:007 � ko-- 1:038 � kdÞ

-- ð0:0246 � N � 1:05ð1:007 � ko-- 1:038 � kdÞÞ� � 22:26:

(Equation 7)

In all the above cases, we used

N= No=1:007: (Equation 8)

Although there have been relatively few validation studies of hu-

mans weighing less than 4 kg, there have been a large number of

validation studies in small mammals and birds in this weight

range (reviewed in Speakman3). Although such animals have

dilution space ratios that do not differ from adult humans (around

1.036), the best equation in validation studies of such animals

turns out to be based on a DSR of 1.0. This is because these

animals have a significant efflux of deuterium in addition to water

turnover that offsets the impact of the slightly different DSRs.33

Because this might also pertain in babies, we added into the

evaluation the most widespread equation in use for small mam-

mals and birds, which is Equation 7.17 from Speakman.3 Finally,

we also added into the evaluation the equation of Coward and

Prentice,22 which uses individual dilution spaces rather than a

population average in the calculation.

Table 1 shows the results of the different equations when

compared to indirect calorimetry for preterm infants (%2 kg)

and infants weighing >2 kg. The data show that, in the size range

0–2 kg, the best equation was based on the dilution space ratio

1.019 (Equation 6 above). The average difference between the

rCO2 by indirect calorimetry and DLW using this equation was

0.5%. This was much better than the equation derived for chil-

dren and adults (Equation 1), which gave an estimate 13.5%

too low, and Equation 7 above, which gave an estimate 8.4%

too low. The equation that performs best in validation studies

of small mammals gave an estimate 10.1% too high, clearly indi-

cating the physiological basis for this equation, although appro-

priate for birds and small non-human mammals, does not apply

to neonatal humans and young infants.

In the size range 2–4 kg, the best equation was that based on

the DSR of 1.031 (Equation 7). Equation 1 gave an estimate 8.5%

too low. Equation 6 gave an estimate 6.5% too high, although the

small animal equation gave an estimate 16.8% too high. These

validation data therefore suggest that adoption of three different

equations over different size ranges corresponding to different

DSRs might be a possible solution to the issue of how to mea-

sure rCO2 by DLW. For individuals weighing <2 kg, the sug-

gested equation would be Equation 6; for individuals weighing

2–10 kg, it would be Equation 7, and for individuals weighing

>10 kg, it would be Equation 1.

This approach, however, is not very satisfactory, because it

leads to confusion at the boundaries of the weight ranges. For

example, for a 2-kg child, rCO2 calculated using Equation 6 dif-

fers from that calculated by Equation 7 by about 10%. To further

explore the choice of DSR in the size range 0–10 kg, we ex-

tracted data from the IAEA DLW database8 for individuals in

this size range. In fact, none of the individuals in the database

weighed less than 2 kg, but there were 336 records of children

weighing between 2.4 and 10 kg. The DSR for these individuals

is plotted against the body weight in Figure 1A. The average DSR

in this interval was 1.032 (SD = 0.0122), consistent with the pre-

vious suggestion of 1.031 (Sagayama et al.20). This DSR was

significantly lower than the ratio established for heavier individ-

uals of 1.036 (t = �5.72; p < 0.0001) and significantly higher

than the ratio of 1.019 for preterm babies and neonates30weigh-

ing less than 2 kg (t = 22.26; p < 0.001). There was a trend for a

positive association between weight and DSR through the size

range (regression r2 = 0.9%; p = 0.08). When we combined these

data with those from the validation studies,27–29,32 there was a

significant non-linear relationship between body mass (BM)

(kg) and DSR. We fitted an asymptotic exponential model to

these data constraining the asymptote to be 1.036 using a

non-linear fitting function in the program MINITAB to estimate

the unknown parameters. The resultant equation was

DSR = 1:036 � 0:05 � expð � 0:5249 � BMÞ; (Equation 9)

where BM is in kg.

A different approach then is to create an equation that combines

this weight dependency with the standard equation, yielding

rCO2 = ½ðN=2:078Þ � ð1:007 � ko-- ðDSR � 1:007 � kdÞÞ�

-- ½0:0246 � N � 1:05ð1:007 � ko

-- ðDSR � 1:007 � kdÞÞ� � 22:26;

(Equation 10)
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where N = No and DSR is defined in Equation 9 by the BM in kg.

For calculation purposes, this simplifies to

rCO2 = ½0:45859 � N � ðko-- ðDSR � kdÞÞ� � 22:26: (Equation 11)

The results of using this equation are shown in Table 2 (Equa-

tion 10), and a plot of the predicted rCO2 from Equation 10 and

the observed rCO2 across all the validation studies across the

entire weight range in Table 2 is shown in Figure 2B. This shows

a linear relationship with an r2 of 90.1% and a least-squares fit

gradient of 0.954 (reduced major axis = 1.005). The average %

difference across all 34 individuals in the validation studies (in Ta-

ble 2) using this equation was 0.64% (SD = 11.9). This combined

equation based on the weight dependency of the DSR in the

range 0–10 kg therefore performs better than the individual

equations for the ranges 0–2 kg (Equation 6) and 2–10 kg (Equa-

tion 7; Table 2).

Using the combination of Equations 9 and 10 (or 11) eliminates

the boundary discontinuities of using three separate equations

and provides a general equation for the estimation of rCO2

from DLW studies, the adult equation (Equation 1) being a spe-

cial case of this more general solution where body mass is

greater than 10 kg. A further benefit of this equation combination

is that, if more refined analyses in the future result in equations

that are better able to predict the DSR, these could be adopted

by replacing Equation 9 with an updated prediction model.

We see considerable future benefits in studies using these

new equations because they will improve the accuracy of the

derived estimates of energy expenditure. Moreover, by having

a single equation set that spans all body sizes, it will be easier

for researchers to select the best calculation solution to get the

most accurate outcomes. Finally, they will enormously facilitate

the compilation and comparison of data across different studies.

Indeed, we have already prepared a number of manuscripts

based on these equations that consider diverse aspects of en-

ergy demands, including global aspects of nutrition, energy de-

mands through the lifespan H.P. et al., unpublished data, im-

pacts of physical activity on lean body mass and energy

compensation strategies (V. Careau et al., unpublished data;

K.R.W. et al., unpublished data, and trends in energy demands

over time (J.R.S. et al., unpublished data To facilitate the adop-

tion of these equations, we have also developed a dedicated

website that is free to use where users can input isotope data

to derive the rCO2 and TEE using the recommended procedures

(http://dlw.som.cuanschutz.edu/).

We suggest that future studies using the DLW method should

consider adopting a standard approach for calculating rCO2 and

its conversion to TEE. For this purpose, we recommend in adults

the equations adopted here (Equation 1 and its calculation forms

in Equations 3 and 4) for calculating rCO2 and the Weir equation

for the conversion of rCO2 to TEE (Equation 5). This recommen-

dation is based on the performance of the rCO2 equation in adult

validation studies (Table 1). In babies (<10 kg), we suggest adop-

tion of Equation 10, where the dilution space ratio is calculated

from body weight. This equation performs best in validation

studies of babies. Alternatively, if these standards are not adop-

ted, then we suggest users should make available in supple-

mental materials the values of ko, kd, No, and Nd for each individ-

ual subject, so that the published estimates can be easily

converted to the standard, thereby improving future compari-

sons. Moreover, we strongly advocate users to upload their

DLW data into the IAEA DLW database8 and make their stan-

dardized data widely available to the scientific community.

Limitations of study

The main advantage of the DLW method is that it allows a mea-

sure of free-living energy demands unencumbered by any mea-

surement apparatus. The main advantage of the chamber indi-

rect calorimetry approach is its verified precision and accuracy

based on sound physiological and engineering principles. How-

ever, chamber calorimetry has the disadvantage that the range

of activities that individuals can engage in is more limited than

free-living subjects can perform. When the two techniques are

brought together in a validation, it is expected because of the

restricted activity that the energy expenditure of most subjects

would sit at the low end of the spectrum of free-living demands,

and hence, the validation may be biased to low levels of expen-

diture. However, the average CO2 production across all subjects

in the validation study was 497.5 L/day (Table 1), which is com-

parable to the expected average CO2 production of adult free-

living individuals weighing 80 kg in the IAEA database of 494 L/

day. Hence, this is unlikely to be a serious source of bias.

Perhaps the biggest weakness is the fact that, although on

average, the new equations perform well at the individual level,

there are still considerable discrepancies at the individual level.

This variation limits utility of the method to measure individual

levels of energy expenditure. The cause of this variation remains

unclear and is generally presumed to reflect random errors in

isotope enrichment determinations. However, the validation

studies have generally not recorded the diets consumed by the

subjects. Because, in theory, different dietary constituents may

provide different opportunities for hydrogen isotope exchange

and may stimulate different levels of de novo lipogenesis, this

could contribute to isotope dilution spaces and fluxes that are

not accounted for in the standard calculation, contributing to

the individual discrepancies. Further validation work with individ-

uals consuming known and quantified diets might contribute to

lowering this error. As a final word of caution, there are no valida-

tion studies for individuals aged >70 years, and the dilution

space ratio may decline at older ages.20 We suggest Equation 1

should be used in this age group with caution.
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Table 2. Validation results for carbon dioxide production (rCO2) for 34 preterm and neonatal babiesmeasured using the doubly labeled

water method simultaneous to chamber calorimetry

Study ID BM

rCO2

IC Equation 1 Equation 6 Equation 7 Coward 1985 Speakman 7.17 Equation 10

g L/d L/d %diff L/d %diff L/d %diff L/d %diff L/d %diff L/d %diff

D 3 1,090.00 12.50 9.09 �27.27 11.4 �8.5 9.94 �20.49 12.80 2.40 12.85 2.81

B 3 1,115.00 11.37 10.00 �12.08 11.4 0.3 10.51 �7.63 8.53 �25.04 12.44 9.36 12.22 7.44

B 7 1,195.00 14.58 13.60 �6.74 15.3 4.8 14.20 �2.57 11.91 �18.32 16.60 13.85 16.16 10.82

D 2 1,378.00 13.70 13.64 �0.45 15.9 15.8 14.44 5.40 17.39 26.93 16.72 22.07

A 10 1,414.85 17.72 13.48 �23.91 15.8 �10.8 14.32 �19.18 14.59 �17.65 17.37 �1.98 16.65 �6.02

D 4 1,496.00 17.00 14.99 �11.85 17.8 4.7 16.00 �5.87 19.63 15.47 18.68 9.87

A 1 1,520.65 18.29 13.13 �28.24 15.4 �15.7 13.95 �23.71 12.90 �29.50 16.96 �7.29 16.10 �11.97

B 1 1,545.00 14.83 13.94 �6.03 16.2 9.2 14.75 �0.55 9.86 �33.50 17.74 19.63 16.82 13.40

A 5 1,596.45 19.74 19.16 �2.95 21.6 9.6 20.05 1.58 17.70 �10.36 23.53 19.22 22.25 12.73

B 4 1,600.00 15.52 14.61 �5.85 17.2 11.0 15.55 0.21 11.80 �24.00 18.94 22.07 17.86 15.08

B 6 1,640.00 18.70 17.48 �6.53 19.8 5.9 18.31 �2.04 15.12 �19.15 21.56 15.31 20.32 8.69

B 2 1,660.00 17.76 16.77 �5.58 19.5 9.7 17.75 �0.08 13.71 �22.79 21.35 20.21 20.05 12.88

A 8 1,692.15 20.01 18.01 �10.00 20.9 4.2 19.04 �4.87 18.38 �8.15 22.85 14.15 21.41 6.96

A 7 1,702.70 22.88 26.77 16.98 29.3 28.0 27.68 20.96 26.82 17.18 31.58 37.99 29.76 30.06

A 9 1,709.20 21.17 13.92 �34.24 16.5 �21.9 14.87 �29.79 15.35 �27.49 18.23 �13.89 17.01 �19.65

A 11 1,783.30 22.61 18.81 �16.79 21.6 �4.4 19.83 �12.31 19.35 �14.44 23.63 4.50 22.01 �2.64

A 12 1,824.10 21.17 18.87 �10.85 21.4 1.2 19.79 �6.50 19.78 �6.55 23.33 10.25 21.72 2.64

B 8 1,830.00 21.23 19.09 �10.09 21.8 2.6 20.06 �5.52 18.06 �14.93 23.75 11.89 22.09 4.04

B 5 1,860.00 18.97 15.54 �18.08 18.4 �3.2 16.56 �12.70 14.00 �26.19 20.22 6.60 18.65 �1.71

A 6 1,862.40 18.44 14.19 �23.06 16.8 �9.0 15.12 �17.99 14.76 �19.98 18.48 0.21 17.03 �7.63

A 4 1,880.70 25.36 22.30 �12.06 25.1 �0.9 23.32 �8.03 22.64 �10.74 27.32 7.74 25.39 0.10

A 3 1,894.95 25.47 12.37 �51.44 16.4 �35.7 13.81 �45.77 15.32 �39.84 18.53 �27.24 16.69 �34.47

C 6 1,920.00 21.95 21.99 0.16 25.7 17.3 23.34 6.33 28.27 28.77 25.99 18.40

A 2 1,996.80 23.04 19.40 �15.79 22.5 �2.5 20.50 �10.98 19.33 �16.09 24.60 6.81 22.56 �2.08

Mean 1,633.64 18.92 16.30 �13.45 18.9 0.5 17.24 �8.42 15.99 �18.38 20.71 10.12

SD 252.89 4.07 13.54 4.30 13.40 4.15 13.45 4.37 11.97 4.60 14.07

C 1 2,570.00 27.55 25.42 �7.75 30.7 11.4 27.32 �0.85 33.97 23.30 29.56 7.28

D 1 2,575.00 27.90 21.67 �22.33 25.7 �7.9 23.12 �17.14 28.31 1.45 24.82 �11.04

C 4 2,590.00 25.98 22.39 �13.83 25.7 �1.1 23.58 �9.24 28.08 8.05 24.97 �3.92

C 5 2,790.00 28.00 27.36 �2.28 31.9 13.8 28.98 3.50 34.93 24.75 30.55 9.11

C 8 2,980.00 32.70 27.02 �17.37 32.0 �2.3 28.80 �11.94 35.19 7.59 30.23 �7.55

C 9 3,390.00 33.82 33.14 �2.02 38.3 13.3 35.01 3.51 41.96 24.05 35.96 6.31

C 3 3,440.00 34.27 32.11 �6.32 36.9 7.6 33.83 �1.30 40.29 17.55 34.64 1.08

C 2 3,890.00 41.22 42.11 2.16 47.7 15.9 44.14 7.09 51.99 26.13 44.58 8.17

C 7 4,030.00 37.18 34.56 �7.04 41.5 11.7 37.08 �0.28 45.93 23.53 37.46 0.73

C 2b 4,160.00 50.40 46.29 �8.16 51.9 2.9 48.30 �4.17 56.27 11.65 48.48 �3.81

Mean 3,241.50 33.90 31.21 �8.49 36.2 6.5 33.02 �3.08 39.69 16.81 34.12 0.64

SD 627.09 8.49 8.69 12.00 8.8 8.1 9.08 11.99 10.67 12.82 8.63 12.17

The top half of the table refers to children weighing less than 2 kg (n = 24) and the bottom half those weighing more than 2 kg (n = 10). Study is the

reference where the original validation data were published. A is Jensen et al.,28 B is Westerterp et al.,27 C is Jones et al.,32 and D is Roberts

et al.26 ID is the ID from the original study. BM is the mean body mass of the individual in g. rCO2 IC is the indirect calorimetry estimate of CO2 pro-

duction in liters per day. For each DLW equation, the original data were used to calculate rCO2 and the% difference between these estimates and the

chamber CO2 production. At the bottom of each part of the table, the summary statistics across all individuals in each sub-group are shown. The sum-

mary statistics for Equation 10 refer to the whole sample of n = 34. Equations 1, 6, 7, and 10 refer to the equations derived in the text here. Coward 1985

refers to the two-pool equation in Coward and Prentice.22 Speakman 7.17 refers to Equation 7.17 in Speakman,3which is the most widely adopted and

validated equation for use in small mammals and birds. For some of the studies, Nd was not available from the original validations. Because the equa-

tion Coward 1985 requires individual estimates of Nd, a comparison was not possible for these subjects.

10 Cell Reports Medicine 2, 100203, February 16, 2021

Article
ll

OPEN ACCESS



Minna Tanskanen; Ricardo Uauy; Rita Van den Berg-Emons;

Wim G. Van Gemert; Erica J. Velthuis-te Wierik; Wilhelmine W.

Verboeket-van de Venne; and Jeanine A. Verbunt.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

d METHOD DETAILS

d QUANTIFICATION AND STATISTICAL ANALYSIS

ACKNOWLEDGMENTS

The DLW database, which can be found at https://www.dlwdatabase.org/, is

generously supported by the IAEA (Vienna, Austria), Taiyo Nippon Sanso, and

SERCON. We are grateful to these companies for their support and especially

to Takashi Oono for his tremendous efforts at fund raising on our behalf. The

authors also gratefully acknowledge funding from the US National Science

Foundation (BCS-1824466) awarded to Herman Pontzer. The funders played

no role in the content of this manuscript.

AUTHOR CONTRIBUTIONS

J.R.S., Y.Y., D.A.S., H.S., W.W.W., A.H.L., J.R., K.R.W., H.P., C.U.L., and

A.J.M.-A. conceived the study. J.R.S., Y.Y., and H.S. performed the calcula-

tions, analyzed the data, and derived the equations. E.S.F.B., S.A.C., and

E.L.M. programmed the website to perform the calculations. All the other au-

thors contributed data to the analysis. J.R.S. wrote the first draft. All authors

contributed to the manuscript and assented to submission.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: June 29, 2020

Revised: September 16, 2020

Accepted: January 20, 2021

Published: February 16, 2021

REFERENCES

1. Lifson, N., Gordon, G.B., and McCLINTOCK, R. (1955). Measurement of

total carbon dioxide production by means of D2O18. J. Appl. Physiol. 7,

704–710.

2. Lifson, N. (1966). Theory of use of the turnover rates of body water for

measuring energy and material balance. J. Theor. Biol. 12, 46–74.

3. Speakman, J.R. (1997). Doubly Labelled Water: Theory and Practice

(Chapman and Hall).

4. Nagy, K.A. (1983). The Doubly Labeled Water (3HH18O) Method: A Guide

to Its Use (Laboratory of Biomedical and Environmental Sciences, Univer-

sity of California).

5. Schoeller, D.A., and van Santen, E. (1982). Measurement of energy expen-

diture in humans by doubly labeled water method. J. Appl. Physiol. 53,

955–959.

6. Westerterp, K.R., Saris, W.H.M., van Es, M., and ten Hoor, F. (1986). Use

of the doubly labeled water technique in humans during heavy sustained

exercise. J Appl Physiol (1985) 61, 2162–2167.

7. Klein, P.D., James, W.P., Wong, W.W., Irving, C.S., Murgatroyd, P.R.,

Cabrera, M., Dallosso, H.M., Klein, E.R., and Nichols, B.L. (1984). Calori-

metric validation of the doubly-labelled water method for determination

of energy expenditure in man. Hum. Nutr. Clin. Nutr. 38, 95–106.

8. Speakman, J.R., Pontzer, H., Rood, J., Sagayama, H., Schoeller, D.A.,

Westerterp, K.R., Wong, W.W., Yamada, Y., Loechl, C., and Murphy-Al-

ford, A.J. (2019). The International Atomic Energy Agency International

Doubly Labelled Water Database: aims, scope and procedures. Ann.

Nutr. Metab. 75, 114–118.

9. Dugas, L.R., Harders, R., Merrill, S., Ebersole, K., Shoham, D.A., Rush,

E.C., Assah, F.K., Forrester, T., Durazo-Arvizu, R.A., and Luke, A. (2011).

Energy expenditure in adults living in developing compared with industri-

alized countries: a meta-analysis of doubly labeled water studies. Am. J.

Clin. Nutr. 93, 427–441.

10. Schoeller, D.A., and Allison, D.B. (2017). In Advances in the Assessment of

Dietary Intake, D.A. Schoeller andM.S.Westerterp-Plantenga, eds. (CRC),

pp. 185–197. Use of doubly-labeled water measured energy expenditure

as a biomarker of self-reported energy intake.

11. International Atomic Energy Agency (2009). IAEAHumanHealth Series No.

3. Assessment of Body Composition and Total Energy Expenditure in Hu-

mans Using Stable Isotope Techniques (Vienna International Centre).

12. Schoeller, D.A., and Webb, P. (1984). Five-day comparison of the doubly

labeled water method with respiratory gas exchange. Am. J. Clin. Nutr. 40,

153–158.

13. Westerterp, K.R., Brouns, F., Saris, W.H., and ten Hoor, F. (1988). Com-

parison of doubly labeled water with respirometry at low- and high-activity

levels. J. Appl. Physiol. 65, 53–56.

14. Seale, J.L., Conway, J.M., and Canary, J.J. (1993). Seven-day validation of

doubly labeled water method using indirect room calorimetry. J Appl

Physiol (1985) 74, 402–409.

15. Schoeller, D.A., Ravussin, E., Schutz, Y., Acheson, K.J., Baertschi, P., and
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact. John R

Speakman (jspeakman@abdn.ac.uk)

Materials availability

This study did not generate new unique reagents.

Data and code availability

The data presented here pertain to the IAEA DLW database (v3.1) which is a repository of almost 7000measurements of daily energy

expenditure in humans made using the DLWmethod. Full details of the aims and scope of the database can be found in reference 8.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The analysis here includes data for 5756 children, adolescents and adults and 1021 babies and infants extracted from the IAEA data-

base v3.1. These data have all been published previously and are extracted from relevant publications for inclusion in the database by

authors of those papers.

METHOD DETAILS

This study is based on recalculation of previously published data concerning use of the DLW method in free-living subjects and in

experiments involving DLW and simultaneous chamber indirect calorimetry. There is no standard approved protocol for the use of

the DLW technique and hence studies vary in the exact methods employed. In general however subjects are dosed with 18Oxygen

and deuterium in drinkingwater at a dose rate aiming to produce an excess enrichment of 18Oxygen between 150 and 300 ppmabove

background levels, and an enrichment of deuterium about half that. A background urine sample is taken prior to dosing and an equi-

librium sample commonly 3-4 hours afterward (3rd void) but in some protocols 10-12h later. The measurement duration can vary be-

tween 7 and 21 days and during that period samples may be collected only at the start and end, or on multiple occasions throughout

the washout period. Measurement durations are generally shorter for children and dosing can be higher than for adults. The isotope

washout is normally calculated from the log converted isotope enrichments above background.Whenmultiple samples are collected

it may also be evaluated from a non-linear exponential model fit to the data. Isotope dilution spaces may be calculated from the back

extrapolated washout to the dose time, or from the equilibrium samples. During free-living studies individuals continue their daily rou-

tines as normal. Full details of the practical aspects of themethod can be found in ref 3. During chamber validation studies the subjects

live continuously or semi-continuously inside a room calorimeter. Semi-continuous occupancy is for 23.5h per day with 30 mins al-

lowed outside for chamber calibration and for subjects to shower. Gas exchange from the chamber is measured using gas analysers

and CO2 production calculated from the difference in CO2 content between incurrent and excurrent air and the flow rate.

QUANTIFICATION AND STATISTICAL ANALYSIS

Measurements using different methods were compared in a pairwise fashion using the Bland-Altman methodology26. Comparisons

between the simultaneous DLW and chamber respirometry values were made by calculating the absolute differences (precision) and

summed differences including the sign (accuracy) between DLW estimates of CO2 production derived from different equations and

the chamber indirect calorimetry estimates.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

The data on which the analyseswere based is available

in the International Atomic Energy Agency Doubly

labeled water database.

International Atomic Energy Agency https://www.dlwdatabase.org/

Software and algorithms

Software for calculating results of DLW experiments University of Colorado http://dlw.som.cuanschutz.edu/
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