
A
mind is a functional entity that can think, and thus

support intelligent behavior. Humans possess minds,

as do many other animals. In natural systems such as

these, minds are implemented through brains, one particular

class of physical device. However, a key foundational hypoth-

esis in artiUcial intelligence is that minds are computational

entities of a special sort — that is, cognitive systems — that

can be implemented through a diversity of physical devices

(a concept lately reframed as substrate independence

[Bostrom 2003]), whether natural brains, traditional general-

purpose computers, or other sufUciently functional forms of

hardware or wetware.
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n A standard model captures a com-

munity consensus over a coherent region

of science, serving as a cumulative ref-

erence point for the >eld that can pro-

vide guidance for both research and

applications, while also focusing efforts

to extend or revise it. Here we propose

developing such a model for humanlike

minds, computational entities whose

structures and processes are substan-

tially similar to those found in human

cognition. Our hypothesis is that cogni-

tive architectures provide the appropri-

ate computational abstraction for de>n-

ing a standard model, although the

standard model is not itself such an

architecture. The proposed standard

model began as an initial consensus at

the 2013 AAAI Fall Symposium on

Integrated Cognition, but is extended

here through a synthesis across three

existing cognitive architectures: ACT-R,

Sigma, and Soar. The resulting standard

model spans key aspects of structure

and processing, memory and content,

learning, and perception and motor,

and highlights loci of architectural

agreement as well as disagreement with

the consensus while identifying poten-

tial areas of remaining incompleteness.

The hope is that this work will provide

an important step toward engaging the

broader community in further develop-

ment of the standard model of the

mind. 



ArtiUcial intelligence, cognitive science, neuro-
science, and robotics all contribute to our under-
standing of minds, although each draws from a dif-
ferent perspective in directing its research. ArtiUcial
intelligence concerns building artiUcial minds, and
thus cares most for how systems can be built that
exhibit intelligent behavior. Cognitive science con-
cerns modeling natural minds, and thus cares most
for understanding cognitive processes that generate
human thought. Neuroscience concerns the struc-
ture and function of brains, and thus cares most for
how minds arise from brains. Robotics concerns
building and controlling artiUcial bodies, and thus
cares most for how minds control such bodies.
Will research across these disciplines ultimately

converge on a single understanding of mind, or will
the result be a large but structured space of possibil-
ities, or even a cacophony of approaches? This is a
deep scientiUc question to which there is as yet no
answer. However, there must at least be a single
answer for cognitive science and neuroscience, as
they are both investigating the same mind, or nar-
row class of minds, albeit at different levels of
abstraction. Biologically, or cognitively, or psycho-
logically inspired research in artiUcial intelligence
and robotics also may Ut within this particular class
of minds, particularly if the class is slightly abstract-
ed; but so may other work that has no aspiration to
such inspiration yet still Unds itself in the same
neighborhood for functional reasons. This broader
class comprises what can be called humanlike minds,
with an overall focus more on the bounded ration-
ality hypothesized to be central to human cognition
(Simon 1957; Anderson 1990) than on the optimal-
ity that is the focus in much of artiUcial intelligence
and robotics. The class is broader than the more
familiar one of naturally inspired minds, as it also
includes both natural minds and some artiUcial
minds that are not necessarily naturally inspired yet
functionally related. However, it is narrower in scope
than human-level intelligence, as it excludes minds
that are sufUciently inhuman in how they achieve
this level of intelligence.
The purpose of this article is to begin the process of

engaging the international research community in
developing what can be called a standard model of the
mind, where the mind we have in mind here is
humanlike. The notion of a standard model has its
roots in physics, where for over more than a half-cen-
tury the international community has developed and
tested a standard model that combines much of what
is known about particles. This model is assumed to
be internally consistent, yet still have major gaps. Its
function is to serve as a cumulative reference point
for the Ueld while also driving efforts to both extend
and break it.
As with physics, developing a standard model of

the mind could accelerate work across the relevant
disciplines by providing a coherent baseline that

facilitates shared cumulative progress. For integrative
researchers concerned with modeling entire minds, a
standard model can help focus work on differences
between particular approaches and the standard
model, and on how to both extend and break the
model. Also, instead of each such researcher needing
to describe all the assumptions and constraints of
their particular approach from scratch, given the
standard model they can simply state how their own
approach differs from it. Tables 1 and 2 in the sum-
mary of this article, for example, specify the standard
model developed in this article and the standing of
three distinct approaches with respect to it. In this
process, the standard model itself could serve as
something of an interlingua or shared ontology, pro-
viding a vehicle for mapping the common aspects,
and possibly uncommon terminology, of disparate
architectures onto a common base.
For theoretical and systems researchers who mod-

el/build speciUc components of mind — whether
learning, memory, reasoning, language — a standard
model can provide guidance when they seek to
expand to include aspects of other components. For
experimental researchers who tease out the details of
how natural minds and brains work, a standard mod-
el can provide top-down guidance in interpreting the
results, as well as suggesting new experiments that
may be worth trying. For all researchers, a standard
model can serve as a framework around which data
that is used in evaluating single components or com-
binations of components may be organized and
made available for use by the community; potential-
ly growing to yield standard tests and testbeds. A
standard model can also provide a sound basis for
guiding practitioners in constructing a broad range
of intelligent applications.
The intent, at least for the foreseeable future, is not

to develop a single implementation or model of
mind by which everyone concerned with humanlike
minds would abide, or even a theory in which all of
the details are agreed to as correct. What is sought
though is a statement of the best consensus given the
community’s current understanding of the mind,
plus a sound basis for further reUnement as more is
learned. Much of the existing work on integrative
models of mind focuses on implementations rather
than theory, with too little interchange or synthesis
possible across these implementations. The develop-
ment of a standard model provides an opportunity
for the community to work together at a more
abstract level, where such interchange and synthesis
should be more practicable.
For this to transpire though will depend on

researchers within the community being interested
in relating their own approaches to the standard
model and participating in its further evolution. In
the process, it is fully expected that they will disagree
with some aspects of the standard model presented
here, leading ideally to efforts to either disprove or
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improve parts of it. It is also expected that the stan-
dard model will be incomplete in signiUcant ways,
not because those parts that are left out are unim-
portant, but because an adequate consensus on them
has not yet been achieved. Omission from the stan-
dard model is thus often a statement of where a con-
sensus is needed, rather than a consensus on a lack of
either existence or importance.
Although the boundary around the class of

humanlike minds is ill deUned, at least at present, we
do anticipate an evolving dialogue around this, driv-
en by a sequence of challenges from ideas and data
that conVict in substantive ways with the standard
model. For each such challenge, it will be critical to
determine whether the consensus is ultimately that
the standard model should be altered — either
changed to eliminate the conVict or abstracted to
cover both old and new approaches — or that the
new ideas or data should be deemed insufUciently
humanlike, and thus outside of the class of interest.
These will not necessarily be easy decisions, nor will
the process as a whole be smooth, but the potential
rewards for succeeding are real.
This article grew out of the 2013 AAAI Fall Sympo-

sium on Integrated Cognition that was initiated by
two of us to bring together researchers across a set of
disparate perspectives and communities concerned
with an integrated view of human-level cognition
(Burns et al. 2014). The full organizing committee
included representatives from cognitive science, cog-
nitively and biologically inspired artiUcial intelli-
gence, artiUcial general intelligence, and robotics.
The Unal activity during the symposium was a panel
on Consensus and Outstanding Issues, at which two
of us presented and the third participated. One of
these presentations led to the startling Unding that
the wide range of researchers in the room at the time
agreed that the content of the presentation was an
appropriate consensus about the current state of the
Ueld. Given the Ueld’s history of stark differences
between competing approaches, neither of the ini-
tiators of the symposium had anticipated this as a
realistic outcome, and when it occurred, it startled
those in attendance. It implied that a consensus had
implicitly begun to emerge — perhaps signaling the
dawning maturity of the Ueld — and that an attempt
to make it explicit could provide signiUcant value.
This attempt is what Ulls the remainder of this arti-

cle. The next section covers important background
that largely predates the 2013 symposium and this
effort, including several notable precursors to the
concept of a standard model of the mind plus the
critical notion of a cognitive architecture— a hypothe-
sis about the Uxed structure of the mind — which is
at the heart of this attempt. We then introduce three
cognitive architectures on which the effort here
focused. That section is followed by a presentation of
the proposed standard model that has been devel-
oped. In the summary section, we review what has

been accomplished, including a précis of the pro-
posed standard model, an analysis of where the same
three cognitive architectures sit with respect to it,
and a discussion of where we hope it will lead.

Background

This attempt at a standard model of the mind,
although originating at the 2013 symposium, did not
spring there from nothingness; and Allen Newell was
at the root of much of what came before. One
notable precursor from three decades earlier is the
model human processor (Card, Moran, and Newell
1983), which deUnes an abstract model of structural
and timing regularities in human perceptual, mental,
and motor processes. It supports predicting approxi-
mate timings of human behavior, but does not
include any details of the underlying computational
processes.
A second, albeit rather different, precursor is

Newell’s (1990) analysis of how scale counts in cog-
nition. Newell observed that human activity can be
classiUed according to different levels of processing,
and grouped by time scales at 12 different orders of
magnitude, starting with 100 μs and extending up to
months. While the many disciplines that have stud-
ied the nature of the mind have focused on different
collections of levels, this analysis provides a coherent
framework for integrating research into phenomena
and mechanisms at different time scales. As with the
notion of a standard model, this echoes the situation
in physics, and in fact, all of the physical sciences
and beyond, where the core phenomena of interest
stratify according to time (and length) scales that
when combined can yield models of more complex
multiscale phenomena.
Newell grouped these levels into four bands: bio-

logical, cognitive, rational, and social. The lowest,
biological, band corresponds to the time scale of pro-
cessing for individual neurons and synapses, the
functional building blocks of the human brain that
have been the focus of neuroscience research. The
next two bands up, the cognitive and rational bands
span activity from approximately 100 ms to hours,
covering the levels that have been studied by cogni-
tive science as well as traditional AI research in reac-
tive behavior, goal-directed decision making, natural
language processing, planning, and so on. The high-
est, social band includes such higher-order capabili-
ties as Theory of Mind, organizational behavior, and
moral and ethical reasoning (as, for example, dis-
cussed from different perspectives in two articles in
this special issue — Scheutz [2017] and Bello and
Bridewell [2017]). What this hierarchy suggests, and
what is borne out in the diversity of research in dis-
ciplines such as neuroscience, psychology, AI, eco-
nomics, sociology, and political science, is that there
are regularities at multiple time scales that are pro-
ductive for understanding the mind.
For humans, the deliberate act level, at 100 ms, is



roughly at the time scale of a simple reaction,
although the roughness here obscures the fact that
even simple reactions involve multiple internal
processes, including perception, cognition, and
action. More broadly, the deliberate act level is where
elementary operations are selected and applied. Fun-
damental to this level and all levels above, is the
assumption that computational capabilities similar to
a physical symbol system are available. The physical
symbol systems hypothesis states, “A physical symbol
system has the necessary and sufUcient means for
general intelligent action” (Newell and Simon 1976).
However, in a break with tradition, the standard mod-
el does not assume that computation at the deliberate
act level is purely or perfectly symbolic. We know
from the computational universality of symbol sys-
tems that they are logically sufUcient; however, con-
siderable evidence suggests that many types of rea-
soning that must be directly available at the
deliberate act level, such as statistical and spatial, are
best realized there through nonsymbolic processing.
In the standard model, the critical feature of sym-

bols is that they are the primitive elements over
which relations can be deUned, and where their use
across multiple relations enables the creation of com-
plex symbol structures, including (but not limited to)
structures such as semantic networks, ontologies, and
taxonomies. This use mirrors the binding problem in
cognitive neuroscience, which is concerned with how
multiple elements can be associated in a structured
manner (Treisman 1996). However, the model is
agnostic as to whether symbols are uninterpreted
labels, such as in Lisp, Soar (Laird 2012), and ACT-R
(Anderson 2007), or whether they are patterns over
vectors of distributed elements, such as semantic
pointers in Spaun (Eliasmith et al. 2012) and holo-
graphic vectors in HDM (Kelly, Kwock, and West
2015), or whether both are available, such as in Clar-
ion (Sun 2016) and Sigma (Rosenbloom, Demski, and
Ustun 2016a). What is important is that they provide
the necessary functionality to represent and manipu-
late relational structures.
In the standard model, nonsymbolic (that is,

numeric) information has two roles. One is to repre-
sent explicitly quantitative task information, such as
distances in spatial reasoning or times in temporal
reasoning. The second is to annotate the representa-
tions of task information (symbolic and nonsymbol-
ic) in service of modulating how it is processed. This
second type of numeric information takes the form
of (quantitative) metadata; that is, (numerical) data
about data. 
The mind then clearly comprises at least everything

from the deliberate act level up; that is, the top three
bands in Newell’s hierarchy. Many conceptions of the
mind, however, also include some portion of the bio-
logical band as well, whether in terms of an abstract
neural model, or a close cousin such as a graphical
model (Koller and Friedman 2009). Whether or not a

portion of the biological band is included in the con-
ceptualization, a model of the Uxed structure at the
deliberate act level, that deUnes a symbol system and
more, is called a cognitive architecture.While models of
the mind can be deUned at different levels, we have
situated ours at the deliberate act level because we
believe that it represents a critical juncture between
the neural processes that underlie it and the (bound-
edly) rational computations that it gives rise to. The
standard model we are striving for here amounts to a
consensus on what must be in a cognitive architecture
in order to provide a humanlike mind.
In a signiUcant break from much of the early work

on cognitive architectures, this standard model
involves a hybrid combination of symbolic and sta-
tistical processing to match the need introduced ear-
lier for statistical processing in the architecture,
rather than retaining a purely symbolic model of
processing. In consequence, it also embodies forms
of statistical learning, including Bayesian and rein-
forcement learning. It furthermore embraces signiU-
cant amounts of parallelism both within modules
and across them, while still retaining a serial bottle-
neck, rather than being strictly serial. Further expla-
nations of these shifts, along with the remaining
assumptions that deUne the standard model, can be
found later in this article. 
Typical research efforts on cognitive architectures

(Langley, Laird, and Rogers 2009) are concerned with
much more than just the architectural level — and
thus may be more appropriately thought of as devel-
oping more comprehensive cognitive systems —
although none has yet spanned the entire hierarchy.
Often they start with one level, or a few, but over time
expand, becoming multiyear — or even multidecade
— research programmes (Lakatos 1970) that span
larger and larger sequences of levels. However, the
standard model will not come anywhere near to pro-
viding a direct model of the entire mind. If we again
look to the situation in physics, the standard model
there is also not a direct model of the entire physical
world, focusing as it does only on the relatively low
level of particles. Still it provides a critical foundation
for the levels above it, up to and including the full
universe (or multiverse), while being Urmly grounded
in, and constrained by, the levels below it. The stan-
dard model of the mind likewise directly concerns
only one level, but in so doing provides a critical
foundation for the higher levels of the mind, while
being Urmly grounded in, and constrained by, the
levels below.
With respect to the higher levels of the mind,

there is an ancillary hypothesis to the standard mod-
el that they are deUned purely by the knowledge and
skills that are acquired and processed by the archi-
tecture. In simple terms, the hypothesis is that intel-
ligent behavior arises from a combination of an
implementation of a cognitive architecture plus
knowledge and skills. Processing at the higher levels
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then amounts to sequences of these interactions
over time. Even complex cognitive capabilities —
such as natural language processing (as, for example,
discussed in another article in this special issue —
McShane [2017]) and planning — are hypothesized
to be constructed in such a fashion, rather than
existing as distinct modules at higher levels. SpeciUc
mechanisms can sometimes be decomposed at mul-
tiple levels: for example, Forbus and Hinrichs’ (2017,
this issue) analogy process can be decomposed into
a SME mechanism located at least partly at the delib-
erate act level, together with attendant search
processes such as MAC/FAC and SAGE that operate
at higher levels and could be decomposed into prim-
itive acts.
The lower levels of the mind — in the biological

band or its artiUcial equivalent — both implement
and constrain the cognitive architecture. As the hier-
archy shows, the concept of a cognitive architecture,
and thus a standard model, need not be incompati-
ble with neural modeling. Moreover, there is poten-
tial not only for compatibility, but also for useful
complementarity. Aspects of neural processing, such
as generalization from distributed representations,
have been captured in cognitive architectures in the
form of subsymbolic statistical mechanisms. Con-
versely, the standard model can deUne an architec-
tural structure that can be beneUcial in organizing
and supplementing mechanisms such as deep learn-
ing when, for example, the need is recognized to
move beyond the simple memory capabilities pro-
vided by feedforward or recurrent neural networks
(for example, Vinokurov et al. [2012]). Furthermore,
the traditional notion of a Uxed cognitive architec-
ture has always been tempered by the idea that it is
Uxed only relative to the time scale of normal rea-
soning processes, leaving open the possibility that a
symbol system could emerge or change during devel-
opment rather than necessarily being in place at
birth. 
The concept of cognitive architecture originated in

Newell’s even earlier criticism of task-speciUc models
that induce a fragmented approach to cognitive sci-
ence and the consequent difUculty of making cumu-
lative progress (Newell 1973). As a solution, he
advanced the concept of an integrated model of
human cognition on top of which models of speciUc
tasks could be developed in terms of a common set of
mechanisms and representations, with the ultimate
goal of achieving UniUed Theories of Cognition
(Newell 1990). Like a computer architecture, a cogni-
tive architecture deUnes a general purpose computa-
tional device capable of running programs on data.
The key differences are that: (1) the kinds of pro-
grams and data to be supported in cognitive archi-
tectures are limited to those appropriate for human-
like intelligent behavior; and (2) the programs and
data are ultimately intended to be acquired automat-
ically from experience — that is, learned — rather

than programmed, aside from possibly a limited set
of innate programs. Cognitive architectures thus
induce languages, just as do computer architectures,
but they are languages geared toward yielding learn-
able intelligent behavior, in the form of knowledge
and skills. This is what distinguishes a cognitive
architecture from an arbitrary — yet potentially quite
useful — programming language.
From this common origin, the concept of cogni-

tive architecture took form in multiple subUelds,
each focused on different goals. In cognitive psy-
chology, architectures such as ACT-R, Clarion, and
LIDA (Franklin and Patterson 2006) attempt to
account for detailed behavioral data from controlled
experiments involving memory, problem-solving,
and perceptual-motor interaction. In artiUcial intelli-
gence, architectures such as Soar and Sigma focus on
developing functional capabilities and applying
them to tasks such as natural language processing,
control of intelligent agents in simulations, virtual
humans, and embodied robots. In neuroscience,
architectures such as Leabra (O’Reilly, Hazy, and Herd
2016) and Spaun (Eliasmith 2013) adopt mechanisms
and organizations compatible with the human brain,
but primarily apply them to simple memory and
decision-making tasks. In robotics, architectures such
as 4D/RCS (Albus 2002) and DIARC (Schermerhorn
et al. 2006) concern themselves with real-time con-
trol of physical robots.
However, there has historically been little agree-

ment either across or within specialties as to the over-
all nature and shape of this architecture. The lack of
such a consensus has hindered comparison and col-
laboration across architectures, prevented the inte-
gration of constraints across disciplines, and limited
the guidance that could aid research on individual
aspects of the mind. There is not even an agreed
upon term for what is being built. In addition to cog-
nitive architectures — a term that stems from cogni-
tive science — relevant work also proceeds on archi-
tectures for intelligent agents, intelligent/cognitive
robots, virtual humans, and artiUcial general intelli-
gence. All these terms carry signiUcantly different
goals and requirements that span interaction with
and control of, respectively, online resources, artiU-
cial physical bodies, and artiUcial virtual bodies, plus
generality across domains. To the extent that the
humanlike components of these divergent threads
can (re)converge under combined behavioral, func-
tional, and neural constraints, it yields a strong indi-
cation that a standard model is possible.
One recent attempt to bring several of these

threads back together was work on a “generic archi-
tecture for humanlike cognition” (Goertzel, Pen-
nachin, and Geisweiller 2014a), which conceptually
amalgamated key ideas from the CogPrime (Goertzel,
Pennachin, and Geisweiller 2014b), CogAff (Sloman
2001), LIDA, MicroPsi (Bach 2009), and 4D/RCS
architectures, plus a form of deep learning (Arel,
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Rose, and Coop 2009). A number of the goals of that
effort were similar to those identiUed for the standard
model; however, the result was more of a pastiche
than a consensus — assembling disparate pieces from
across these architectures rather than identifying
what is common among them — with a bias thus also
more toward completeness than concord.
The standard model developed in this article is

grounded in three other architectures and their asso-
ciated research programs: ACT-R, Soar, and Sigma.
The Urst two are the most complete, long-standing,
and widely applied architectures in existence. ACT-R
originated within cognitive science, although it has
reached out to artiUcial intelligence as well (for exam-
ple, Sanner et al. [2000]), been mapped onto regions
of the human brain (Anderson 2007) — enabling it to
be integrated with the Leabra neural architecture (Jilk
et al. 2008) — and been used to control robots (for
example, Kennedy et al. [2007]). Soar originated with-
in artiUcial intelligence, although it has reached out
to cognitive science (Newell 1990), and been used to
control robots (Laird and Rosenbloom 1990; Laird et
al. 2012). Sigma is a more recent development, based
partly on lessons learned from the two others. It also
originated within artiUcial intelligence, but has
begun to reach out to cognitive science (for example,
Rosenbloom [2014]), is based on a generalized notion
of graphical models that has recently been extended
to include neural networks (Rosenbloom, Demski,
and Ustun 2016b), and been used to control virtual
humans (Ustun and Rosenbloom 2016).
We selected these three architectures because we

know them well. The ultimate goal is to ground the
standard model in many more architectures and
research programs, but in our experience, unless an
expert on the architecture/program is directly
involved in such a process, the results can be more
problematic than useful, so our decision was to hold
off on analyzing additional architectures until we can
involve others, possibly through a focused sympo-
sium or workshop, and hopefully then follow up with
a longer and more comprehensive article. Neverthe-
less, between these three architectures there is signiU-
cant presence across artiUcial intelligence and cogni-
tive science, plus extensions into neuroscience and
robotics (and virtual humans), although it should be
clear that none of the three architectures actually
originated within either of the latter two disciplines.

Three Cognitive Architectures

The previous section introduced the general notion
of a cognitive architecture. Here we introduce the
three particular architectures we have focused on in
extending the standard model beyond the initial syn-
thesis at the Symposium. Each architecture is
described in its own terms, along with a Ugure that
provides a standard characterization of its structure.
No attempt has been made to alter these Ugures to

draw out their commonalities — for example, the
Soar Ugure explicitly shows learning mechanisms
while the other two don’t — other than to use a com-
mon color scheme for the components: brown for
working memory, red for declarative memory, blue
for procedural memory, yellow for perception, and
green for motor. The core work of identifying com-
monalities is left to the standard model, as described
in the next section.
ACT-R is constructed as a set of modules that run

asynchronously and in parallel around a central rule-
based procedural module that provides global control
(Ugure 1). Processing is often highly parallel within
modules, but each yields only a single result per oper-
ation, which is placed in a module-speciUc working
memory buffer, where it can be tested as a condition
by the procedural module and transferred to other
buffers to trigger further activity in the corresponding
modules. 
Soar is also comprised of a set of asynchronous

internally parallel modules, including a rule-based
procedural memory. Soar is organized around a
broader-based global working memory (Ugure 2). It
includes separate episodic and semantic declarative
memories, in addition to visuospatial modules and a
motor module that controls robotic or virtual effec-
tors.
Sigma is a newer architecture that blends lessons

from existing architectures such as ACT-R and Soar
with what has been learned separately about graphi-
cal models (Koller and Friedman 2009). It is less mod-
ular architecturally, providing just a single long-term
memory, which along with the working memory and
perceptual and motor components is grounded in
graphical models. It instead seeks to yield the distinct
functionalities provided by the other two’s modules
by specialization and aggregation above the architec-
ture (Ugure 3). Sigma’s long-term memory, for exam-
ple, subsumes a variety of both procedural and declar-
ative functionalities, while also extending to core
perceptual aspects and visuospatial imagery.
All three architectures structure behavior around a

cognitive cycle that is driven by procedural memory,
with complex behavior arising as sequences of such
cycles. In each cycle, procedural memory tests the
contents of working memory and selects an action
that modiUes working memory. These modiUcations
can lead to further actions retrieved from procedural
memory, or they can initiate operations in other
modules, such as motor action, memory retrieval, or
perceptual acquisition, whose results will in turn be
deposited back in working memory.

Standard Model

In this section, we present the standard model,
decomposed into structure and processing; memory
and content; learning; and perception and motor (or,
to use a robotics term, action). This model represents
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our understanding of the consensus that was intro-

duced skeletally at the AAAI symposium, as Veshed

out based on our understanding of the three archi-

tectures of concern in this article. While individuals,

including the three of us, might disagree with speciUc

aspects of what is presented here — consensus after

all does not require unanimity — it is our attempt at

providing a coherent summary along with a broadly

shared set of assumptions held in the Ueld. SpeciUc

areas of disagreement plus open issues are discussed

in the Unal section. 

Structure and Processing

The structure of a cognitive architecture deUnes how

information and processing are organized into com-

ponents, and how information Vows between com-

ponents. The standard model posits that the mind is

not an undifferentiated pool of information and pro-

cessing, but is built of independent modules that

have distinct functionalities. Figure 4 shows the core

components of the standard model, which include

perception and motor, working memory, declarative

long-term memory, and procedural long-term mem-

ory. At this granularity, not a great deal of progress

can be seen compared to what might have appeared

in a Standard Model several decades ago, aside from

the distinction here between procedural and declara-

tive long-term memory. However, as will be seen in

the rest of this section and summarized in table 1,

there is substantial further progress when one looks

deeper.

Each of the modules in Ugure 4 can be seen as uni-

tary or further decomposed into multiple modules or

submodules, such as multiple perceptual and motor

modalities, multiple working memory buffers,

semantic versus episodic declarative memory, and
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Figure 1. ACT-R Cognitive Architecture.
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various stages of procedural matching, selection and
execution. Outside of direct connections between the
perception and motor modules, working memory
acts as the intercomponent communication buffer for
components. It can be considered as unitary, or con-
sist of separate modality-speciUc memories (for exam-
ple, verbal, visual) that together constitute an aggre-
gate working memory. Long-term declarative
memory, perception, and motor modules are all
restricted to accessing and modifying their associated
working memory buffers, whereas procedural memo-
ry has access to all of working memory (but no direct
access to the contents of long-term declarative mem-
ory or itself). All long-term memories have one or
more associated learning mechanisms that automati-
cally store, modify, or tune information based on the
architecture’s processing.
The heart of the standard model is the cognitive

cycle. Procedural memory induces the processing
required to select a single deliberate act per cycle. Each
action can perform multiple modiUcations to working
memory. Changes to working memory can corre-
spond to a step in abstract reasoning or the internal
simulation of an external action, but they can also ini-
tiate the retrieval of knowledge from long-term declar-

ative memory, initiate motor actions in an external

environment, or provide top-down inVuence to per-

ception. Complex behavior, both external and inter-

nal, arises from sequences of such cycles. In mapping

to human behavior, cognitive cycles operate at rough-

ly 50 ms, corresponding to the deliberate-act level in

Newell’s hierarchy, although the activities that they

trigger can take signiUcantly longer to execute.

The restriction to selecting a single deliberate act

per cycle yields a serial bottleneck in performance,

although signiUcant parallelism can occur during

procedural memory’s internal processing. SigniUcant

parallelism can also occur across components, each of

which has its own time course and runs independ-

ently once initiated. The details of the internal pro-

cessing of these components are not speciUed as part

of the standard model, although they usually involve

signiUcant parallelism. The cognitive cycle that arises

from procedural memory’s interaction with working

memory provides the seriality necessary for coherent

thought in the face of the rampant parallelism with-

in and across components.

Although the expectation is that for a given system

there can be additional perceptual and motor mod-
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ules as part of an agent’s embodiment, and addition-
al memory modules, such as an episodic memory,
there is a strong commitment that no additional spe-
cialized architectural modules are necessary for per-
forming complex cognitive activities such as plan-
ning, language processing and Theory of Mind,
although architectural primitives speciUc to those
activities (for example, visuospatial imagery for plan-
ning, or the phonological loop for language process-
ing) can be included. All such activities arise from the
composition of primitive acts; that is, through
sequences of cognitive cycles. The existence of a cog-

nitive cycle, along with an appropriate procedural
memory to drive it, has become deUnitional for a cog-
nitive architecture. 

Memory and Content

The memory components store, maintain, and
retrieve content to support their speciUc functionali-
ties. The core of this content is represented as rela-
tions over symbols. However, supplementing these
relational structures is quantitative metadata that
annotates instances of symbols and relations for the
purpose of modulating decision making as well as the
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Figure 3. Sigma Cognitive Architecture. 
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storage, retrieval, and learning of symbols and rela-
tions. Frequency information is a pervasive form of
metadata, yielding a statistical aspect to the knowl-
edge representation (for example, Anderson and
Schooler [1991]). Other examples of metadata
include recency, co-occurrence, similarity, utility, and
more general notions of activation. The inclusion of
quantitative metadata, resulting in tightly integrated
hybrid symbolic-subsymbolic representations and
processing, is perhaps the most dramatic evolution
from the early days of (purely) symbolic cognitive
architectures (Newell, Rosenbloom, and Laird 1989).
There is a strict distinction between domain data —
symbols and relations — and such metadata. The
metadata only exists in support of the symbolic rep-
resentations, and relations cannot be deUned over
quantitative metadata. The set of available metadata
for symbols and relations and the associated mecha-
nisms are Uxed within the architecture. In a reVective
architecture, there may be symbolic relations at a
metalevel that can be used to reason about the
domain relations, but that is quite different from the
architecturally maintained metadata described here,
and is not part of the current standard model. A brief
summary of each of the three memory components
follows.
Working memory provides a temporary global space

within which symbol structures can be dynamically
composed from the outputs of perception and long-
term memories. It includes buffers for initiating
retrievals from declarative memory and motor
actions, as well as buffers for maintaining the results
of perception and declarative memory retrieval. It
also includes temporary information necessary for
behavior production and problem solving, such as
information about goals, intermediate results of a
problem, and models of a task. All of working mem-
ory is available for inspection and modiUcation by
procedural memory.
Procedural memory contains knowledge about

actions, whether internal or external. This includes
both how to select actions and how to cue (for exter-
nal actions) or execute (for internal actions) them,
yielding what can be characterized as skills and pro-
cedures. Arbitrary programs can be thought of gener-
ically as a form of procedural memory, but they pro-
vide a rigid control structure for determining what to
do next that is difUcult to interrupt, acquire, and
modify. In the standard model, procedural memory
is instead based on pattern-directed invocation of
actions, typically cast in the form of rules with con-
ditions and actions. Rule conditions specify symbol-
ic patterns over the contents of working memory and
rule actions modify working memory, including the
buffers used for cuing declarative memory and motor
actions. There is variation in how the knowledge
from multiple matching rules is integrated together,
but agreement that a single deliberate act is the result,
with metadata inVuencing the selection.

Declarative memory is a long-term store for facts and
concepts. It is structured as a persistent graph of sym-
bolic relations, with metadata reVecting attributes
such as recency and frequency of (co-)occurrence that
are used in learning and retrieval. Retrieval is initiat-
ed by the creation of a cue in the designated buffer in
working memory, with the result being deposited in
that buffer. In addition to facts, declarative memory
can also be a repository of the system’s direct experi-
ences, in the form of episodic knowledge. There is not
yet a consensus concerning whether there is a single
uniform declarative memory or whether there are
two memories, one semantic and the other episodic.
The distinction between those terms roughly maps to
semantically abstract facts versus contextualized
experiential knowledge, respectively, but its precise
meaning is the subject of current debate.

Learning

Learning involves the automatic creation of new
symbol structures, plus the tuning of metadata, in
long-term — procedural and declarative — memories.
It also involves adaptation of nonsymbolic content in
the perception and motor systems. The standard
model assumes that all types of long-term knowledge
are learnable, including both symbol structures and
associated metadata. All learning is incremental, and
takes place online over the experiences that arise dur-
ing system behavior. What is learned is typically
based on some form of a backward Vow of informa-
tion through internal representations of these experi-
ences. Learning over longer time scales is assumed to
arise from the accumulation of learning over short-
term experiences. These longer time scales can
include explicit deliberation over past experiences.
Learning mechanisms exist for long-term memory,
and although they are not yet fully implemented in
current architectures, they are also assumed to exist
for the perception and motor modules.
There are at least two independent learning mech-

anisms for procedural memory: one that creates new
rules from the composition of rule Urings in some
form, and one that tunes the selection between com-
peting deliberative acts through reinforcement learn-
ing. Declarative memory also involves at least two
learning mechanisms: one to create new relations
and one to tune the associated metadata.

Perception and Motor

Perception converts external signals into symbols and
relations, with associated metadata, and places the
results in speciUc buffers within working memory.
There can be many different perception modules,
each with input from a different modality — vision,
audition — and each with its own perceptual buffer.
The standard model assumes an attentional bottle-
neck that constrains the amount of information that
becomes available in working memory, but does not
embody any commitments as to the internal repre-
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sentation (or processing) of information within per-
ceptual modules, although it is assumed to be pre-
dominantly nonsymbolic in nature, and to include
learning. Information Vow from working memory to
perception is possible, providing expectations or pos-
sible hypotheses that can be used to inVuence per-
ceptual classiUcation and learning.
Motor converts the symbol structures and their

metadata that have been stored in their buffers into
external action through control of whatever effectors
are a part of the body of the system. As with percep-
tion, there can be multiple motor modules (arms,
legs). Much is known about motor control from the
robotics and neuroscience literature, but there is at
present no consensus as to the form this should take
in the standard model, largely due to a relative lack of
focus on it in humanlike architectures.

Summary

Table 1 summarizes the key assumptions that under-
lie the standard model of humanlike minds proposed
in this article. It is derived from the 2013 symposium
session plus an extensive post hoc discussion among
the authors of this article centered around ACT-R,
Soar, and Sigma. In the table, the standard model has
been decomposed into (A) structure and processing,
(B) memory and content, (C) learning, and (D) per-
ception and motor systems.
Table 2 provides an analysis, tabulated by the

assumptions in table 1, of the extent ACT-R, Soar, and
Sigma agree in theory with the standard model and
implement the corresponding capabilities. Versions
of ACT-R and Soar from the early 1990s have been
included to show the evolution of those architectures
in relation to the standard model. The convergence is
striking. Although there was signiUcant disagreement
(or lack of theory, especially in the case of perception
and motor) in the early 1990s for both ACT-R and
Soar, their current versions are in total agreement in
terms of theory and only substantially differ in the
extent to which they implement perception and
motor systems. Sigma is also in agreement on most of
these assumptions as well. However, because it
deUnes some of the standard model’s capabilities not
through specialized architectural modules but
through combinations of more primitive architectur-
al mechanisms plus specialized forms of knowledge
and skills, three cells are colored blue to indicate a
partial disagreement in particular with the strong
architectural distinction between procedural and
declarative memories, and the complete architectural
nature of reinforcement learning.
This standard model reVects a very real consensus

over the assumptions it includes, but it remains
incomplete in a number of ways. It is silent, for exam-
ple, concerning metacognition, emotion, mental
imagery, direct communication and learning across
modules, the distinction between semantic and

episodic memory, and mechanisms necessary for
social cognition. However, even with these gaps, the
standard model captures much more than did pre-
cursors such as the model human processor, and
much more than could have been agreed upon even
ten years ago. It thus reVects a signiUcant point of
convergence, consensus, and progress. 
The hope is that the presented model will yield a

sound beginning upon which the Ueld can build by
folding into the mix additional lessons from a broad-
er set of architectures. Such an effort ideally should
focus on architectures that: (1) are under active (or
recent) development and use; (2) have strong archi-
tectural commitments that yield a coherence of
assumptions rather than being just a toolkit for con-
struction of intelligent systems; (3) are concerned
with humanlike intelligence; and (4) have been
applied across diverse domains of human endeavor.
Architectures worth considering for this include, but
are not limited to, CHREST (Gobet and Lane 2010),
Clarion (Sun 2016), Companions (Forbus and Hin-
richs 2006), EPIC (Kieras and Meyer 1997), ICARUS
(Langley and Choi 2006), Leabra (O’Reilly, Hazy, and
Herd 2016), LIDA (Franklin and Patterson 2006),
MicroPsi (Bach 2009), MIDCA (Cox et al. 2013), and
Spaun (Eliasmith 2013).
Newell’s (1973) warning about trying to approach

full intelligence through a pastiche of task-speciUc
models applies not only to cognitive science — and,
in particular, psychology and AI — but also to any
other discipline that ultimately seeks or depends on
such comprehensive models of intelligent behavior,
including notably neuroscience and robotics. A com-
prehensive standard model of the human mind could
provide a blueprint for the development of robotic
architectures that could act as true human compan-
ions and teammates as well as a high-level structure
for efforts to build a biologically detailed computa-
tional reconstruction of the workings of the brain,
such as the Blue Brain project. The standard model
could play an integrative role to guide research in
related disciplines — for example, ACT-R is already
being applied to modeling collections of brain
regions and being integrated with neural models, and
both ACT-R and Soar have been used in robotics (and
Soar and Sigma in the sister discipline of virtual
humans) — but the existence of a standard model can
enable more generalizable results and guidance. Con-
versely, those disciplines can provide additional
insights and constraints on the standard model, lead-
ing to further progress and convergence. In addition,
the standard model potentially provides a platform
for the integration of theoretical ideas without requir-
ing realization in complete cognitive architectures. 
It is hoped that this attempt at a standard model,

based as it is on extending the initial sketch from the
Symposium through a focus on three humanlike
architectures, will grow over time to cover more data,
applications, architectures, and researchers. This is
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partially a scientiUc process and partially a social
process. The scientiUc side is driven by what is
learned about humanlike minds from studying both
human minds and humanlike artiUcial minds. The
social side needs to be driven by spanning more and
more of the community concerned with humanlike
cognitive architectures, and possibly even beyond
this to other communities with related interests. This
could happen incrementally, by expanding to a single
new architecture and proponent at a time, or in

bursts, through symposia or workshops at which mul-

tiple such come together to see what new consensus

can be found. Communitywide surveys are also pos-

sible, but it is our sense that by sidestepping the hard

part of working out differences interactively, this

would likely not yield what is desired. Rather, it is our

hope that the shared beneUts of a standard model of

the mind will lead to a virtuous cycle of community

contributions and incremental reUnements.
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A. Structure and Processing
1. The purpose of architectural processing is to support bounded rationality, not optimality
2. Processing is based on a small number of task-independent modules
3. There is signifi cant parallelism in architectural processing

a. Processing is parallel across modules
i. ACT-R & Soar: asynchronous; Sigma: synchronous

b. Processing is parallel within modules
i. ACT-R: rule match, Sigma: graph solution, Soar: rule fi rings

4. Behavior is driven by sequential action selection via a cognitive cycle that runs at ~50 ms per cycle in 
human cognition

5. Complex behavior arises from a sequence of independent cognitive cycles that operate in their 
local context, without a separate architectural module for global optimization (or planning).

B. Memory and Content
1. Declarative and procedural long-term memories contain symbol structures and associated 

quantitative metadata
a.  ACT-R: chunks with activations and rules with utilities; Sigma: predicates and conditionals 

with functions; Soar: triples with activations and rules with utilities
2. Global communication is provided by a short-term working memory across all cognitive, 

perceptual,and motor modules
3. Global control is provided by procedural long-term memory

a. Composed of rule-like conditions and actions
b. Exerts control by altering contents of working memory

4. Factual knowledge is provided by declarative long-term memory
a. ACT-R: single declarative memory; Sigma: unifi es with procedural memory; Soar: semantic
and episodic memories

C. Learning
1. All forms of long-term memory content, whether symbol structures or quantitative metadata, are learnable
2. Learning occurs online and incrementally, as a side effect of performance and is often based on 

an inversion of the fl ow of information from performance
3. Procedural learning involves at least reinforcement learning and procedural composition

a. Reinforcement learning yields weights over action selection
b. Procedural composition yields behavioral automatization

i. ACT-R: rule composition; Sigma: under development; Soar: chunking
4. Declarative learning involves the acquisition of facts and tuning of their metadata
5. More complex forms of learning involve combinations of the fi xed set of simpler forms of learning

D. Perception and Motor
1. Perception yields symbol structures with associated metadata in specifi c working memory buffers

a. There can be many different such perception modules, each with input from a different
modality and its own buffer

b. Perceptual learning acquires new patterns and tunes existing ones
c.  An attentional bottleneck constrains the amount of information that becomes available in 

working memory
d. Perception can be infl uenced by top-down information provided from working memory

2. Motor control converts symbolic relational structures in its buffers into external actions
a. As with perception, there can be multiple such motor modules
b. Motor learning acquires new action patterns and tunes existing ones

Table 1. Standard Model Architectural Assumptions.
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