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Abstract 68 

The collection and dissemination of vertebrate ichnological data is struggling to keep up with 69 

techniques that are becoming common place in the wider palaeontological field. A standard protocol 70 

is required in order to ensure that data is recorded, presented, and archived in a manner that will be 71 

useful both to contemporary researchers, and to future generations. Primarily, our aim is to make 72 

the 3D capture of ichnological data standard practice, and to provide guidance on how such 3D data 73 

can be communicated effectively (both via the literature and other means), and archived openly and 74 

in perpetuity. We recommend capture of 3D data, and the presentation of said data in the form of 75 

photographs, false-colour images, and interpretive drawings. Raw data (3D models of traces) should 76 

always be provided in a form usable by other researchers, i.e. in an open format. If adopted by the 77 

field as a whole, the result will be a more robust and uniform literature, supplemented by 78 

unparalleled availability of datasets for future workers.  79 

 80 

Introduction 81 

The study of trace fossils is of major significance to the wider field of palaeontology. Tracks, traces 82 

and footprints can offer us insights that are unlikely, or even impossible, to preserve in the 83 

osteological fossil record. Information about trackmaker anatomy, behaviour, motions, and ecology 84 

is tied up in the three-dimensional morphology that we ultimately call a track (Padian and Olsen 85 

1984b; Minter et al. 2007; Falkingham 2014). Fully extracting that information requires knowledge of 86 

both track size and shape, and of the processes and mechanisms involved in the foot-sediment 87 

interaction. Great progress has been made in understanding the mechanics of track formation and 88 

taphonomy (Allen 1989; Manning 2004; Milàn 2006; Ellis and Gatesy 2013; Falkingham and Gatesy 89 

2014; Castanera et al. 2013; Padian and Olsen 1984a; Bates et al. 2013; Lockley et al. 1994; Thulborn 90 

and Wade 1989; Gatesy et al. 1999; Marty et al. 2009; Graversen et al. 2007; Milàn and Bromley 91 

2006, 2008; Milàn et al. 2006; Avanzini et al. 2012; Avanzini 1998) but communication of track form 92 

has long been hampered by traditional means of recording and disseminating information. 93 

For the vast majority of time since Edward Hitchcock formalised ichnology as a science (Hitchcock 94 

1836), communication has been almost exclusively limited to printed papers and books.  This 2D 95 

medium restricted the recording of tracks to sketches and lithographs, and later with the rise of the 96 

camera, photographs. Most ichnological literature, perhaps until only a few years ago, continued to 97 

rely solely on photos and drawings. Workers have thus spent the majority of their time reporting 98 

linear measurements in the horizontal plane; e.g. length, width, and interdigital angle (IDA, or digit 99 

divarication) (Leonardi 1987), occasionally supplementing such metrics with a single measure of 100 

depth. 101 

But all tracks consist of a three-dimensional topographic surface. Whether preserved as a ‘negative’ 102 

depression or as a ‘positive’ relief feature, this 3D characteristic is fundamental to the existence of a 103 

track. In more complex scenarios, where laminations in the sediment are preserved, this 3D 104 

morphology is volumetric, extending above and below the foot-sediment interface as overprints and 105 

undertracks, respectively (Marty et al. 2016; Avanzini 1998; Milàn and Bromley 2006; Thulborn 106 

1990; Manning 2004).  107 

The importance of that third dimension in the scientific study of tracks cannot be understated. In the 108 

simplest scenario, we might consider a track to be a perfect mould of the foot that made it. In such a 109 

scenario, the topography within the track is a direct record of the soft-tissue anatomy of the 110 

trackmaker, and can provide information regarding the size and distribution of under-foot pads, 111 



claws, or other features of the autopodium. However, this mould-based perspective is not always 112 

applicable, and such a mindset may ultimately be detrimental to our understanding of ichnological 113 

data (Gatesy and Falkingham 2017). 114 

Generally, the foot-sediment interaction is more complex than a simple vertical ‘stamp’, involving 115 

forces varying in magnitude and direction throughout the stance phase. This dynamic force will 116 

differentially deform the substrate, leaving deeper or shallower areas within a track (Thulborn 1990). 117 

Any horizontal (anterior/posterior or lateral/medial) motions of the foot may act upon the sediment 118 

in such a way as to produce uneven raised rims around the track itself, or extensive zones of 119 

disturbed sediment around and below the actual track, which, when encountered in different states 120 

of erosion, can make it very hard to identify the boundaries of the true track (Graversen, et al. 2007; 121 

Milàn and Loope 2007).  122 

Even if we were to have no interest in trackmaker kinematics, and were instead focused on 123 

trackmaker identity, diversity, or distribution, even basic measurements such as length and width 124 

are fundamentally altered depending on how they are measured and defined on that 3D surface 125 

(Falkingham 2016). Such measurements, of course, have a direct impact on interpretation, 126 

classification and ichnotaxonomy, particularly when used in geometric morphometrics or other 127 

numerical analyses. Some modern techniques attempt to avoid making specific measurements and 128 

apply a ‘whole track’ approach (Belvedere et al. 2018), though even here  extents of the track must 129 

be defined to avoid incorporating too much undisturbed tracking surface into the analysis. 130 

Unfortunately, given this importance, adequately conveying 3D form in a two-dimensional medium 131 

is (or at least, has been) a non-trivial task. However, in recent years we have seen a considerably rise 132 

in the availability, affordability, and ease of use of digitization techniques including laser scanning 133 

and photogrammetry. This has been coupled with advances in web-based technology facilitating the 134 

acquisition, processing, archiving, and sharing of large volumes of complex digital data.  As these 135 

technologies mature, it is important that we as a field set down guidelines to ensure standardization 136 

of techniques and data. 137 

In this paper, we propose a standard protocol for the collection and dissemination of 3D track data 138 

with the hope of achieving two specific aims: First, that such data is accurately recorded; we shall 139 

briefly discuss means of doing so later. Second, that the data is put into a communicable form that 140 

allows others to a) reproduce the work (a fundamental tenet of science), and b) build upon it (thus 141 

advancing scientific knowledge). While our focus is primarily on tracks and trackways, the principles 142 

we shall discuss will be equally applicable to most other forms of trace fossil. 143 

Current Practice 144 

Before discussing the methods that we recommend for capturing, recording, storing and 145 

disseminating 3D data, it is worth reviewing current and historical practice in the field. 146 

As previously noted, since the early 1800’s the standard in documenting tracks was to produce a 147 

drawing or photograph, usually in top-down view (that is, normal to the tracking surface). The 148 

unstated priority in doing so has been to record the outline, such that metrics like length, width, and 149 

interdigital angle can be measured, as well as pace angulation and stride length in the case of 150 

multiple tracks constituting a trackway. Hitchcock himself reported tracks in a variety of ways, 151 

including photographs, shaded sketches, and simple outlines, even within a single publication (e.g. 152 

Hitchcock 1858). Looking at Figure 1, readers will quickly come to the obvious conclusion that a 153 

simple outline alone lacks a significant amount of information. 154 



The largest problem with such outlines is not just the lack of data, but the reproducibility of what 155 

data are recorded. There are many examples of tracks where it can be hard to determine where the 156 

track ends and the surrounding undeformed tracking surface begins. While any given worker may be 157 

able to reproduce outlines consistently, between-worker variation is an unknown, which makes 158 

comparison of data between studies difficult and prone to error (though this between-worker error 159 

may be relatively low – Belvedere unpub. data) . This is particularly true for ichnotaxonomy, where 160 

new ichnotaxa are erected but often presented in the literature only as outlines. Ultimately, an 161 

outline should be considered an interpretation, not data. When working with osteological material, 162 

this issue is partially negated because all new taxa are [or should be] deposited with museums and 163 

other such institutions, and another worker can visit the specimen directly (funds and time 164 

permitting). With tracks, this is not always the case – new ichnotaxa can be erected on specimens 165 

that remain in the field and are ultimately subject to weathering, erosion, or poaching. While 166 

plaster, fibreglass, silicone or latex casts might be made in such scenarios, they may be more prone 167 

to breakage, distortion, degradation or even disposal over time. 168 

Acknowledging this subjectivity in track outlines is nothing new, and workers have always been 169 

attempting to mitigate or remove it where possible. Placing transparent plastic over a track and 170 

tracing outlines directly onto it offers some level of reproducibility, though even here there is an 171 

element of subjectivity between workers. Photographs also provide a level of objectivity, and many 172 

workers have adopted a process of publishing a photo beside their drawing, essentially presenting 173 

data and interpretation beside each other. Best practice in such cases involves the photograph being 174 

taken in low-angle light, usually from the upper left (the direction of which is noted on the photo or 175 

in the figure caption), which casts strong shadows and portrays topography more clearly, though this 176 

is not always possible – particularly with specimens in the field. Still, the fundamental fact remains 177 

that even in this case, 3D morphology is not being adequately recorded or communicated.  178 

The goal of data collection is to record the morphology in full; objectively, repeatably, and to as high 179 

a degree of accuracy and precision as is feasible. Until relatively recently, capturing 3D morphology 180 

in such a way was prohibitively expensive or difficult, requiring laser scanners (Bates et al. 2008a; 181 

Bates et al. 2008b; Bates et al. 2008c; Klein et al. 2016; Bennett et al. 2013; Falkingham et al. 2009; 182 

Marsicano et al. 2014; Adams et al. 2010; Razzolini et al. 2014; Castanera, et al. 2013; Belvedere and 183 

Mietto 2010; Petti et al. 2008) or expensive proprietary software (Matthews et al. 2016; Breithaupt 184 

et al. 2004).  However, recent advances in both consumer hardware (Falkingham 2013) and software 185 

(Falkingham 2012; Mallison and Wings 2014; Matthews, et al. 2016; Belvedere, et al. 2018) have 186 

made such methods available to all. 187 

Our aim here is to propose a standardised method of data collection within our field, such that full 188 

3D data is captured, communicated, and archived in an objective, repeatable, and precise manner. 189 

To this end, we have together developed guidelines to help researchers ensure they capture the 190 

maximum amount of data, and that it can be communicated and archived effectively. 191 

 192 

A standard protocol. 193 

Here we present a new standard protocol for data collection, data presentation, and data 194 

dissemination of tracks and traces. 195 

Standard methods I: Data collection 196 

Our stated aim is to record the 3D morphology of a trace. Ultimately it does not matter what 197 

method is used to capture the data, providing it does so reliably, to a necessary degree of accuracy, 198 



and captures the 3D form to the fullest extent possible. Until recently the prohibitive cost or 199 

complexity of 3D digitization techniques would make any request for researchers to incorporate 200 

such data collection as standard unreasonable. However, such techniques – particularly 201 

photogrammetry – are now so cheap and easy to use that we consider it realistic to suggest that all 202 

reports of traces include 3D data collection, especially when new ichnotaxa are being erected. A 203 

growing number of ichnologists are now collecting such data regularly, and we wish to codify the 204 

practice here. 205 

The capture of 3D morphology essentially comes down to photogrammetry and laser scanning. We 206 

will assume that if one has access to a laser scanner, they are familiar with its use and software. 207 

Photogrammetry is the more accessible method, available to anyone with access to a camera (even 208 

if only a camera-phone) and computer. The method has come a long way in terms of ease of use and 209 

required hardware over the last ten years (Breithaupt, et al. 2004; Matthews et al. 2006; Bates, et al. 210 

2008a; Petti, et al. 2008). There are several publications already available explaining best practice in 211 

producing 3D models from photographs, and the available software packages that can be used 212 

(Falkingham 2012; Mallison and Wings 2014; Matthews, et al. 2016). We will not detail such 213 

methods here, but instead refer readers to the above publications, and to the wider literature (both 214 

academic and web) to seek out the most up-to-date programs and techniques as they need them.  215 

We note here that where possible, digitization should be carried out prior to any physical replication 216 

(e.g. moulding or casting, see Maceo and Riskind 1991), as the physical replication process may alter 217 

the fossil either physically or chemically. Indeed, for these reasons (as well as reasons of archiving 218 

and sharing that we discuss below), digital replicas are favourable to physical ones. 219 

Several key works have detailed the measurements that should (or can) be taken from a track 220 

(Leonardi 1987; Thulborn 1990; Lockley 1991; Farlow et al. 2012; Haubold 1971), and researchers 221 

can adhere to these guidelines by taking measurements either directly from the track (or cast/peel), 222 

or from the digital model. Best practice dictates that researchers should detail either in figures or 223 

text how and where measurements were taken. Armed with a digital model of the specimen, a 224 

researcher can be confident that their measurements are verifiable, and that should another worker 225 

use different definitions (see Falkingham 2016), they can make their own measurements directly. 226 

Alternatively, 3D data can be incorporated into analyses that rely on automatic analysis and 227 

measurement of tracks, such as in the medio-type analysis recently proposed by Belvedere et al. 228 

(2018) 229 

Summary: 230 

• Collect 3D data of any traces that will be core to the conclusions of the study. 231 

• These data should be of a high resolution, such that other researchers can replicate and 232 

build upon the original findings. 233 

• Data is method agnostic – i.e. it does not matter if data is captured through 234 

photogrammetry, laser scanning, or other means, providing the resolution/accuracy is high 235 

enough that conclusions are replicable and other workers can find value in the data. File 236 

format issues will be discussed in ‘Data Archiving’ below. 237 

• As much data should be collected as possible, but at the very least: 238 

o Digital models of potential new ichnotaxa or other figured specimens 239 

o Representative tracks from within a long trackway or larger tracksite (we recognize 240 

that large-scale data collection is not always feasible, though should be attempted if 241 

possible) 242 



 243 

Standard methods 2: Data presentation 244 

Having collected three-dimensional data, said data must be communicated effectively. In line with 245 

the growing number of authors now collecting 3D data, many recent papers describing traces have 246 

presented 3D height maps of specimens recorded in 3D e.g. (Xing et al. 2016a; Xing et al. 2016b; Xing 247 

et al. 2014; McCrea et al. 2014; Castanera, et al. 2013; Fiorillo et al. 2014; Salisbury et al. 2016; 248 

Marty et al. 2017; Klein, et al. 2016; Razzolini, et al. 2014; Bennett et al. 2014; Razzolini et al. 2017; 249 

Citton et al. 2015; Díaz-Martínez et al. 2016), and we propose that such practice becomes standard 250 

for the field, whether digital models are produced via photogrammetry, laser scanning, or other 251 

means. 252 

We recommend that best practice is to present a ‘true colour’ image (e.g. a photo, orthophoto, or 253 

textured render) side-by-side with a ‘false colour’ image (e.g. a height/depth map, contour map, or 254 

simply a solid colour lit to accentuate topography ) of the 3D model in the same orientation, scale, 255 

and position (Figure 2A). These may be further added to with a third panel presenting the author’s 256 

interpretation in the form of a line drawing. In this way, the original, processed, and interpreted data 257 

are presented together for easy comparison by readers (e.g. Marty, et al. 2017; Razzolini, et al. 2017; 258 

Xing, et al. 2016b). The same process can be used for individual tracks, trackways, or entire 259 

tracksites. In cases where the morphology of the track includes significant overhanging or occluding 260 

features, it is advisable to present also an isometric view of the track, enabling readers to see the 261 

pertinent features. Workers may wish to provide such a view in any case, to convey 3D topography. 262 

We provide an example following this protocol in Figure 2 (A). More advanced visualizations such as 263 

cross-section profiles may be employed as necessary (Figure 2B-N). It would be difficult to 264 

standardize techniques for making line drawings as the reason for including such will vary from study 265 

to study. Authors may wish to include outlines in order to remove background noise they consider 266 

‘extramopholoical’, and as such clean line drawings that highlight the edges of the trace are 267 

recommended. 268 

 269 

In our example (Figure 2), we have presented a range of possible height-map colour scales, including 270 

greyscale. We leave specific colour choice at the discretion of individual authors, who may wish to 271 

use different colours for various reasons (e.g. the common red-green-blue colour scale is difficult to 272 

read by sufferers of colour-blindness, some journals charge for colour figures, etc).  273 

Linear or logarithmic scales? 274 

It may not always be ideal to apply the height map as a linear scale. In cases where tracks have large, 275 

broad features at depth, but detail at the top (e.g. shallow displacement rims around a deep track), 276 

or vice versa (subtle changes in depth at the base of a track), it may be more appropriate to apply a 277 

logarithmic (or exponential) scale to highlight the features of interest to readers. Doing so requires 278 

explicitly stating that this is the case in the figure caption, and ensuring that a labelled colour scale is 279 

present as part of the figure. 280 

Video and embedded 3D 281 

Some publishing venues are moving towards using ‘rich media’ in online versions of papers; videos, 282 

3D PDF, and embedded 3D objects to name a few. While this practice should of course be 283 

encouraged, we caution that such methods should be used as a supplement to presenting 3D data in 284 

the manuscript as figures, and not a replacement. We also argue that such means of presentation 285 

are not a substitute for providing the actual data as supplementary files, as we discuss below. 286 



Summary 287 

• Tracks and traces should be presented as photo (or ‘true colour’ image) and heightmap (or 288 

other ‘false colour’ image), side-by-side, in the same orientation. 289 

• These may be supplemented with interpretive line drawings. 290 

• Oblique views should be used to reveal otherwise occluded features, or to better convey 3D 291 

morphology. 292 

• In addition to scale bars and labels, a colour scale should ideally be included in the figure, or 293 

at least described in the figure caption. 294 

• We do not recommend any specific colour scale. 295 

• Videos, 3D PDFs, and embedded objects should be considered supplementary to the above, 296 

but not as a replacement for providing usable 3D data. 297 

 298 

Standard methods 3: Data archiving 299 

Possibly the most crucial part of our protocol is in archiving the collected data in a way that enables 300 

other researchers to work with it. It is a core part of the scientific method that experiments should 301 

be repeatable and testable. It is imperative, therefore, that 3D data collected in the study of tracks 302 

and traces adheres to the guiding principles currently being more broadly applied in palaeontology 303 

(Davies et al. 2017). Here, we outline archival principles that we hope will become standard practice 304 

in ichnology. 305 

Any publication using 3D data should ideally make that data available at the time of publication. 306 

Indeed, this is now widely a fundamental criterion for publication in many peer-reviewed scientific 307 

journals anyway (Davies et al., 2017), and can similarly be a requirement for many funding agencies 308 

or government bodies. If data upon which descriptions or measurements are based are not made 309 

available, conclusions cannot be verified by other researchers. One may argue that repeatability 310 

exists on some level in so much as another worker may visit the field site or museum where the 311 

original fossil exists. But this line of thinking is flawed in two ways: First is that in the case of tracks 312 

and traces left in the field, the fossils are subject to change through weathering, and erosion, etc., 313 

and therefore no longer exist in the form in which they were described. It may also be the case that 314 

fossil traces are found on private land, or are potentially vulnerable to being stolen, vandalized, or 315 

destroyed; in these  cases and others, publishing specific locality information may not be feasible. 316 

The second is that in an age where we can transfer gigabytes (even terabytes) of data with relative 317 

ease, and view 3D data at our desks, we should do so in favour of requiring other researchers to 318 

travel the globe. Of course, visiting specimens first hand is always preferable, but in many cases time 319 

or financial constraints make this difficult or impossible. 320 

It is important that when the digital data is made available, it is archived in such a way as to ensure 321 

that it will continue to be available, and discoverable, for the foreseeable future. The most obvious 322 

way of doing so is to include the data as supplementary files to the manuscript itself. In this case, the 323 

data will be available and discoverable for as long as the paper itself is. However, we recognise that 324 

many journals have limits (or costs) related to the possible size of supplemental data, which may 325 

make hosting gigabytes of data with the publisher difficult. Books pose a different problem; 326 

including disks increases publishing costs and limits data availability, not to mention that disks are 327 

frequently lost and that the age of compatibility with CDs, DVDs, and other physical media is likely 328 

limited. We therefore suggest that when archiving is not possible with the publisher, that an open 329 

repository such as Figshare (www.figshare.com), Zenodo (https://zenodo.org/), or similar is used, 330 

and the data linked directly from the published work (journal article, book, or online resource). Both 331 

http://www.figshare.com/
https://zenodo.org/


of the above repositories are backed by major institutions and journals, and ensure the data is 332 

available for the lifetime of the repository (currently at 10 and 20 years respectively. These services 333 

provide free hosting for large files, and can allocate DOIs which, if data is uploaded prior to 334 

publication, can be linked to from the paper, book, or other work (note that these services can allow 335 

workers to upload data and reserve a DOI, but not make the data publicly available until the 336 

associated work is published). Several authors have already utilized such a system for archiving data 337 

with these repositories and linking to it in the paper (Marty, et al. 2017; Lomax et al. 2017; 338 

Lallensack et al. 2016). Using these services, rather than institutional or personal servers, ensures 339 

long-term access and discoverability, which in turn will help to drive citations of associated works. 340 

Having made the case that data should be archived, let us address exactly what that data should be, 341 

both in terms of content, and format. 342 

Content and raw data 343 

The most important data to archive is the data upon which any descriptions or conclusions are 344 

based. Generally, this will consist of cleaned and aligned 3D models that enable other researchers to 345 

replicate the original findings. 346 

However, we acknowledge that processed data may introduce inaccuracies or discrepancies. For 347 

instance, when meshing point cloud data, the process will generally involve a level of interpolation 348 

and retopologizing. Also, the scaling process inherent in most photogrammetry workflows may be a 349 

source of error if not carried out correctly.  350 

Because of this, it is essential that where possible, raw data (captured laser scans, or photographs 351 

used in photogrammetry) and any metadata (e.g. auto-generated 3D reconstruction reports) are 352 

included with data.  Especially for photogrammetry, this has the added benefit of making raw data 353 

available in the future when software and workflows are inevitably improved, potentially making 354 

more accurate or higher resolution models available down the line. 355 

Format 356 

With regards to the format, important factors are that the data are open, and not reliant on 357 

proprietary software (which may become deprecated, or simply remain unaffordable to many). For 358 

processed 3D data, the most common open formats are *.PLY and *.OBJ. Both formats are open, 359 

and can generally be accessed using any 3D software. Colour information can be stored either 360 

directly, associated with each vertex (as in PLY or XYZ), or as a separate texture file.  Given that 361 

digital storage capacity is continuously increasing (Kryder’s law), we recommend against 362 

downsampling data unless absolutely necessary.  Whilst large files of several gigabytes may be 363 

unwieldy now, in only a few years we will see them as inconsequential; consider how large a file of 364 

several 10s of megabytes seemed in the mid 1990’s. Formats that do not allow easy manipulation or 365 

extraction of the data, such as 3D PDFs should not be used as a means of making data available. 366 

Photographs are best stored in the original format in which they were taken; usually JPG. RAW or 367 

TIFF files may also be stored, as unlike JPGs they are lossless formats. However, because of this RAW 368 

and TIFF files are considerably larger, and consequently many people do not shoot or use 369 

photographs in these formats. When archiving, we recommend storing the original JPG (or other) 370 

files within a zip folder. The original files will contain EXIF data regarding the camera make, lens, and 371 

settings that may be useful in future analyses, particularly in photogrammetric techniques where 372 

such EXIF data can make the difference between a great reconstruction and a failed one. 373 

When raw data is collected in a proprietary format, for instance when using LiDAR or other laser 374 

scanning techniques, it may be prudent to convert that data into a more open format. For instance, 375 



exporting raw laser scan data as ASCII text files containing XYZ vertices, luminance, and colour values 376 

makes the data available to all workers, and future proofs against the proprietary format becoming 377 

obsolete. This recommendation comes from personal experience, as some of us (PLF, KTB, MB) have 378 

collected laser scan data a decade ago, but no longer possess the software required to open it. 379 

Summary 380 

• 3D data should be made freely available at the time of publication. 381 

• The data should be archived with a digital object identifier (DOI), and permanently 382 

associated with the publication as supplemental data, hosted either by the publisher, or by 383 

an external, public, repository.  384 

• Data should be in a non-proprietary format to facilitate accessibility to those without 385 

specialist (expensive) software licenses. 386 

• Raw data should be included if possible;  387 

o In the case of photogrammetry, all photos used to reconstruct the model should be 388 

included.  389 

o Photogrammetric models should be cleaned and aligned, and the process 390 

documented. 391 

o For laser scans, cleaned and aligned point clouds are preferable (noise can be much 392 

harder to differentiate post-hoc/if not familiar with it). Again, the cleaning and 393 

aligning process should be stated. 394 

o Downsampling should be avoided if possible (a large file now will seem tiny in 10 395 

years) 396 

o Other methods (e.g. CT) should follow the policies outlined in Davies et al. (2016) 397 

 398 

 399 

Discussion and concluding remarks 400 

 401 

Going forward, we hope that the field as a whole will be receptive to the primary aspects of our 402 

proposal; that tracks should be digitally recorded; that the 3D data should be used in communication 403 

and analyses; and that said data be made available with the associated work at the time of 404 

publication. While 3D data collection and availability are important to all aspects of ichnology, we 405 

note that it is particularly essential when new ichnotaxa are being erected (Belvedere, et al. 2018). 406 

Undoubtedly there shall be nuanced or outlier cases where some aspect of the above is not feasible, 407 

and when such cases occur, we implore authors to explicitly state why 3D data was not collected, 408 

presented, or made available.  The result will, hopefully, be that our science becomes 409 

simultaneously more robust, and more accessible over time. 410 

We consider a bare minimum of our protocol to be the collection of 3D data of individual tracks of 411 

interest, especially in the case of type specimens. Larger scale 3D data, such as that pertaining to 412 

whole tracksites, is currently more difficult to obtain, process, and archive, and it is understandable 413 

that including such data is not always feasible. Still, we hope that colleagues will make every effort 414 

to include such data when they can, particularly when conclusions and interpretations are drawn 415 

from larger scale features such as trackway parameters. 416 

What we have not covered is how all of this data we encourage generating and archiving will be 417 

discoverable. A number of us have in the past considered an online repository specifically for 418 

digitized tracks (Belvedere et al. unpub. data), but so far this has failed to gain traction for a number 419 



of logistical reasons. If we look at what is happening in the wider field, we can see several 420 

repositories for morphological data (e.g. morphosource, Morphobank, Aves3D, among others). 421 

Whilst these resources are of immense use to science, there is an element of fragmentation in 422 

where and how 3D data are stored, which can make meta-analyses difficult. There is also confusion 423 

arising over the different policies regarding access to data on these repositories (which is one of the 424 

reasons we strongly recommend making data fully available at time of publication). It may be best in 425 

future to rely on data repositories such as those listed above (e.g. Figshare, Zenodo), and instead 426 

focus on creating front-facing searchable databases that link directly to these repositories. This 427 

would ideally create multiple means of finding the data while maintaining universal access and 428 

longevity of the data itself. 429 

We close with the message that “it’s never too late”.  Because photogrammetry requires only digital 430 

photographs as input in order to generate a 3D model, it is possible to generate models using 431 

photographs that were taken long before the method was feasible.  In an extreme sense, there is no 432 

real limit on how old photos may be and still generate useful 3D data (Falkingham et al. 2014; 433 

Lallensack et al. 2015), though more practically it may be that workers collected numerous 434 

photographs of a specimen in the field at the time of discovery/description. Those photographs may 435 

now be used to generate new 3D data via post-hoc photogrammetry, preserving and making 436 

accessible specimens first described some years ago. In doing so, authors will rejuvenate past 437 

publications, benefitting from additional citations while the wider community benefits from 438 

increased access to data. By way of example, we present in Table 1 a list of publications for which 3D 439 

data has since been made available, and the DOI/links to said data. We caution, however, that going 440 

forward this should not be interpreted as a precedent for refusing to make data available at the time 441 

of publication. Individuals, palaeoichnology, and the wider palaeontological community as a whole, 442 

can only benefit from an attitude that encourages data generation and sharing in this way, and we 443 

look forward to continuing to work in such a collegial field. 444 

 445 

 446 
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Table 1: Here we provide a list of ichnological papers for which 3D data were made available after 666 

publication. In this way we hope to formally associate the data and publications, and aid in future 667 

discoverability. 668 

Reference Description of Data Data DOI 

(Abrahams et al. 2017) Photos and ply of tracks. 10.6084/m9.figshare.5683732 

(Belvedere and Mietto 2010) Ply derived from laserscans of 
the cast of the tracks 

10.6084/m9.figshare.5531170 

(Falkingham et al. 2010) Photos and model of bird 
track 

10.6084/m9.figshare.5590396 

(Falkingham, et al. 2014) Photos and model of Bird’s 
‘Chase Sequence’ 1946 

10.6084/m9.figshare.1297750 
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Figure Captions: 672 

 673 

Figure 1 - Three dinosaur tracks as presented by Edward Hitchcock in 1858.  From left to right, 674 

outline drawing of Polemarcus gigas (Hitchcock 1858, plate 18,  fig.1), shaded sketch of Otozoum 675 

Moodii (Hitchcock 1858, plate 22), and ‘ambrotype sketch’ of a slab with Brontozoum exsertum 676 

(Hitchock 1858, plate 40, fig 3) 677 

 678 

Figure 2 - A range of ways to present 3D data.  We consider a combination of true-colour and ‘false 679 

colour’ image (A) to be a minimum for communicating 3D morphology in published work.  True-680 

colour images may come from photos taken in the field, or renders of textured models in flat light 681 

(B), a single directed light (C, light from upper right), or multiple lights of different hue (D). 682 

Morphology may also be communicated through images of untextured models (E). False-colour 683 

images are used to convey 3D morphology, and might include normal maps (F), or height maps in a 684 

range of colours, e.g Black-White (G), blue-green-red (H) or blue-white-red (I). Height contours may 685 

also be added (J). Additionally, authors may wish to include isometric views (e.g. K, textured mesh, L, 686 

false-colour mesh, M, height mapped mesh). Finally, interpretive images including outline or shaded 687 

drawings (N) may be included as well. Scale bar in A = 20 cm.  Height maps range over 15 cm. 688 

Contours in J are at 1 cm increments. Scale bars are not present on smaller images B-N for clarity, 689 

but should normally be included. Photos and model of this track (a theropod track from Glen Rose, 690 

Texas) are available from figshare: 10.6084/m9.figshare.5674696 691 



Figure 1 - Three dinosaur tracks as presented by Edward Hitchcock in 1858.  From left 
to right, outline drawing of Polemarcus gigas (Hitchcock 1858, plate 18,  fig.1), shaded 
sketch of Otozoum Moodii (Hitchcock 1858, plate 22), and ‘ambrotype sketch’ of a slab 
with Brontozoum exsertum (Hitchock 1858, plate 40, fig 3)



Figure 2 - A range of ways to present 3D data.  We consider a combination of true-colour and ‘false 
colour’ image (A) to be a minimum for communicating 3D morphology in published work.  True-colour 
images may come from photos taken in the field, or renders of textured models in flat light (B), a 
single directed light (C, light from upper right), or multiple lights of different hue (D). Morphology may 
also be communicated through images of untextured models (E). False-colour images are used to 
convey 3D morphology, and might include normal maps (F), or height maps in a range of colours, e.g 
Black-White (G), blue-green-red (H) or blue-white-red (I). Height contours may also be added (J). 
Additionally, authors may wish to include isometric views (e.g. K, textured mesh, L, false-colour 
mesh, M, height mapped mesh). Finally, interpretive images including outline or shaded drawings (N) 
may be included as well. Scale bar in A = 20 cm.  Height maps range over 15 cm. Contours in J are 
at 1 cm increments. Scale bars are not present on smaller images B-N for clarity, but should normally 
be included. Photos and model of this track (a theropod track from Glen Rose, Texas) are available 
from figshare: 10.6084/m9.figshare.5674696
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