Copyright
by
Christopher Ryan McBryde
2012

The Thesis committee for Christopher Ryan McBryde
Certifies that this is the approved version of the following thesis:

A Star Tracker Design for CubeSats

APPROVED BY

SUPERVISING COMMITTEE:

E. Glenn Lightsey, Supervisor

Chris D’Souza

A Star Tracker Design for CubeSats

by

Christopher Ryan McBryde, B.S.

THESIS
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2012

To my parents, Ryan and Laura, for their constant encouragment and support

Acknowledgments

I would like to begin by thanking my advisor, Dr. E. Glenn Lightsey. Thank you
for your steady guidance and the freedom to explore my interests. This thesis could not
have been completed without your support and I look forward to continuing our partnership

through my doctoral research.

I would also like to thank my other reader, Dr. Christopher D’Souza. Your support

of my research and advice regarding this paper were invaluable.

Thank you to my colleagues in the Satellite Design Laboratory, including Travis
Imken, Andrew Fear, Andrew Leba, Alexandra Long, and many others. The SDL is a
wonderful and enriching environment, and it owes that to intelligent motivated people like
you. Special thanks to Henri Kjellberg, for his mentorship regarding my masters journey,
and Katharine Brumbaugh for taking that journey with me as well as exemplary leadership

of the SDL.

I also thank Noah Smith for your insight on the subject of star tracking and never-

ending enthusiasm for discussion.

Thank you to Dr. John Christian for the brilliant research he completed for his

dissertation, much of which served as foundation for my own research.

To my girlfriend, Alex Rodriguez, thank you for your patience when this thesis
drove me up a wall and delicious meals after a long day in the lab. It meant more than you

know.

Finally, thank you to my family. To my parents, Laura and Ryan McBryde, I cannot
begin to tell you what your support throughout my endeavours has meant to me. I could
not ask for more loving and supportive parents. Thank you also to my sister Katy and my
brother Patrick. You have always been there for me and I look forward to seeing what you

can both accomplish in the future.

Thank you to all the people mentioned above and all others whom I neglected to
mention. I am lucky to be surrounded by intellegent, kind, and caring people in my life,

without whom none of this would be possible.

CHRISTOPHER RYAN MCBRYDE
The University of Texas at Austin

February 2012

vi

A Star Tracker Design for CubeSats

Christopher Ryan McBryde, M.S.E.
The University of Texas at Austin, 2012

Supervisor: E. Glenn Lightsey

This research outlines a low-cost, low-power, arc-minute accurate star tracker that
is designed for use on a CubeSat. The device is being developed at the University of Texas
at Austin for use on two different 3-unit CubeSat missions. The hardware consists of com-
mercial off-the-shelf parts designed for use in industrial machine vision systems and employs
a 1024x768 grey-scale charge coupled device (CCD) sensor. The software includes the three
standard steps in star tracking: centroiding, star identification, and attitude determination.
Centroiding algorithms were developed in-house. The star identification code was adapted
from the voting method developed by Kolomenkin, et al. Attitude determination was per-
formed using Markley’s singular value decomposition method. The star tracker was then
tested with internal simulated star-fields. The resulting accuracy was less than an arcminute.
It was concluded that this system is a viable option for CubeSats looking to improve their
attitude determination. On-orbit demonstration of the system is planned when the star
tracker flies on the planned CubeSat missions in 2013 or later. Further testing with external

simulated star fields and night sky tests are also planned.

vii

Table of Contents

Acknowledgments
Abstract

List of Tables
List of Figures

Chapter 1. Introduction
1.1 The CubeSat platform
1.2 Relevance to CubeSats

1.3 Contributions and organization of the thesis

Chapter 2. Algorithms
2.1 Centroiding o L e
2.2 Survey of star identification algorithms o000
2.2.1 Pyramid star identification technique
2.2.2 Votingmethod o
2.2.3 Planar triangle star identification technique
2.24 Grid algorithm
2.2.5 Comparison of methods
2.3 Voting method
2.3.1 Catalog generation o
2.3.2 Candidate matching o
2.3.3 Verification and final result o000
2.4 Attitude determination Lo L

Chapter 3. Software Architecture
3.1 Software flow
3.2 Component functions Lo

3.2.1 Function catinit e e e e

viii

vil

x1

10
11
12
13
15
16
19
19
20
21
22

3.2.2
3.2.3
3.24
3.2.5
3.2.6

Chapter 4.
4.1 Setup
4.1.1
4.1.2

Function loadimg
Function centroid
Function wvec Lo
Function starid

Function adet

Software Results

Random attitude

Image generation o oL

4.2 Analysis e e

4.3 SUmMIMAryo e e

Chapter 5.

Hardware Architecture

5.1 Camerao e e e e e

5.1.1
5.1.2
5.1.3
514
5.2 Lens
5.2.1
5.2.2
5.2.3

Aptina MT9P031 Demo Kit,
Matrix Vision mvBlueFOX-M105G
Matrix Vision mvBlueFOX-M121G
Selection L
Schneider Optics Xenoplan Compact Lens
Edmund Optics NT59-870 o oo

Selection

5.3 Hardware testing

5.3.1
5.3.2
5.3.3

Chapter 6.

Setup . . . o o e e
Demonstration

Further analysis e

Conclusions

6.1 Planned Demonstration of Student Satellites
6.2 Future Work

Bibliography

Vita

ix

33
33
33
34
36
38

41
41
41
42
42
43
45
45
45
46
46
47
48
30

52
52
33

55

58

4.1
4.2
4.3

5.1
5.2
5.3
5.4
9.5
5.6

List of Tables

Virtual camera parameters. 34
Virtual CCD parameters. 0t tie 34
Average successful case performance. oL 37
Aptina MT9P031 Demo Kit specifications. 42
mvBlueFOX-105G specifications. [1] 43
mvBlueFOX-121G specifications. [1] 43
Accuracy vs focal length and FOV for a 4.65 ym sensor. 44
Xenoplan Compact Lens specifications. [2] 45
Edmund Optics Compact Lens specifications. [3] 46

2.1
2.2
2.3

2.4
2.5
2.6

2.7

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

List of Figures

Star image without defocusing (negative).
Star image with focusing (negative).

Border pixels for ago; = 7. Shading indicates the negative of a star in the
image.

Unit vector to star. e e
Star pyramid with candidate stars i, j, k£ and reference star . [4]

Description of grid algorithm steps. A: Brightest star identified. B: Image
translated with respect to brightest star. C: Grid aligned with nearest neigh-
bor. D: Bit pattern [5].

Voting method block diagram o0 0L

Star tracking flow diagram. L oo
Function catinit flow diagram. oo Lo 0oL
Function loadimg flow diagram. o oL
Function centroid flow diagram. oL

Function starid flow diagram. oL oL

Number of cases for each number of stars observed.
Error in each axis vs number of stars observed.

RSS error vs number of stars observed.

Aptina MT9P031 Demo Kit [6].,
Matrix Vision mvBlueFOX-105G camera.
Matrix Vision mvBlueFOX-121G camera.
Schneider Optics Xenoplan Compact Lens.
Edmund Optics NT59-870. o e
Simulated star field setup. o
Simulated star field setup (camera view). L.
Star field image with centroid locations.

Predicted and measured unit vectors.

xi

6

9

Chapter 1

Introduction

Military, commercial, and educational organizations see the usefulness and econ-
omy of employing CubeSat-sized satellites to accomplish various missions. Space weather,
communication, and surveillance are all tasks that, in the past, could only be given to much
larger and more expensive spacecraft. Unfortunately, one major challenge that stands in
the way of these organizations fully embracing CubeSats as a platform is precision attitude
determination and control. As of yet, no CubeSat has demonstrated the necessary attitude
knowledge and pointing accuracy to take high-resolution images or employ high-bandwidth
data transfer via directional antennae, for example. Attitude determination accuracy is nec-
essarily limited by sensor measurement accuracy and currently only lower accuracy attitude
measurement instruments such as sun sensors and magnetometers have flown on CubeSats
with success. Star trackers will provide the level of attitude determination needed to sup-
port more challenging pointing requirements. This technology has not been fully explored

in the realm of CubeSats.

1.1 The CubeSat platform

CubeSat is a standard developed by California Polytechnic State University (Cal
Poly) that facilitated and continues to foster low-cost satellite missions [7]. CubeSats are
sized using “units.” Typically, they are 1-U or 3-U, though 6-U satellites are becoming

more prevalent. A 1-U CubeSat has dimensions of approximately 10 cm on each side with

a maximum mass of 1.333 kg, whereas 3-U satellites are 10 cm by 10 cm by 34 cm and
can weigh up to 4 kg. The advantage to the CubeSat standard is that the satellite can be
enclosed within a standardized launcher, such as the Poly Picosatellite Orbital Deployer, or
P-POD, developed by Cal Poly [7]. This encapsulation reduces the risk of flying a CubeSat
as a secondary or tertiary payload. The effect of the CubeSat standard is evident through
analysis of the satellite launches over the past 20 years. According to Swartwout [8], the
average number of small satellites weighing less than 100 kg launched per year was 14.4 from
1990-2001. Of those, about 28% were in the less than 10 kilogram range. But in the years
since 2000, there were an average of 20 small satellite launches per year. The percentage of
less than 10 kilogram satellites has risen to 57%, and CubeSats, which did not exist in the

1990s, now comprise about half of the small satellite launches in the past three years.

1.2 Relevance to CubeSats

What the results from Swarthout [8] means is that the opportunity exists for many
future CubeSat launches. Because of the miniaturization of electronics and battery technol-
ogy, largely as a result of the smartphone market, CubeSats now have the sensing capabilities
and processing power that in the past could only be found on much larger satellites. Where
CubeSats lag behind, though, is in accurate attitude determination. As of yet, no CubeSat

has flown with a functioning star tracker.

On June 30, 2003, CanX-1, a 1-U CubeSat developed by the University of Toronto,
was launched from Plesetsk, Russia [9]. CanX-1 contained a star-tracker and horizon sensor
for attitude determination. However, radio contact with the satellite was never established
[10]. The successor to that satellite, CanX-2, was launched from Sriharikota, India on April

28, 2008. That satellite is equipped with CMOS imagers for verification of the ADC system

in post-processing, but they were never used as a star tracker on-orbit [11].

As far as satellites currently in development, the BRITE Nano-Satellite Constel-
lation mission plans to use a miniature star tracker developed by Sinclair Interplanetary
on its bus. The launch date for this mission is undetermined [12]. Also in development
is ExoPlanetSat from the Massachusetts Institute of Technology [13]. It will use the same
charged-coupled device (CCD) for star tracking as it will for detecting exoplanets, and a

launch date has not been determined.

Currently, the CubeSat attitude determination platform is limited to sun sensors,
magnetometers, and inertial measurements. A suite of sun sensors can provide fairly accu-
rate measurements, but can only operate in sunlight. For a low Earth orbit (LEQO) satellite
as much as 30% of the orbit may occur in darkness. Magnetometers are small and can
provide precise measurements with correct calibration. Their drawback lies with limited
magnetic field knowledge and electromagnetic interference due to the cramped confines of a
CubeSat. Finally, microelectromechanical systems (MEMS) gyroscopes are small enough to
fit on a smartphone and certainly on a CubeSat. However, they suffer from rapid drift and
certainly could not hold an accurate attitude estimate during the 15 minute eclipse period
of a LEO satellite. For CubeSats to be seen as a viable scientific and technological platform,
they must be able to provide accurate attitude determination, and the most direct way to

accomplish that goal is via star trackers.

1.3 Contributions and organization of the thesis

The research in this document aims to fill a gap in the instrumentation which is
currently available for use on the CubeSat platform by providing the design and implemen-

tation of a star tracker to be used on CubeSats. This star tracker design meets the stringent

size and power requirements for CubeSats while still providing a significant attitude deter-
mination improvement. Chapter 2 provides an overview of the various processes required
for star tracking and the current techniques for accomplishing them. The algorithms that
were chosen for this star tracker are explained in greater detail along with their mathemat-
ical bases. Chapter 3 explains the software implementation of the techniques. The various
functions and their flows are explained as well as the overall organization of the star tracking
program. Results from analysis of the star tracker software are presented in Chapter 4 using
tests with computer generated images. Chapter 5 details the hardware selected for the star
tracker as well as an initial demonstration of the hardware capabilities with the star tracker
software. Finally, Chapter 6 provides a conclusion and an outline for future work on the

design.

Chapter 2

Algorithms

The process of star tracking consists of three main steps: centroiding, star iden-
tification, and attitude determination. Centroiding takes the image from the camera and
determines the coordinates of light sources in the image plane, which can then be converted
to unit vectors in the tracker coordinate frame. Star identification is the crux of the star
tracker. The unit vectors in the tracker frame are analyzed and compared to a star catalog
to determine which stars are in the image frame and consequently provide unit vectors in
the inertial reference frame. Finally, the list of unit vectors in both the tracker and inertial
frame are run through a vector-based algorithm to determine the attitude of the star tracker
in the inertial frame. The attitude can be output in various formats, among most common

are quaternions, Euler angles and direction cosine matrices (DCMs).

2.1 Centroiding

The first step for any star tracker is to determine location of the stars in the image
plane. If focused star images are recorded, the light from each star would fall on only one or
two of pixels and would likely saturate these pixels, resulting in pixel-level accuracy. Such

an image is shown in Fig. 2.1.

Most star trackers therefore analyze an intentionally defocused, i.e, blurry, image,
such as in Fig. 2.2, in order to spread the photons over more pixels and allow a centroiding

algorithm to yield subpixel-level accuracy [14].

Figure 2.1: Star image without defocusing (negative).

After the defocused image is recorded, the centroid of the star is found much like
the centroid of an array of point masses, with a couple differences. First, light intensity is
used instead of mass. And second, the light intensity is usually normalized by the pixels
around the star in order to filter out glare or background noise. The resulting output from
the centroiding algorithm is a series of two-dimensional coordinates in the image plane with
the origin at the image center. This coordinate system allows the coordinates of the stars

to be easily converted to unit vectors in a later step.

The following is the centroiding algorithm used for this star tracker. It was adapted
from the method presented by Liebe [14]. The algorithm requires the specification of the
light intensity threshold Ijp,esp and the region-of-interest (ROI) size aro; in pixels. These

values can be adjusted to tune the performance of the centroiding algorithm. For example,

Figure 2.2: Star image with focusing (negative).

a higher I;p,..sp value is more robust to noise but might miss some actual stars in the image.
Similarly, a large agror value means a more accurate centroiding value but might read one
star where there are actually two in close proximity. Note that ago; must be odd for the

the algorithm to function properly.

The centroid algorithm is listed in the following steps:

1. For a pixel at image coordinate (x,y) with intensity value I(x,y) > Iipresn, the ROI

is defined as the square of pixels with side length aro; and bottom-left corner at

(Zstart Ystart), given by Eqgs. 2.1 and 2.2.

aror — 1

Tstart — L — f (2.1)
aror — 1

Ystart = Y — ? (22)

Tend = Tstart T GROT (23)

Yend = Ystart T QROI (2.4)

2. If Tgp0rt < 0 OF Ysiare < 0, discard the pixel and return to step 1 with the next pixel.

3. Find the average intensity value of the border pixels Iporger, given by Eq. 2.5 and

shown for an ROI with aro;r = 7 in Fig. 2.3

Tena—1
Tpottom = Z I(i7 ysta'rt) (2'53)
i=xstart
Tend
Itop - Z 1(27 yend) (25b)
i=xstart+1
yend_l
Ileft = Z I(Istartaj) (25C)
Jj=ystart
Yend
Iright = Z I(xend,j) (25d)
Jj=ystart+1
Ito + Ibottom + Ileft + I’l"i ht
Tvorder = —2£ g 2.5e
bord 4(aROI - 1) ()

4. Subtract Iporger from I(x,y) for all non-border pixels, yielding a normalized light
intensity matrix I

I(.’L‘, y) = I((E, y) - Iborde’r (26)

5. Calculate the centroid location (zcar, yoa) using Eqgs. 2.7, 2.8, and 2.9. The bright-

Border

Figure 2.3: Border pixels for aror = 7. Shading indicates the negative of a star in the
image.

ness B in Eq. 2.7 is analogous to the total mass in an array of point masses.

Tend—1 Yend—1

> > I(,9) (2.7)

1=Tstart+1J= Ystart+1

Tend—1 Yend—1 . =
1 x I(1,
ew = 33 el 23)

1=Zstart+1j= Ystart+1

B

Tend—1 Yend—1

yem = > > Jx 10 J) (2.9)

1=Zstart+1j= Ystart+1

UJNI

6. Once the centroid location (zcoas, yonr) has been calculated for every pixel above the
threshold, cycle through the centroid locations and average together any values that
are clustered together. These values are assumed to represent the same star, though
there is the possibility that there could be two stars in close proximity. This is a
reasonable assumption, though, if the magnitude limit of the camera is high enough.
The clustering process can be accomplished by checking each new centroid location
against a list of already processed centroid locations. If the new location is within, for
example, 5 pixels of a pre-existing location, average the two together. The output of

this step is a list of averaged centroid coordinates, each of which should represent a

separate light source.

7. Convert the list of averaged centroid locations into unit vectors using the camera pixel
size ;4 and camera focal length f using Eq. 2.10. The relevant geometry is seen in Fig.

2.4
[wrene myenr f]0

u:H[MxCM HYycm f]H

(2.10)

(XCH ’ycu)

Figure 2.4: Unit vector to star.

2.2 Survey of star identification algorithms

The problem of star identification is well researched and numerous studies have been
done into various methods [5, 15, 4, 16, 17]. All of the methods treated here utilize the unit
vectors found from the centroiding step in Eq. 2.10, and some employ other information
such as the apparent brightness of the stars. In addition, the star identification algorithms
can be broken into two types: lost-in-space (LIS) and tracking. The former attempts to

identify the stars in the image based strictly on the information in the image, while the

10

latter also uses a priori attitude data, such as the previous locations of identified stars or
an attitude estimate from another sensor or dynamic filter. Most of the algorithms in this

section can be used both as LIS and tracking algorithms.

All of these methods share a basic sequence in common:

1. Generate a list of possible geometries from a given star catalog.

2. Match the observed stars to the geometries in the catalog.

3. Assess the confidence of the identified stars and discard any false results.

2.2.1 Pyramid star identification technique

As opposed to the traditional triangle star identification techniques, Mortari [4]

developed a related method based on pyramids. Mortari’s method is given as follows:

1. Create a k-vector of possible star pairs. Instead of a standard list of geometries which
must be searched linearly, Mortari employs a k-vector searchless algorithm. The k-
vector is a sorted list of angles between stars, allowing the potential star pairs to be

identified using a calculated factor instead of a linear or other search method [17].

2. Begin the star identification process by scanning the observed star for a unique triangle.
Instead of a sequence which simply runs though every combination starting with the
first three stars (i.e., 1-2-3, 1-2-4, 1-2-5, etc.), a prioritized sequence is used which
cycles through all of the stars more rapidly (1-2-3, 2-3-4, 3-4-5, etc.) Also, Mortari
defines uniqueness using a formula which outputs a probability that the triangle is

mismatched. If that probability is too high, the triangle is thrown out.

11

3. Scan the remaining stars for a star which forms additional triangles with the three
triangle stars. If no such star can be found, return to step 2 and test the next triangle

in the sequence.

4. Once a high-confidence combination of 4 stars has been found, the pyramid which
gives the technique its name is shown in Fig. 2.5. The remaining observed stars can
be identified or thrown out as noise, again using the confidence formula mentioned

before.

Figure 2.5: Star pyramid with candidate stars 4, j, £ and reference star r. [4]

2.2.2 Voting method

Similar to the pyramid star identification technique, the voting method uses addi-
tional star information to improve the accuracy of the identification. However, this method
is not limited to just one additional star. The voting method [16] uses information from
every star in the image to democratically assess the identity of each star and the method is

described below.

1. The catalog generated for the voting method is a simple set of possible star pairs

12

and their angular distances. If desired, the k-vector approach [17] described for the

pyramid method could be employed.

. For each star pair in the image, calculate the angular distance. Run through the
catalog and add the identities of any star pair whose distance lies within a certain
tolerance of the observed star to a list for each star. Both identities are added to both

lists, since both identities are possible for both candidate stars.

. Once all of the star pairs have been analyzed, select the identity for each star as the

catalog star which received the most votes.

. Verify the accuracy of the identified star pairs. For each identified star pair, find the
angular distance using the catalog. If that distance is within a given tolerance, those

stars each get votes.

The output of the algorithm is the unit vectors of the stars that received votes greater than

a certain value, usually the maximum number of votes any star received less 1. If that value

is 0 or less, it is likely a failed identification.

2.2.3 Planar triangle star identification technique

Cole [15] presents a different approach to star identification. While this method still

uses the premise of star triangles, Cole analyzes the triangles themselves, pattern match-

ing using characteristics of the entire triangle rather than each side as is done in the two

previously mentioned techniques. The algorithm is outlined as follows:

1. Construct a list of possible star triangles from catalog stars p, ¢, and r, as well as

their areas and polar moments of inertia. The polar moment, given in Eq. 2.13 as

J, predicts the resistance to torsion of a planar figure about its center of mass in the

13

z-direction. All three stars must satisfy the field-of-view and magnitude requirements,
and the area and polar moment for each triangle can be found using Eqs. 2.11, 2.12,
Heron’s formula, and Eq. 2.13. Repeat this step for every potential combination of

three catalog stars.

s = %(a—l—b—i—c) (2.11a)
a = [|u, —ugyl| (2.11b)
b=|lug — u,| (2.11c)
c=|lu, —uy| (2.11d)

A=/s(s—a)(s—b)(s—c) (2.12)

(a® +b% +¢?)

J=A
36

(2.13)

2. Begin the star identification process by selecting three stars and finding area and
polar moment of the planar triangle that they form using Eqs. 2.12 and 2.13 again.
In addition, calculate the variances of the area and polar moment. The process to
find the variances can be found in [15]; it not repeated here. Using a k-vector or other
search method, find all of the triangles from the list formed in step 1 whose areas and
polar moments fall within a standard deviation of the observed triangle. If only one

triangle meets these criteria, proceed to step 4.

3. If more than one catalog triangle meets the area and polar moment criteria, select
another star from the image to identify and see how many stars overlap the two lists.
If only two, the triangle is identified. If not, the solution is thrown out and the

algorithm returns to step 3 with the next combination of three stars.

14

4. Once the three stars have been identified, the remaining stars in the image can iden-
tified if desired by using the same pivoting process described in step 4. Otherwise,

proceed to attitude determination.

2.2.4 Grid algorithm

Padgett and Kreutz-Delgado [5] present a method called the grid algorithm. Instead
of reading a series of stars and identifying a series of relative positions, as is done in the
first two methods, the grid algorithm matches a catalog of patterns to the observed stars.
To accomplish this, the field of view of the camera is divided into a grid and a matrix is

formed with zeroes and ones, depending on whether a star exists in each grid element.

1. Construct a list of patterns for each star in the catalog. For each star in the catalog,
rotate the other catalog stars so that the chosen star lies along the positive z-axis in
the camera frame. If another catalog star is outside of a buffer radius but within the
FOV of the camera, place that star on a fictitious image and change the value for that

cell from zero to one.

2. Once step 1 is accomplished, there should be a matrix of zeroes and ones for each star

in the catalog.

3. To perform the actual star identification, sort the identified stars in the image by
brightness. Starting with the brightest star, translate the locations of the other stars

so that the brightest star lies in the center of the image.

4. Apply the same grid size from step 1 and form a matrix of zeroes and ones based on

whether or not a star exists in each cell.

15

5. Compare that matrix to the patterns in the catalog. and record the pattern with the
most non-zero matrix values that the image and catalog patterns agree upon and how

many values agreed.

6. Continue this process for each star in the image and select as the reference the star

which had the pattern with the most matches.

7. Finally, verify the distances between the tentatively identified stars and the reference

star. If enough distances agree, return the identified stars.

The grid method can be somewhat challenging to understand. Fig. 2.6, reproduced from

Padgett [5], provides a better visual representation of the steps.

2.2.5 Comparison of methods

Each of the four methods described above have distinct advantages and disadvan-
tages. Before comparing their relative merit, it is important to define what characteristics
are important to a CubeSat. First, the algorithm must be robust, that is, tolerant of noise
and errors in the image. CubeSats are small and must be lightweight, which means radiation
shielding is usually left off satellites which will fly in low Earth orbit (LEO). Thus, there
is a greater possibility of errors on images due to stray radiation or cosmic rays. In addi-
tion, satellites in LEO have a greater chance of observing other satellites and space debris
and mistaking them for stars. Also, lower resolution cameras are preferable on CubeSats.
They are smaller and consume less power, and they reduce the burden on the command
and data handling (CDH) system. Another concern for CDH is database storage and ac-
cess. The fewer calls to the catalog and the smaller the catalog is, the more efficiently both

the star tracker and CDH system can perform. Despite these considerations, the CubeSat

16

. ;
i .
¢ . .: N
v br L4 ¥ .
et ® |
L - .
. . . .
* .
pr :
,‘4] .
A B

C D
Figure 2.6: Description of grid algorithm steps. A: Brightest star identified. B: Image

translated with respect to brightest star. C: Grid aligned with nearest neighbor. D: Bit
pattern [5].

star tracker must provide a significant improvement on the accuracy of other instruments.

Volume aboard a CubeSat is at a premium, and a star tracker must justify its presence.

The pyramid star identification method can be considered quite robust. Since it
must match a total of four stars, any spikes or false stars would cause a potential match
to be rejected. However, a rejected match means the algorithm must start with a new
combination of stars, which takes processing time. The voting method is extremely robust
to false stars. In tests described in Kolomenkin et al. [16], the voting method retained
the correct number of correctly identified stars until the number of false stars was as much

as three times the number of actual stars, and it accomplishes this without restarting the

17

algorithm. The planar triangle technique is less robust. Requiring a match of both area and
polar moment helps remove ambiguity, but a poorly placed false star could cause the method
to return a false positive. Finally, the grid method is quite robust. A false star simply adds
an additional 1 in the matrix, but it would not significantly impact the matching accuracy

unless there were many false stars.

The lower resolution requirement does not significantly affect any of the first three
methods. Using defocusing and centroiding, subpixel accuracy should be attained for any
one of these methods. The same cannot be said for the grid method. Lower resolution
means that the grid must tighten, and that increases the likelihood of stars on a boundary

or actual stars which might be off by one or two cells.

As far as catalog requirements, both the pyramid algorithm and voting method are
similar. The catalogs are the same size, since both use star pairs, and both should use about
the same number of calls to the catalog, though the demand might be slightly higher for
the voting method if many stars are observed in the image. The planar triangle method
requires two large catalogs for area and polar moment, but should not have significantly
more calls to that catalog. The grid method can also have a large catalog, since there must

by a bit matrix for each star in the catalog.

Weighing the three criteria stated above, the pyramid and voting algorithms both
stand out as the best fits. Ultimately, the voting method was chosen because of its high
robustness, which should serve as an asset given the uncertain environment facing a CubeSat

star tracker.

18

2.3 Voting method

The selected method for this star-tracker was the voting method outlined by Kolomenkin
et al. [16], which was presented in section 2.2.2. The algorithm is now presented in greater

detail for implementation in software. An block diagram is shown in Fig. 2.7.

2.3.1 Catalog generation

The catalog generation in the voting method is very similar to the same process in
other techniques. Using a given minimum light intensity that will be considered a star, and
the field-of-view (FOV) of the lens, a list of possible star pairs is generated along with their
angular distances. This step is done before installation and the catalog is stored in memory

aboard the spacecraft. This catalog can be generated in the following way:

1. Convert star positions to unit vectors. Most star catalogs record the positions of stars
in inertial right ascension-declination coordinates. While useful for astronomers, for
star identification the unit vectors must be found to those stars in the inertial frame.

Eq. 2.14 gives the unit vector in terms of right ascension « and declination §.

COS v cos
u= | sinacosd (2.14)
sin §
2. For each pair of stars with identification numbers a and b, verify that the pair meets

the conditions on magnitude and angular distance given in Eqgs. 2.15, 2.16 and 2.17.

Note that the brighter an object, the lower its magnitude.

Mg < Mmaz (2.15)
my < Mgz (2.16)
ulu, > cosOrov (2.17)

19

3. If the above conditions are met, record the star identification numbers as well as the

T

value of the scalar u;

u, in a file for later access.

Note that the value of ul'u, is equal to the cosine of the angle between the two unit vectors.
Checking that this value is greater than the cosine of the field-of-view angle is equivalent to
stating that the angular distance is less than the field-of-view angle, ensuring that the two

stars can both be seen by the camera at the same time.

2.3.2 Candidate matching

This step begins the process which takes place with each star tracking operation.
At this point, a list of unit vectors of observed light sources is available in the camera-fixed
frame. These will henceforth be called “candidate stars,” since there is no way of knowing
whether they are real stars or false stars, like planets, other satellites, or other noise sources

in the image.

1. For the pair of candidate stars ¢ and j, calculate the cosine of the angular distance

between them d;; using Eq. 2.18.
dij = Ll;rllj (218)

2. Find every pair of stars p and ¢ in the catalog whose angular distance d,, satisfies Eq.
2.19 for a given tolerance e. Note that the k-vector approach [17] described earlier
would suffice here.

d2] —€e< dpq < d'LJ +€ (219)

3. For each possible star pair found in step 2, add the identification number for both

catalog stars p and g to arrays for candidate stars ¢ and j. Note that both identification

20

numbers are added to both lists since either catalog identity is a possibility for both

stars.

4. Once all possible pairs of candidate stars have been processed, assign each candidate

star the catalog star that received the most votes in its array.

At this point, each candidate light source should have a likely catalog star assigned to it.
However, there is still no way of knowing if any of these are false stars that could cause an

erroneous attitude solution.
2.3.3 Verification and final result
The verification step removes false candidate stars. Another round of voting is

performed, after which a final matched list of observed and candidate stars will be produced.

1. For the pair of candidate stars ¢ and j, find the cosine of the angle between their
matched catalog stars r;; using Eq. 2.20, where v; is the unit vector of the catalog

star matched to candidate star i.

Tij = ViTVj (2.20)

2. If Eq. 2.21 is satisfied, add one vote each to the lists for candidate stars ¢ and j.
dij —e <y <dij+e (2:21)
3. After every candidate star pair has been processed, find the threshold T for real stars

by applying Eq. 2.22.

T = max(votes(i)) — 1 (2.22)

4. Any candidate star with more votes than threshold T is passed out of the star identi-

fication algorithm as a real star.

21

The power of the voting method lies in this step. Real stars have numbers of votes in this
step clustered together and above the threshold T, while any false stars will not receive more
than one or two votes, removing them in this step. Assuming at least three stars have been
positively identified, the two lists of matched candidate and catalog stars are now passed to

the attitude determination algorithm.

2.4 Attitude determination

Once the candidate stars have been matched to stars from the catalog, two lists of
unit vectors exist. One is in the camera frame, the other in the inertial frame. To find the ro-
tation between them, and ultimately, the attitude of the satellite, an attitude determination
method must be applied. There are several well-known methods which return quaternions,
including Davenport’s q-method [18] and QUEST [19]. However, for the purposes of this
research, a direction cosine matrix was desired, so the singular value decomposition method

developed by Markley [20] is used. This method is reproduced below.

1. Calculate the matrix B using Eq. 2.23 with the n observed stars from the star identi-
fication algorithm, where b; and r; for real star ¢ are the unit vectors of the candidate

star and catalog star, respectively.
B=> bir] (2.23)
i=1

2. Find the singular value decomposition of matrix B; that is, the orthogonal matrices

U and V and the diagonal matrix of singular values S which satisfy Eq. 2.24

B =USV7” (2.24)

22

3. Define the proper orthogonal matrices Uy and V, using Egs. 2.25 and 2.26

1 0 0
Uy, = U[0 1 0 (2.25)
| 0 0 detU |
1.0 0]
Vy = V|01 0 (2.26)
| 0 0 detV |

4. The direction cosine matrix A can now be found using Eq. 2.27

A=U,V] (2.27)

23

Pre-launch

'd N
Image taken and
centroided
" J
Y
' ™
Candidate matching
(. J
¥

N
Verification
J
YES

Positive identification

-

NO

No identification

Figure 2.7: Voting method block diagram

24

Chapter 3

Software Architecture

Selecting and adapting the appropriate algorithms are the crux of any star tracker,
but they must be actually implemented in software and hardware. This chapter deals with

the former topic, while Chapter 5 treats the latter topic.

3.1 Software flow

A block diagram of the software functionality is shown in Fig. 3.1. Before launch,
the function catinit is run to generate the list of possible star pairs and their interior angles.
This file is saved aboard the spacecraft. When the star tracker function is called by the on-
board computer, catinit is run again to load the catalog into memory. The function loadimg
takes a picture using the on-board camera and outputs the resulting light intensity matrix.
That information is passed onto centroid, which finds the light sources in the image and
outputs their coordinates in the image plane. The function uvec uses the camera geometry
to convert these image plane coordinates into unit vectors in the star tracker coordinate
frame. Those unit vectors are given to starid, which identifies the stars and outputs their
unit vectors in both the star tracker and inertial coordinate frames. Finally, those lists are
given to attdet, which finds the DCM from the inertial to the star tracker coordinate frame

and returns that information to the on-board computer.

25

Pre-launch

Initialize
variables

loadimage()

L

limat
y

catinit(starcat,
maglimit, FOV)

centroid(limat,

thresh, ROI)

R Iy

px

catinit(starcat)

uvec(px,pxside,f)

ucand

Figure 3.1: Star tracking flow diagram.

3.2 Component functions

starid(ucand, FOV)

ucat

attdet(ucand,ucat)

att

END

The star tracker program consists of a number of functions whose purpose roughly

mirrors the three major star tracker steps outlined in Chapter 2: centroiding, star identifi-

cation, and attitude determination. In some cases, these steps have been further broken up

into sub-steps, depending on their place within the software flow or the constraints of the

programming language. For this work, the programming was done in MATLAB, though

eventually these functions will be reproduced in either C or C++ for real-time execution in

the embedded system.

26

3.2.1 Function catinit

The function catinit has the purpose of generating the possible star pairs and their
interior angles based on magnitude and field-of-view information and returning that data
to the main star tracker program. It also saves this data to a tab-delimited text file. If this
text file has already been generated, catinit just reads the information into the main star

tracker program. A flow diagram of catinit is shown in Fig. 3.2.

Inputs

The function catinit takes either one or three inputs. It always takes the name of
a text file as an input. Optionally, the field-of-view and magnitude limit of the camera also

can be given as inputs.

Outputs

The function catinit returns two outputs: the table of the possible star pairs and
their angular distances as well as the list of unit vectors from the star catalog. If a field-
of-view value and magnitude limit are also given as inputs, catinit will save the generated
table as a text file with the given file name; if not, catinit will load the previously generated

file given by the file name.

3.2.2 Function loadimg

The function loadimg reads an image, either from a file or attached camera and
returns the accompanying matrix of light intensity values. A flow diagram of loadimg is

shown in Fig. 3.3.

27

Inputs

attached camera and takes an image. With one input, the filename of an image, it loads

that image.

Outputs

Load star catalog
Choose first star
pair

Choose next star

pair
NO
distance combo?
YES
END

Figure 3.2: Function catinit flow diagram.

The function loadimg takes either zero or one input. With no input, it calls the

The function loadimg returns one output. That is the matrix of integer light inten-

sity values from 0 to 255 associated with the given image.

3.2.3 Function centroid

of coordinates representing the centers of the stars in the image. A flow diagram of centroid

The function centroid takes a light intensity matrix of a star field and returns a list

28

Filename
input?

Save light intensity
matrix

Sl

END

Figure 3.3: Function loadimg flow diagram.

is shown in Fig. 3.4.

Inputs

The function centroid takes four inputs. These are the light intensity matrix itself,
a threshold value between 0 and 255, and the length of the region-of-interest in pixels in the
x and y directions.
Outputs

The function centroid returns one output. That is the list of image coordinates for
the star center in pixels.

3.2.4 Function wuvec

The function uvec takes a list of image coordinates and information about the cam-
era geometry and returns unit vectors to those coordinates in the camera-centered coordinate

frame based on a pinhole model of the camera.

29

Select first centrod Select next centroid
valug vale

Average with
exlsting centrobd
value

END

Figure 3.4: Function centroid flow diagram.

Inputs

The function uvec takes three inputs. The function uvec needs the list of image
coordinates and the focal length of the camera as well as the size of the pixels on the camera

sensor, which are constant for a given hardware setup.

Outputs

The function wvec returns one output, the list of unit vectors in the camera-centered

coordinate frame.

3.2.5 Function starid

The function starid contains the programming that performs the geometric voting
method described in Section 2.3. The function will take the list of candidate star unit
vectors, camera geometry information, and the list of angular distances and return a paired
list of unit vectors in the camera and inertial frames. A flow diagram of catinit is shown in

Fig. 3.5.

30

Inputs

The function starid takes five inputs. The list of unit vectors generated by uwvec
and the list of angular distances read by starid are the most obvious data. In addition,
the field-of-view is also input to perform a sanity check on the data. Also required is the
pixel size to help determine the tolerance and the list of unit vectors of the catalog stars to

perform the verification step.

Outputs

The function starid returns three outputs. The matched lists of candidate and
catalog star unit vectors are returned. Additionally, the list of star identification numbers

for the matched catalog stars is returned, which can be used as diagnostic information.

3.2.6 Function adet

The function adet performs the singular value decomposition method developed by
Markley [20] on the lists of unit vectors generated by starid and returns a direction cosine

matrix of the attitude of the camera in the inertial frame.

Inputs

The function adet takes two inputs. They are the two lists of unit vectors in the
camera-centered and inertial frames, respectively.
Outputs

The function adet returns one output: the direction cosine matrix from the inertial

to the camera-centered frame.

31

Select first

candidate pair

Find angular
distance d and limits

Select next
candidate pair

Add possible
matches to list for
each candidate star

YES More
candidate

pairs?

Select catalog star
with most votes as
guess

Select first guessed
pair

. Find angular Select next guessed
distance r of catalog)
pair
stars

Add vote to both
candidate stars

More YES
guessed

pairs?

Select all stars with
#votes > c as
confirmed stars

¢ = (max votes for
any star) -1

END

Figure 3.5: Function starid flow diagram.

32

Chapter 4

Software Results

The star-tracking algorithm was tested using a computer generated star field. The
test involved a series of star images generated using a virtual camera that were generated
with a set of random attitudes. These images were then run through the star tracking

program and the calculated attitude compared with the true attitude to find the errors.

4.1 Setup

The setup for the analysis consisted of three parts: picking the random attitude,

generating the images, and running the star tracker software.

4.1.1 Random attitude

Randomness was introduced by picking three random angles between —180 degrees
and 180 degrees. Since MATLAB’s random number generator provides a matrix of values
between 0 and 1, Eq. 4.1 was used to convert the 3 x 1 output a;, as and aj into three

angles 071, 05 and 03 the desired range.
[0 02 O3]=([a1 a2 as =[5 5 .5])x180° (4.1)

From there, a direction cosine matrix was formed by performing a 3-2-1 rotation about

angles 601, 6> and 63, resulting in a rotation matrix from the inertial to the camera frame

33

described in Eq. 4.2.

cosf; sinf#; O cosfy 0 —sinf, 1 0 0
R? = | —sinf; cosf; O 0 1 0 0 cosfs sinfs (4.2)
0 0 1 sinf; 0 cosfy 0 —sinf3 cosbs

This was done a total of 200 times, resulting in a series of 200 rotation matrices.

4.1.2 Image generation

Once the attitudes were selected, images at each attitude had to be generated. A
virtual camera with parameters listed in Table 4.1 and a virtual charged-coupled device
(CCD) with parameters listed in Table were selected to create the virtual image, though

any reasonable virtual camera and sensor would be acceptable.

Aperture diameter, d (cm) | 2.5
Field-of-view (°) 20

Focal length, f (mm) 66.8
Transmittance, 7 1

Table 4.1: Virtual camera parameters.

Resolution (pixels) 1024 x 1024
Pixel size (pm) 23 x 23
Quantum efficiency 0.2
Dynamic range (dB) 69
Spectral range, A(pum) 0.6
Saturation limit, s, (photons) 135000

Table 4.2: Virtual CCD parameters.
The image generation process then proceeds as follows:

1. For each attitude, the unit vector along the boresight direction up.-. was found in the

inertial coordinate frame by Eq. 4.3.

Wore = (RET[0 0 1]7

34

. Each star in the catalog is then checked to see if it lies in the field of view of the

camera using the condition in Eq. 4.4.

0
T FOV
WporeUstar > COS — (4.4)

. If the star lies in the field of view, its unit vector is converted to the camera frame by
Eq. 4.5.

Ustar,C = R?ustar (45)

. The coordinates of the star on the image plane (u,v) can then be found using Egs.
4.6 and 4.7. (ustar,c)e is the z-value of the star’s unit vector in the camera frame and

similarly for (ustar.c)y and (Usiar,c)s-

_ (ustm‘ C)w

po= (ustar C)z (46)
o (Ustar C)y

YT (ustar C)z (47)

. The image generation function requires how many points the stars photons will be
divided over n, and the blur factor b. For this simulation, n, = 500 and b = 3. The
exposure time t.y, also required. In order to simulate the effects of gain control that
are available on a real camera, t.., was set to 25 seconds to compensate for the lack

of gain control on the simulated image.

. The number of photons S the star generates can now be found using the camera and

CCD parameters as well as the magnitude of the star m in Eq. 4.8
T 2 —0.4m
§ = (tewy) () (7) (V) (107047) (4.8)

. The star is now blurred by assigning each of the n, points a random location (x/,7")

near the star’s image location (u,v).

[W v]T = [pbrand(—.5,.5) vbrand(—.5,.5)]T (4.9)

35

8. For each pixel in the light intensity matrix L, if a point (¢/, ') lies within that image,

add ni photons to that point.
P

9. Finally, normalize the light intensity matrix to L by the saturation limit lyq;.

- sat l at, 4.].0
L(i,j) =1 LD > (4.10)

lsat
MATLAB can now use L to create an image in the desired format, which was a bitmap file

for this analysis.

4.2 Analysis

These images were then processed by the star tracker software, which output an
attitude. The real and calculated attitudes were compared to find the error in the star
tracker measurement. The error about each axis was then calculated as shown in Eqgs. 4.11,

4.12, 4.13, and 4.14.

~1 _sz _¢y
0 = Rc_allcRactual = o ~1 —¢, (4,]_]_)
¢y o ~1
€z = 90° —cos !¢, (4.12)
e, = 90°—cos™' o, (4.13)
€. = 90°—cos !¢, (4.14)

The attitude error was found about each axis for each of the 200 generated images.
The algorithm was considered to have failed if the error was greater than 100 arcseconds for
any of the three axes. No physical errors were included in the virtual camera. Therefore,
the error must come from the algorithm itself, and 100 arcseconds is a reasonable threshold
for this experimental setup. Given these conditions, the star tracking algorithm found the

attitude within acceptable error 191 of 200 times, or an accuracy of 95.5%

36

Looking first at the failures, only twice did the algorithm fail for an attitude for
which it had a confident match. The match confidence is determined by the value T in Eq.
2.22. If T < 0, then the no star received any votes in the verification step, indicating bad
matches. On orbit, this would be output as an error condition and the attitude would not
be used. Only two reported attitude solutions were incorrect despite having 7" > 0. These
cases present a problem, since they would be passed on as a correct result. After visual
analysis of both failure cases, the simulated images have at least one star pair in very close
proximity, which may have fooled the algorithm into thinking there was one star and causing
the failure. Further refinement of the attitude suite algorithm could be use to counteract
this case if necessary, but since it represents only 1% of the total test cases, the algorithm

seems acceptable.

As for the 191 successful cases, the average performance can be seen in Table 4.3

| Stars generated | Stars observed [T [€, (arcsec) | ¢, (arcsec) | e. (arcsec) |
| 114607 [10.1152 [8.6230 [10.6237 | 7.7998 [6.4789 |

Table 4.3: Average successful case performance.

Theoretically, performance should improve the more stars that are observed. Fig.
4.1 shows the amount of cases for which each number of stars was observed, while Fig. 4.2

shows the error for each axis averaged over the number of stars observed.

The cases where fewer stars are observed do have the highest errors for the x-
and y-axes, and nearly the highest for the z-axis. However, there appears to be no strong
correlation downward as the number of stars observed is increased. This observation is
verified by a root-sum-square analysis of the error across the three axes, shown in Fig. 4.3.

The phenomenon could be related to the clustering error seen in the failure cases.

37

25 1 1 1 1 1

20

—
iy |
T T

—
=
T

Mumber of cases

|
14 20 25 30

1
0 5 10
Mumber of stars obsered

Figure 4.1: Number of cases for each number of stars observed.

4.3 Summary

The graphs from section 4.2 highlight some interesting results. First, even though
all physical error has been removed from the test, the errors in the three axes are not zero.
Looking through the process for potential error sources, the only likely contributor is the
centroiding algorithm. Despite achieving subpixel accuracy, the centroiding function still
has some slight error from the true location of the center of the star. Errors as small as
10 arcseconds should not concern most CubeSat developers looking to add star tracking to

their satellites unless their mission requires very high accuracy.

38

24

H-AXIS
y-AHIS
Z-aXis
20F
= 18
[ak]
[in]
[
=
=
w 10F
5 L
D 1 1 1 1
0 5 10 15 20 25 30

Mumber of stars obsered

Figure 4.2: Error in each axis vs number of stars observed.

Another noteworthy figure is the average number of stars viewed, which was about
10. Even for a 20 degree FOV, this number is somewhat high and is the result of the
brightness mask on the stars being magnitude 5.5. This choice was made to ensure that
enough stars existed in each image for analysis. The purpose of the computer generated
images was not to assess the real world performance of the star tracker, given all of the ideal
assumptions that were made. Rather, it was to verify the functionality of the algorithm so

further, more realistic tests can be performed.

39

RSS error (arcsec)

a0

80

710

all]

a0

40

30

20

10

5 10 15 20
Mumber of stars obsered

Figure 4.3: RSS error vs number of stars observed.

40

24

Chapter 5

Hardware Architecture

After verifying the performance of the software, the hardware implementation is
the next step. This chapter outlines the hardware choices and their rationales, as well as

giving the current state of hardware testing for this reserach.

5.1 Camera

The camera for the star tracker must be satisfactory in three main areas. The device
must be small enough to fit the CubeSat form factor. It must also have enough resolution
to provide an accurate star tracking solution. Finally, it must able to provide a stable and
useful interface to the command and data handling system of the satellite. Three models
were considered for the star tracker camera: the Aptina MT9P031 Demo Kit, the Matrix
Vision mvBlueFOX-M105G, and the Matrix Vision mvBlueFOX-M121G. All three cameras

employ a USB data and power connection.

5.1.1 Aptina MT9P031 Demo Kit

This camera model is a demo kit from the maker of the MT9P031 complementary
metal-oxide-semiconductor (CMOS) sensor. This sensor was considered because it was pre-
viously used on a Sinclair Aerospace star tracker [21]. The Aptina demo kit employs a
rolling shutter, which means that the sensor is exposed a slice at a time. This technique

reduces the throughput needed for the sensor and contrasts with a full-frame shutter which

41

exposes the entire sensor all at once.

Figure 5.1: Aptina MT9P031 Demo Kit [6].

Resolution (px) 2592x1944
Pixel size (um) 2.2x2.2
Maximum frame rate (fps) 14
Shutter type Rolling
Dimensions (mm) 82.7x48.3x35.0

Table 5.1: Aptina MT9P031 Demo Kit specifications.

5.1.2 Matrix Vision mvBlueFOX-M105G

The mvBlueFOX-M121G is an industrial machine-vision camera from Matrix Vi-
sion. The M105G utilizes an Aptina MT9P031 CMOS sensor and connects to the satellite

for both data and power using the USB 2.0 protocol.

5.1.3 Matrix Vision mvBlueFOX-M121G

The mvBlueFOX-M121G is an industrial machine-vision camera from Matrix Vi-

sion. The M121G utilizes a Sony ICX204AL charged-couple device (CCD) sensor and con-

42

Figure 5.2: Matrix Vision mvBlueFOX-105G camera.

Resolution (px) 2592x1944
Pixel size (pm) 2.2x2.2
Maximum frame rate (fps) 5.8
Shutter type Rolling
Dimensions (mm) 38.8x38.8x34

Table 5.2: mvBlueFOX-105G specifications. [1]

nects to the satellite for both data and power using the USB 2.0 protocol.

Resolution (px) 1024 %768
Pixel size (um) 4.65%x4.65
Maximum frame rate (fps) 39
Shutter type Full frame
Dimensions (mm) 38.8%x38.8x34

Table 5.3: mvBlueFOX-121G specifications. [1]

5.1.4 Selection

All three cameras are acceptable for the CubeSat form factor, though the two
Matrix Vision cameras are smaller and therefore better suited for a CubeSat. The Aptina
and M105G share the same sensor, which has about 5 times the resolution and one quarter
the pixel size. The drawback to the larger resolution is that both the Aptina and M105G

utilize rolling shutters, which would distort an image if the satellite is slewing while the

43

Figure 5.3: Matrix Vision mvBlueFOX-121G camera.

image is taken. Therefore the M121G would be the better option if its resolution is fine
enough. Eq. 5.1 gives an estimate of theoretical pixel accuracy based on pixel size p and
focal length f.

9theoretical = tan_l (%) (51)

Based on this equation, the theoretical pixel accuracy is 80 arcseconds for the
M121G with a 12 mm focal length lens. Centroiding will improve this value by approx-
imately 10 times, yielding a theoretical accuracy of 8 arcseconds. It is worth noting that
both pixel size and focal length affect the theoretical accuracy. By increasing the focal
length, the accuracy gets better. The tradeoff is a narrow FOV and therefore fewer ob-

served stars. Table 5.4 shows this relationship.

| Oiheoreticar (arcseconds) | Focal length (mm) | FOV (degrees) |

19.98 4.8 46.62
11.99 8 32.42
7.99 12 22.94
4.17 23 12.45
2.74 35 8.23

Table 5.4: Accuracy vs focal length and FOV for a 4.65 um sensor.

44

Based on the error observed in analysis, the focal length can be adjusted to achieve

the desired accuracy. In the case of this system, that accuracy is sub-arcminute.

In terms of interface, both Matrix Vision cameras have native Linux interfaces,
while the Aptina Demo Kit is restricted to Windows only. Given the characteristics of the

cameras, the M121G was deemed to be the best choice.

5.2 Lens

The lens for the star tracker has to meet two major requirements. The field-of-view
must be large enough to view as many stars as needed for an accurate star tracking mea-
surement. Also, the lens must be able to withstand the launch conditions while maintaining
its ability to take images. The two lenses considered were the Xenoplan Compact C-Mount

Lens from Schneider Optics and the NT59-870 from Edmund optics.

5.2.1 Schneider Optics Xenoplan Compact Lens

The Xenoplan Compact C-Mount Lens from Schneider Optics is a ruggedized ma-

chine vision lens ruggedized with iris and aperture locks.

Aperture f/1.4 to £/11
Focal Length 23 mm
Length 40.4 mm
Diameter 34 mm

Table 5.5: Xenoplan Compact Lens specifications. [2]

5.2.2 Edmund Optics NT59-870

The NT59-870 is a machine vision lens designed for high-performance applications

in low lighting. It features a ruggedized housing and iris and aperture locks.

45

Figure 5.4: Schneider Optics Xenoplan Compact Lens.

Aperture /1.8 to £/16
Focal Length 12 mm
Length 27.9 mm
Diameter 34 mm

Table 5.6: Edmund Optics Compact Lens specifications. [3]

5.2.3 Selection

Since both lenses are available in various focal lengths, that factor was not as
important as the durability of the lens. Since the Xenoplan has previously been used in

a NASA technology demonstration, it was selected as the lens for the star tracker.

5.3 Hardware testing

In order to verify the usability of the hardware as well as further validate the star
tracking algorithms, a simulated star field test was set up. The test consists of one computer

running a star field simulator and another computer attached to the camera which takes a

46

Figure 5.5: Edmund Optics NT59-870.

picture and runs the star tracking algorithm. This test setup is running as a demonstration

and will be refined in order to produce results which can be rigorously analyzed.

5.3.1 Setup

The setup for the simulated star field test is fairly simple. One computer running
the star field simulator Stellarium [22] is connect to a computer monitor at the end of the
table. At the other end, the camera is connected to a second computer running the star
tracker software as well as the camera drivers. The distance the camera is from the screen
, d, is calibrated using an image with two known stars, for example Alpha Orionis and
Gamma Orionis. These two stars have an angle between them ~ and a distance apart on

the screen p. These values are related using Eq. 5.2.

P (5.2)
tan -y

47

Once the screen and camera have been set up, Stellarium is given an attitude and
the star tracking algorithm is run. In contrast to the process in Chapter 4, in this test the
camera takes an actual, not a virtual, image and performs star tracking on that image. Once
the star tracker returns a result, the error can again be found using Eqs. 4.11, 4.12, 4.13,
and 4.14. Figs. 5.6 and 5.7 show the hardware setup, including the camera and starfield

simulation.

Figure 5.6: Simulated star field setup.

5.3.2 Demonstration

The setup was used as a proof-of-concept in a demonstration mode. For this mode,
the star tracking simulator was given an initial attitude estimate in the form of the identity
of one of the stars in the image. The star tracker returned a DCM which was applied to the
unit vectors of the catalog stars to yield a set of predicted unit vectors. This calculation is
shown in Eq. 5.3.

Upred = Rcalcucat (53)

48

Figure 5.7: Simulated star field setup (camera view).

In this way the predicted unit vectors up,.q could be compared to the observed unit vectors
Uyps to do a preliminary error analysis. For the demonstration, this analysis consisted first

of finding a angular error 6., given by Eq. 5.4.
Qopr = cos™ ! u;eduobS (5.4)

Also, the x- and y-components of the angles of both sets of unit vectors to the boresight

direction were found using Eqgs. 5.5 and 5.6.

a, = tan ! L~ 2 (5.5)
u, u;
u u

= tan' Y~ 2 5.6

oy an by (5.6)

These were plotted on the same graph to visually compare the attitude solution. Fig. 5.8
shows the image that was taken with blue x’s over the centroid locations. Fig. 5.9 shows
the predicted and observed unit vectors. For that particular demonstration, the two sets of

unit vectors lined up very closely.

49

450

400

350

300

250

200

150

100

50

0 100 200 300 400 500 600

Figure 5.8: Star field image with centroid locations.

5.3.3 Further analysis

While the demonstration mode of the simulated star field setup shows promise, a
few adjustments must be made in order to perform a rigorous analysis. First, the capabilities
of the Stellarium program must be further investigated. Currently, the only way to change
the attitude of the star field image is either with a mouse or by manually typing in a desired
celestial object. While this functionality is fine for a demonstration, the ability to move
to a series of desired attitudes would be required to perform the same kind of analysis as
in Chapter 4. In addition, the calibration of the setup and star tracking program must be

refined so that an initial attitude estimate need not be given.

50

Y coordinate, arcseconds

3 |
7| + Measured |
+ Predicted

11 |
&+

0 .t]

At]

21]

3¢ :]
-3 -2 -1 0 1 p) 3

H coordinate, arcseconds » 10°

Figure 5.9: Predicted and measured unit vectors.

51

Chapter 6

Conclusions

The star tracker system defined in this research has the potential to be viable for
CubeSat use. The computer generated image test consistently computed a correct attitude
to within tens of arcseconds or returned an error. Only twice out of 200 times did the
star tracker return a false positive, and even then the attitude was off by tens of degrees.
A check with another attitude determination method should allow the flight computer to
discard the result. Of course, the actual star tracker will not provide such accurate results

due to imperfections in the lens, false stars, and other error sources.

6.1 Planned Demonstration of Student Satellites

The star tracker system being designed in this research is in a unique position to
be put to a practical test in space. The design is planned to be included on two separately
funded student satellite missions, known as Bevo-2 and ARMADILLO. Both satellites will
employ the camera from Chapter 4 as a star tracker, and Bevo-2 will additionally employ the
camera to take pictures of its partner satellite, AggieSat4. The satellites have an attitude
determination and control suite using sun sensors, a magnetometer and MEMS gyros, so they
can verify the performance of the star tracker to within the accuracy of those instruments.

Also, the star images can be downloaded and post-processed.

Prior to launch, the camera system will undergo a series of hardware tests to verify

its performance in space. The camera and lens system will be first put though a vacuum

52

chamber test. This procedure measures the amount of outgassing the star tracker will
undergo once in orbit. Outgassing, which is the release of chemical vapor induced by a
vacuum, is a particular concern for a star tracker since this residue can settle on the lens

and inhibit the star tracker performance.

The camera system will also undergo thermal testing. A satellite and its hardware
experience a broad range of temperatures in space as the satellite passes from sunlight to
shadow. The camera and lens must be able to handle this thermal shift without degrading

performance.

Finally, the lens will undergo vibration testing. This hazard is a concern due to
launch, when the star tracker will be subjected to high acceleration and vibration. The lens
is particularly susceptible to high vibration because of its precision optics. These various

tests will ensure that the star tracker will perform as expected when it is launched.

6.2 Future Work

Future work for this research can take three tracks: improving the accuracy of the
star tracker, expanding the versatility of the camera system, and improving the fidelity
of the simulated star field analysis. To improve the performance, an on-orbit calibration
algorithm could be implemented, possibly one similar to the one developed by Mortari [23].
In addition, a higher resolution camera might provide more information. In general, the
hardware implement ion will undergo continuous iteration and reflect any new technology

or capabilities.

The camera system also has the potential to be more versatile. A planetary naviga-
tion algorithm, like the one proposed by Christian [24], can be added to the suite of existing

software. Also, future missions will perform autonomous rendezvous and docking using the

33

same sensor, so a proximity operations algorithm will be necessary for those missions.

In addition, the simulated star field analysis must be further refined so that those
results can contribute to the design of the star tracker. This test accounts for more of the
actual errors that the star tracker might experience on-orbit. The results of this test will
provide a better idea of the calibration that must be done to the star tracker software,

including parameters such as the threshold Iij,.sp and ROI size agpor used in Section 2.1.

After the simulated star field analysis, a night sky test will be the final step in
testing the star tracking algorithm. The setup for this test is fairly simple. The star tracker
is brought to an area with a very clear view of the sky and takes images of the sky. The
identified stars and attitude is then compared with the actual observed stars. Once the star

tracking system passes all of these tests, it will be ready to be used on a satellite.

54

Bibliography

[1] “Industrial Image Processing | mvBlueFOX-M - USB 2.0 board-level camera,” 10 2011,
accessed: 11/23/2011. [Online]. Available: http://www.matrix-vision.com/USB2.

0-board-level-camera-mvbluefox-M.html

[2] “XENOPLAN 1.4/23mm COMPACT,” accessed: 11/23/2011. [Online]. Avail-
able: https://www.schneideroptics.com/Ecommerce/CatalogltemDetail.aspx?CID=

13771ID=5966

[3] “Compact Fixed Focal Length Lenses - Edmund Optics,” 2011, accessed: 11/23/2011.
[Online]. Available: http://www.edmundoptics.com/products/displayproduct.cfm?

productid=3070

[4] D. Mortari, M. Samaan, and C. Bruccoleri, “The pyramid star identification technique,”

Navigation, vol. 51, pp. 171-183, 2004.

[5] C. Padgett and K. Kreutz-Delgado, “A grid algorithm for autonomous star identifica-

tion,” IEEE Trans. Aerospace Electron. Syst., vol. 33, pp. 202-213, 1997.

[6] “Demo Kits - MT9P031112STMD - Aptina Imaging,” accessed 11/23/21011. [Online].

Available: http://www.aptina.com/products/demo_kits/mt9p031i12stmd/
[7] CubeSat Design Specification, The CubeSat Program Std., Rev. 12.

[8] M. Swartwout, “A brief history of rideshares (and attack of the CubeSats),” in Aerospace

Conference, 2011 IEEE, 2011.

95

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

“UTIAS/SFL - CanX-1 Mission Objectives,” 2001, accessed: 11/23/2011. [Online].

Available: http://www.utias-sfl.net /nanosatellites/CanX1/

M.Thompson, “Michael’s list of CubeSat satellite missions,” June 2009, accessed:

11/23/2011. [Online]. Available: http://mtech.dk/thomsen/space/cubesat.php

K. Sarda, C. Grant, S. Eagleson, D. K. A. Shah, and R. Zee, “Canadian advanced
nanospace experiment 2 orbit operations: One year of pushing the nanosatellite perfor-
mance envelope,” in Proceedings of the 28rd Annual AIAA/USU Conference on Small

Satellite, 2009.

A. Schwarzenberg-Czerny, W. W. Weiss, A. Moffat, R. Zee, S. Rucinski,
S. Mochnacki, J. M. M. Breger, R. Kuschnig, O. Koudelka, P. Orleanski,
A. P. A. Pigulski, and C. Grant, “The BRITE nano-satellite constellation mission,”
accessed: 11/23/2011. [Online]. Available: http://www.utias-sfl.net/docs/

LivePapersAsOfJan2011/BRITE-COSPAR2010-PaperSR-WW-REZ-SM-AS-TM.pdf

M. Smith, S. Seager, C. Pong, D. Miller, G. Farmer, and R. Jensen-Clem, “Exoplan-
etSat: detecting transiting exoplanets using a low-cost CubeSat platform,” in Space

Telescopes and Instrumentation 2010: Optical, Infrared, and Millimeter Wave, 2010.

C. Liebe, “Accuracy performance of star trackers - a tutorial,” IEEE Transactions on

Aerospace and FElectronic Systems, vol. 38, no. 2, pp. 587-599, April 2002.

C. Cole and J. Crassidis, “Fast star-pattern recognition using planar triangles,” J. Guid.

Control. Dynam., pp. 1283-1286, 1994.

M. Kolomenkin, S. Pollak, I. Shimshoni, and M. Lindenbaum, “Geometric voting al-

gorithm for star trackers,” IEEE Transactions on Aerospace and FElectronic Systems,

56

vol. 44, no. 2, 2008.

[17] D. Mortari, “Search-less algorithm for star pattern recognition,” J. Astronaut. Sci.,

vol. 45, pp. 179-194, 1997.

[18] G. Lerner, Three-Axzis Attitude Determination, J. Wertz, Ed. D. Reidel Publishing

Co.: D. Reidel Publishing Co., 1978.

[19] M. Shuster and S. Oh, “Attitude determination from vector observations,” Journal of

Guidance and Control, vol. 4, no. 1, pp. 70-77, Jan—Feb 1981.

[20] F. Markley, “Attitude determination using vector observations and the singular value

decomposition,” J. Astronaut. Sci., vol. 38, no. 3, pp. 245-258, 1988.

[21] J. Enright, D. Sinclair, C. Grant, G. McVittie, and T. Dzamba, “Towards star tracker
only attitude estimation,” in 24th Annual AIAA/USU Conference on Small Satellites,

2010.

[22] “Stellarium,” accessed: 11/23/2011. [Online|. Available: http://www.stellarium.org/

[23] M. Samaan, D. Mortari, and J. Junkins, “Nondimensional star idenification for uncali-

brated cameras,” J. Astronaut. Sci., vol. 54, no. 1, 2011.

[24] J. Christian, “Optical navigation for a spacecraft in a planetary system,” Ph.D. disser-

tation, The University of Texas at Austin, 2011.

a7

Vita

Christopher Ryan McBryde was born in Winter Park, FL. After graduating with
an International Baccalaureate diploma from Winter Park High School in 2006, he enrolled
at the University of Florida in Gainesville, FL. During this time there, he completed two
summer internships with Florida Turbine Technologies, Inc. in Jupiter, FL. Christopher
graduated summa cum laude from the University of Florida in 2010. He enrolled in graduate
school for orbital mechanics at the University of Texas at Austin the following fall under

the guidance of Dr. E. Glenn Lightsey.

Permanent address: mcbryde@utexas.edu

This thesis was typeset with ITEX' by the author.

TIATEX is a document preparation system developed by Leslie Lamport as a special version of Donald
Knuth’s TEX Program.

o8

