
I I I1

1569 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL 10, NO 12, DECEMBER 1991

Short Papers
A State Assignment Procedure for Single-Block

Implementation of State Charts

Doron Drusinsky-Yoresh

Abstract-State charts have been investigated recently as a powerful
specification language for control structures. They extend classical fi-
nite state machines (FSM’s) in several ways, catering mainly for hier-
archy, concurrency, and communication. We present a novel, simple,
single-block implementation scheme for state charts, which uses a sin-
gle conventional combinational-logic block and a state register. The
most attractive feature of the proposed scheme is the absence of com-
munication. It eliminates the need for communicating FSM’s owing to
an older realization method, and does so without having to account for
all state configurations implied by concurrency. We investigate the state
encoding conditions for our implementation and suggest an appropri-
ate optimization technique.

I. INTRODUCTION
Finite state machines (FSM’s) have constituted one of the main

formalisms underlying the prevailing approaches for the descrip-
tion and implementation of hardware control units. Their advan-
tages are mainly their simple semantics as well as their simple and
regular implementation scheme, based on a combinational-logic
unit and a state register, illustrated in Fig. 1.

Typically, FSM’s are pictorially represented by state diagrams.
These diagrams, however, are inherently sequential and flat. ’ Re-
cently, an attempt at overcoming these limitations has been made
with the advent of state charts, [7], [9], which extend state dia-
grams to cater for hierarchy, concurrency, and synchronization,
while retaining their formality and visual nature. In a recent paper
[7], we investigated their use for hardware description and synthe-
sis.

One of the major drawbacks of state charts is the absence of a
simple, easy-to-implement implementation method that will be rea-
sonably economical in terms of VLSI resources. In this paper we
investigate a novel implementation scheme based on the classical
model of Fig. 1, namely, a single combinational-logic block and a
state register. In Section 111, we investigate the sufficient conditions
for this scheme to realize state charts correctly. In Section IV we
investigate the state-assignment optimization problem for this im-
plementation scheme.

The only existing synthesis method for state charts in the liter-
ature is that of [7]. There, the suggested synthesis technique is
asymptotically efficient for very large state charts, where the state
chart tree out-degree is assumed to be of constant size with respect
to the number of states in the state chart. It is based on a tree of
communicating FSM’s which is isomorphic to the state chart tree.

Manuscript received February 9, 1989; revised June 27, 1990. This pa-
per was recommended by Associate Editor R. K. Brayton.

A shorter version of this paper was presented at the SASHIMI-90 Work-
shop on Synthesis, Japan, Oct. 1990.

The author was with the CAD Department, Semiconductor Group, Sony
Corporation, 4-14-1 Asahi-cho, Atsugi-shi, Kanagawa-ken 243, Japan. He
is now with SSL, Sony, 61 1-B River Oaks Parkway, San Jose, CA 94087.

IEEE Log Number 9 100302.
‘Throughout, we shall refer to state diagrams as FSM’s. The exact mean-

ing should be clear from the context.

combinational-

logic

state register

I
k k
I 4

Fig. 1. Conventional FSM implementation scheme.

The major drawback of this method derives from its multiple-block
implementation scheme, where several communicating FSM’s, ar-
ranged in a tree structure, realize the state chart. The communi-
cation and synchronization messages within the FSM tree require
considerable care to be implemented correctly. This is especially
true for submicron technologies, where communication delays are
dominant. Also, the old method is inefficient with respect to area
and speed for small and medium sized state charts, where constant
factors play an important role, and it is sensitive to other parame-
ters (e.g., the out-degree of the state chart tree). In Section I1 we
present a brief overview of the state chart formalism and the im-
plementation method of [7].

The major contribution of this method is its handy implementa-
tion scheme. Having to deal only with a single combinational-logic
block and a state register, we managed to make the actual low-level
implementation of state charts identical to that of a conventional
FSM, thus enabling the use of most CAD tools built for FSM im-
plementation (e.g., PLA optimization techniques). This is done
without having to enumerate all state configurations implied by
concurrency and without any state blow-up caused by the power of
high-level transitions implied by hierarchy.

Other related synthesis methods are FSM synthesis and Petri-net
synthesis. FSM synthesis is related as follows. Given a state chart,
one can unfold its concurrency and hierarchy and generate an
“equivalent FSM,” namely, a sequential state machine that will
accept (and produce) the same formal language. This is done es-
sentially by considering the state set defined by the Cartesian prod-
uct of the state sets within the state chart [3]. This process can be
automated so that one can consider the following alternative syn-
thesis method for state charts: 1) convert the state chart into an
equivalent FSM and 2) synthesize the FSM using existing CAD
tools. However, existing results exhibit exponential lower bounds
for the conversion step [8]. Consequently, this method becomes
useless even when small degrees of concurrency exist in the state
chart. For this reason we shall not review conventional FSM syn-
thesis methods.

0278-0070/91$01.00 0 1991 IEEE

ET 1

1570 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. IO, NO. 12, DECEMBER 1991

Petri nets (PN’s) have an extensive body of literature (cf. [14]).
In their finite resource versions, PN’s resemble nondeterministic
FSM’s, which allow many simultaneous computation paths. PN’s,
however, do not incorporate hierarchy as part of their syntax. Con-
sequently, there is no known method for emulating state charts on
finite-resource PN’s without using extensive communication. As
pointed out later in this paper, the major difficulty in synthesizing
state charts is due to the combination of hierarchy and concurrency.
For each feature alone, there exist relatively simple implementa-
tion methods. For example, one recent implementation method for
PN’s [l] uses a 1-hot state assignment (also suggested in [15] for
nondeterministic FSM’s), later optimized so that sets of “exclu-
sive” places (i.e., places that are never reached simultaneously)
use a logarithmic number of bits. This is essentially what our
method does when the state chart incorporates concurrency without
hierarchy (;.e, when it is a set of concurrent FSM’s), with the ex-
ception that in our case these sets of “exclusive” states are given
syntactically by the state chart whereas for PN’s one must find them
somehow. When the state chart has no concurrency, the equivalent
FSM is not exponential and FSM synthesis tools are indeed rele-
vant.

11. STATE CHARTS, LANGUAGE, DEFINITIONS, A N D OLD-

The state chart formalism was introduced in [9] as a visual for-
malism for specifying the behavior of complex reactive systems
[7], [IO]. We shall not give their formal syntax and semantics, of
which several versions exist [3], [I 11-[13], but rather review their
behavior through the traffic-light controller example of [7]. Fig.
2(a) describes the behavior of a traffic-light controller whose I/O
interface is described in Fig. 2(b). There are two sets of lights: one
is positioned over the main road and the other is over the secondary
road. During the day (Day = = 1) the controller operates according
to one of two possible programs, whereas during the night it op-
erates according to a special night program. The controller can be
operated manually as well (Auto = =O). In this mode whenever a
policeman pushes the Police button, the lights altemate. A hidden
camera can be operated by the controller only when it is in AU-
TOMATIC mode. An ambulance signal can arrive (Amb = = I) ,
notifying the controller that an ambulance is approaching the junc-
tion. Then the lights are set according to the ambulance’s direction,
and all other events are ignored. The controller can receive an error
message (Errin = = l) , which will cause yellow lights to flicker.
Another possibility for an ERROR occurs when the controller op-
erates manually for more than 15 min without a policeman pushing
the police button. A reset signal resets the controller to the AU-
TOMATIC state. Note that this state chart is not given in detail;
such details are available in [7], whereas a more elaborate descrip-
tion of the formalism is to be found in [9], and formal syntax and
semantics are available in [3] and [1 I].

In Fig. 2(a), we have exclusive states, which can never be reached
simultaneously (e.g., DAY and NIGHT), and orthogonal states,
which can be reached simultaneously (e.g., AUTOMATIC and
CAMERA). Note that these relations are symmetric and not tran-
sitive; e.g., DAY and AMBULANCE are exclusive and so are
AMBULANCE and CAMERA, but DAY and CAMERA are not;
they are orthogonal. We have basic states (e.g., AMBULANCE)
and superstates (e.g. LIGHTS, CONTROL, NORMAL). We use
default entrances (e.g. the entry to AUTOMATIC within NOR-
MAL). We have high-level transitions, such as the Errin transition
to ERROR, which is equivalent to drawing all transitions that lead
from any configuration within OPERATE to the default state of

IMPLEMENTATION OVERVIEW

TRAFFIC-LIGHT-CONTROLLER
OPERATE

I

AMBULANCE

LIGHTS
An FSM for explicitly controlling the lights

CONTROL

/ NORMAL

I
AUTOMATIC

NIGHT

An FSM

executes

nights

program

An FSM that

executes

one of two

day programs

MANUAL

An FSM

responds

to policemans

CAMERA
An FSM that operates a hidden camera

An FSM that flashes yellow lights

(a)

Errin 3
Auto TRAFFIC LIGHT

CONTROLLER

Reset

I : k e d , Yellow, Green

+
. Other control signals

(b)

Fig. 2. (a) Traffic-light controller of [7]. (b) U0 interface for the traffic-
light controller.

ERROR. We also have flexible concurrency, where concurrency is
described at any hierarchical level, without causing sequential de-
scriptions to become an awkward exception. Hence, in Fig. 2(a)
CAMERA is orthogonal to AUTOMATIC, but LIGHTS is orthog-
onal to both of them, on a much higher level. Sometimes we think
in terms of concurrent processes, where several states that are
reached simultaneously are considered as concurrent processes. We
call such an element a state configuration and denote it as a tuple
of states. Note that because of the flexible-concurrency feature, the
number of processes in a state configuration is not necessarily fixed.
We will see in the sequel that this is the reason for naive state
assignments for state charts to be incorrect. Finally, intemal com-
munication between concurrent superstates is possible; throughout
this paper we shall assume that such communication is operation-

I I I1

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 10, NO. 12, DECEMBER 1991

vl , 1 V l -
v 2 , 1 v 2 -
v3, 7 v3 @

V 4 , l v4 -

1571

A

B -______- - - - - - - -

I

c1

“4

\

\

- ul , -U1 - u2, -U2

- u3,- U3

B (AND) S1 (basic) (AND)

/ \

D (AND)
e---\

J””Y<
S12 S13 514

(basic) (basic) (basic) (basic)

/”Y s11

s10 /i‘T SQ sa

(basic) (basic) (basic)

(C)
Fig. 3. (a) State chart. (b) Corresponding I/O interface. (c) State chart tree

induced by the state chart of (a).

ally defined as a delayed feedback loop, from the appropriate out-
put port to the corresponding input port of the black box.

Throughout the rest of this paper we shall use the state chart of
Fig. 3(a), which describes the (complex) behavior of the black box

FSM for A

r h

Fig. 4. FSM tree 9 for the state chart of Fig. 3.

illustrated in Fig. 3(b), with four input channels, each of which
receives U, (meaning U, = 1) or T U , (U, = 0), i = 1, 2, 3, 4, and
three output channels, each of which produces U, or 1 U (, i = 1, 2,
3. Note how the state chart svntax induces an AND/OR tree, where
hierarchy and concurrency are replaced with OR and AND relation-
ships, respectively, as illustrated in Fig. 3(c). This state chart tree
is frequently used for the definition of various important relations,
one of which is the least common ancestor (LCA) relation, where
the LCA of S, and S, is E, the LCA of S, and SI3 is D, and the
LCA of S8 and SI5 is C. Now, two states are formally defined as
exclusive if their LCA is an OR state, and as orthogonal otherwise.
Also, the state chart tree serves as the basis for the implementation
method of [7], which will be reviewed in the sequel.

Intuitively, the semantics of state charts can be understood as
follows. The state chart computation visits state configurations,
which are elements of a Cartesian product. For example, starting
at SI (as indicated by the default transition), when input ul is re-
ceived, the next state configuration will be (S,, s,), and the output
event u I is produced. Next, when the pair of inputs (u ~ , v3) is
received, the following state configuration is (S3, S 5) , and the tri-
ple (U , , U*, u 3) of output events is produced. The transitions S, -+

S3 and S, + S5 are said to be orthogonal. Hence, computation takes
place in the form of global transitions between state configurations,
global transitions which are composed of one or more orthogonal
state chart transitions, each of which either encapsulates one or
more transitions from basic states, owing to hierarchy, or is (re-
cursively) a global transition.

Clearly, these examples illustrate, on the one hand, the tremen-
dous flexibility within the language and, on the other hand, the
difficulty of emulating this behavior in a simple way. Currently,
more than one version of formal semantics exists for the formalism
[3], [11]-[13], differing mainly in the notion of time and commu-
nication. Hence, our implementation scheme will not be based on
formal semantics but rather on the intuitive behavior of the main
features of state charts.

The synthesis methodology of [7] maps the state chart tree onto
an isomorphic tree of communicating FSM’s, one FSM for each
superstate. Such an implementation of the state chart of Fig. 3 is
illustrated in Fig. 4. Each FSM implements a single superstate and
its immediate substates. Hence, FSM DI implements an FSM with
two states, E and SII, and an extra idle state, whereas FSM E im-
plements an FSM with four states, S8, S9, Slo, and idle (see [7]) .

... ..

LEI
I

1572 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. IO, NO. 12, DECEMBER 1991

El
E l

El
. - -.

Later the FSM tree is laid out using well-known layout techniques
for trees. Hence, this synthesis methodology is efficient when d,
the state chart tree out-degree, is constant with respect to n, the
number of states within the state chart. This, of course, is true only
if n is extremely large. Also, special communication signals are
generated for transitions that cross state boundaries, such as the
transition from S, to S5. Naturally, such communication overhead
degrades performance significantly. The biggest drawback of this
implementation scheme, however, is its complexity. (The FSM tree
requires special attention for the correct implementation of the in-
ter-FSM communication and synchronization, which is a nontrivial
design problem.)

111. THE SUGGESTED SINGLE-BLOCK IMPLEMENTATION’

In order to reduce the variety of possible transitions within a
state chart, we use the abstraction step illustrated in Fig. 5; namely,
we replace high-level transitions with a primitive form of concur-
rency. Both state charts in Fig. 5 are equivalent; in the original
state chart the a, 0 transitions take place from either A , or A,,
whereas in the transformed one they take place concurrently with
the activity within A, which has the same final effect. This is true
no matter how high the states are within the hierarchy; we simply
add an orthogonal state to the superstate A (the original source of
the high-level transition), which consists of precisely one basic
substate A’, and change the corresponding high-level transition so
as to depart from A’. Also, transitions will always be used with
basic states as their target states (e.g., instead of D -+ D we will
use D --t (S,, SI3)). These two transformations are done for every
transition in the state chart. Fig. 6 is the basic structure of the
transformed state chart equivalent to that of Fig. 3. Hereafter, we
shall refer only to the transformed state chart, and we will omit the
prime.

Consequently, there is now only one general type of state cham
transition, namely, a quadruple (X, Y, a, @), where X and Yare
tuples of basic states, representing the transition’s source and tar-
get, respectively, a is the transition’s label (input), and /3 is the
output produced when this transition is traversed. The transition’s
source and target are subtuples of a state configuration (in our ex-
ample, (E, SI3) is a subtuple of (E, SI3, SI,)).

Now, consider the FSM emulation method of Fig. 1. Here, there
is an isomorphism between the FSM state set and the code words
stored in the state register. Also, the FSM transition function is
emulated by the combinational logic. Obviously, if we try to em-
ulate a state chart in the same way, we might need an enormous
combinational-logic block to emulate an exponential number of
global transitions between state configurations induced by concur-
rency. Hence, we shall emulate all state chart transitions in the
combinational-logic block in a way which will preserve the global
behavior of the state chart. Our implementation scheme is illus-
trated in Fig. 7. The combinational logic implements the original
state chart transitions in the conventional way; a point on the LSI
grid which represents a transition (i.e., the value at this point is 1
iff the transition is traversed) is called a term. For example, in the
PLA of Fig. 8(a), rows 1 through 24 represent 24 terms.

Based on Fig. 7, a state chart implementation consists in imple-
menting all terms for all state chart transitions, in a way that is
similar to the conventional FSM implementation. For a transition
(X , Y, a, P), the source block contains a conjunction of the code
words that represent the basic states within X (and of a, the inputs).

’All methods presented in the following sections are protected by a pend-
ing patent.

A

m
m
I

Fig. 6. Transformed state chart structure.

For a given basic state (or a given output), the target block contains
a union of all terms that represent transitions whose target tuples
contain this basic state.

State assignment is the crucial step within this implementation
if one wants to implement both hierarchy and concurrency cor-
rectly. We shall further elaborate this point through a sequence of
three abstractions. First, consider the extremely restricted case
where state charts are restricted to be FSM’s only (i.e., no con-
currency or hierarchy is permitted). In this case, any log n bit un-
ambiguous code assignment suffices for a correct implementation
of the model of Fig. 1. Next, Assume that state charts are permitted
to have concurrency, but no hierarchy. In other words, consider

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 10, NO. 12, DECEMBER 1991

source

terms

-
i target block

>

present
config.

Configuration register

next
config.

I 1 0 I
Fig. 7 . An implementation scheme for state charts.

only state charts that consist precisely of m concurrent FSM’s. In
this case we can simply derive a state assignment for each FSM
individually, and then for every state configuration, concatenate
the appropriate individual code words into one wider code word.
Note that in this case, an unambiguous individual state assignment
for each FSM will suffice. Finally, we end our abstraction process
in the general case where both hierarchy and concurrency exist.
Now, not every such individual state assignment is correct. Con-
sider a state assignment where 0 and 1 are assigned to Yo to rep-
resent S2 and &, respectively, whereas 00, 01, and 10 are assigned
to Yl and Y, to represent SI5, SI6, and SI,, respectively, in Fig. 6.
Now, when the transition SI -+ (S,, S,, B) is traversed, Y, and Yz
are not affected by the target block, and might be assigned an er-
roneous code. In fact, when a PLA is used, this code will be 00,
so SlS will become part of the next configuration. Hence, as dis-
cussed in the introduction, the main cause of difficulty is that be-
cause of hierarchy, state chart concurrency is flexible, so one can-
not naively assign a fixed portion of a code word to each process.
For this reason, state chart state assignment is not a naive extension
of an FSM state assignment, as in the restricted case discussed
earlier.

We shall distinguish between state assignments and conjigura-
tion assignments. A configuration assignment is a code that rep-
resents state configurations, whereas a state assignment is a code
that maps basic states to binary strings. Our goal is to find a state
assignment such that the induced n,-bit configuration assignment
will be unambiguous. We define the U operator to extend the bi-
nary “or” operator with VUa = alJ9 = a for a = 0, 1, g. Now,
for a well-dejned state assignment, we require the following state
chart state assignment conditions:

1) There exists a 1-1 function p : basic states + {0, 1, tri-
nary strings, where g in coordinatej means that state variable

does not depend on the current basic state; p is considered
the state chart state assignment.

2) There exists a 1-1 function 7: state configurations + (0,
lJnb; this is the (conceptual) configuration assignment. Here-
after, 7((S,, * * - , &)) = p(SI)U . * . Up(&).

1573

YO Y1 Y2 Y3Y4Y5 Y6Y7 Y8Y9 Y10 Y11

(a)

statechart transition

S1 -+ B
s 2 + s 3
s 3 --t s 2
s 4 +s5

S5 + B
B + C
C + B
s 7 + s 5
S7 + D

<E,S13> + S7

S13 + 512
S12 -+ S14
S14 + S12
S12 + SI3
D - + D
S8 + s11
s11 4 s10
s10 -+ s 9
S9 -+ S8
S6 --t S7
S15 -+ S16
S16 + S17
S17 4 S15
S17 -+ C

term no.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

(b)
Fig. 8. (a) PLA implementation for the state chart of Fig. 3. (b) Transition

to term mapping for (a).

The first condition describes the nonambiguous state assignment
we are looking for, whereas the second condition guarantees that
the configuration assignment is nonambiguous and (because it per-

1574 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. IO, NO. 12, DECEMBER 1991

mits binary strings only) guarantees that code words, in their entire
length, describe legal configurations in a precise way. Hence, these
conditions ensure that inductively, as computation proceeds, the
binary code words of length nb represent, in a unique and precise
way, only legal state configurations. It is the responsibility of the
combinational logic to implement the induction correctly with the
correct implementation of terms as described earlier. Stated infor-
mally, a well-defined state assignment p is such that when code
words of elements of a state configuration are summed (U), the
resulting configuration assignment T is well defined (i.e., binary)
and nonambiguous. Hence, in the previous example, the 3-bit pre-
fixes of p(S2), p(S4), and p@), are m, m, and m, respectively;
thus the 3-bit prefix of r(&, S4, B) is w h i c h is not well defined.

A trivial well-defined state assignment resembles the well-known
FSM 1-hot state assignment. Here, nb = n, where n is the number
of basic states in the state chart (e.g., in Fig. 6 , n = 21). We assign
to p(Si) a tuple of nb trinary symbols, where 1 is assigned to the i th
variable, 0 is assigned to thej th variable for every j # i such that
Sj and Si are exclusive, and 9 is assigned to every other symbol.
For our example, the 1-hot state assignment for SI3 and SII are,
respectively,

(where we consider B, C, D, E to be SI8, S19, S20, and S,,, respec-
tively).

Theorem I: The 1-hot state assignment satisfies the state chart
state assignment conditions.

Sketch ofProofi Clearly p is 1-1. That r maps configurations
to (0, l}nb follows from the fact that for every configuration c =

(SI, - * , Sk) and every i 5 nb, the ith symbol of the code word
p(Sj) for some Sj, j 5 k , is not $4. This is because either Si is in c
or it is exclusive to some such Sj in c; otherwise the configuration
is not “complete” (some concurrent process is not described in c).
Consider any two different configurations cI, c2. Clearly, there must
be two exclusive basic states Si in cI and Sj in c,; hence ~(CI) and
T(c,) differ in the ith andj th symbols. Thus, is 1-1. Q.E.D.

IV. EFFICIENT STATE ASSIGNMENTS

As with conventional FSM state assignment, where the total im-
plementation area is optimized (e.g., [2]), we wish to optimize the
total area consumed by our implementation. This includes two main
aspects: minimizing the number of terms and minimizing the num-
ber of state variables. Term minimization is outside the scope of
this paper mainly because it seems to be tightly coupled with state
chart minimization, which has not yet been s01ved.~

Hence, we shall concentrate on the minimum state-encoding
problem, where a state assignment is sought that is of minimum
width (i.e., nb is minimum). This state assignment should be con-
strained to satisfy the state assignment conditions described ear-
lier.4 We do not know how to solve this problem in general. In-
stead, we shall investigate one approach, the exclusivity encoding
state assignment. Generally speaking, it is identical to the 1-hot
assignment, except that sets of basic states, called exclusivity sets,
are coded with a logarithmic number of bits. Formally, we split

’In [5] there is a minimization theorem for hierarchical FSM’s that are

41t might be the case that a shorter state assignment exists for a sequential
state charts without concurrency.

machine that enumerates all possible state configurations explicitly.

the set of basic states into m pairwise disjoint exclusivity sets R I ,
, R,, where each such set consists of states that are pairwise

exclusive. For the example of Fig. 6, we can divide the basic sets
into {s1, s,, s3, S6, S7, Sg, S,, Slo, SI,), {S4, S5, S12, SI39 S14},

{SI,, SI6, SI,}, {a, E}, {D}, and {C}. Now we encode all states
that belong to a common set R, with [log !Ri l l bits instead of the
(Ril bits used by the 1-hot assignment. This reduction is possible
because all states in each such set Ri, i E 1, . . . , n, are pairwise
exclusive. These groups of bits are then concatenated to form a
state configuration code word. Hence, in the above example, we
use 4, 3, 2, 1, 0, and 0 bits, respectively. However, a subtle point
now emerges. Consider, in the above example, states Sls and S2 .
They are exclusive, and in the above decomposition they belong to
two different exclusivity sets. As a result, when the present config-
uration is (S,, S4), the pair of bits representing the exclusivity set
{SI5, S16, SI,} should represent a dummy state so that, say, (S 2 ,
S,, SI,) will not be represented. Formally, for the two exclusivity
sets Ri and Rj, when there is a basic state in Ri which is part of a
state configuration c in which no basic state of Rj is included, then
Rj needs a dummy state to ensure its exclusivity from other ele-
ments of c . Hence, when the present configuration is (S2 , S,) the
pair of bits representing {SI5, Sl6, SI7} should hold the code for a
dummy state.

Once such exclusivity is guaranteed, T becomes 1-1, and we can
conclude.

. . .

Theorem 2: The exclusivity encoding state assignment method
satisfies the state chart state assignment conditions.

The exclusivity encoding optimization problem (EEOP) is the ap-
propriate optimization problem, namely, the problem of splitting
the basic states into pairwise disjoint exclusivity classes R , , * * ,
R,, such that

is minimum, taking into account the need for dummy states as well.
We have investigated a simpler

where the need for dummy states is not considered. Note that the
solutions for both problems do not necessarily unify. For example,
the decomposition given above is EEOPl optimal for our example,
although not EEOP optimal. This is evident from the state assign-
ment in Fig. 8(a), where we have moved SI and S,, from the first
set to the second and forth sets, respectively, and thus saved one
state variable.

We say a state chart is m-concurrent if m is the maximal dimen-
sion consumed by any configuration. For example, the state chart
of Fig. 6 is 6-concurrent. The dimension m is defined recursively
over the state chart tree as

for a basic-state S, m (S) = 1;
, SI, m (S) = max for an OR state S with substates SI, * . .

{ m (S j) / i = 1 * * 1) ;
for an AND state S with substates SI, . * . , SI, m (S) =
C { m (S i) / i = 1 * * 1) .

The following lemmas reveal two important properties of

Lemma 3: An optimal solution for EEOPl for an m-concurrent

EEOPl .

state chart consists of m exclusivity sets.

I I I 1

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. IO. NO. 12, DECEMBER 1991 1575

Sketch of Proof: Clearly, at least m exclusivity sets are re-
quired, one for each basic state in the configuration that has m pro-
cesses. If more than m sets are used, then one set R is redundant
in the sense that for every basic state S E R there is an exclusivity
set Rj to which S can be appended (otherwise the system is not
m-concurrent but has a higher degree of concurrency, thus reducing
the total cost). Q . E . D .

As a consequence of Lemma 3, given an m-concurrent state chart,
an algorithm for solving EEOPl consists of finding m, and then
finding the m largest exclusivity sets.

Given a state chart AND/OR tree A , we define a trace to be a
subtree A’ that contains A’s root, and satisfies the following:

= 0 0, which means an illegal next state in C,. This is because
there is no specified transition for the input 1 v4 when in SIs of C,.
The problematic issue here is that detecting such a situation of un-
specified transitions in an m-concurrent state chart is NP-complete
in the number of input channels, and PSPACE-complete in m [3],
[4]. This is a general problem in concurrent systems and is dis-
cussed in detail in [4]. It is outside the scope of this paper, and we
would like to mention only that the solutions suggested in [4] are
applicable here too. Yet another interesting phenomenon is non-
determinism. In Fig. 3, for example, the configuration (S 2 , S 5) has
two consecutive configurations for the input tuple (1 v l , U*, u3,
U,). The I-hot state assignment can emulate this nondeterminism
as a form of concurrency similar in behavior to PN concurrency.

1) If S iS an OR state in A’, then all of S’s substates in A are its
substates in A’;

2) If S iS an AND state in A‘, then one of S’s substates in A is
its only substate in A’.

As described in [3] and [4], nondeterminism in state charts is also
extremely difficult to detect, because of concurrency.

Although asymptotically more area-efficient (in fact, almost Op-
timal), the method of [7] might generate an implementation that is

The following lemma follows.
Lemma 4: Given a state chart S, the set of leaves of a trace of S

forms an exclusivity set, and every exclusivity set within S is a
subset of the set of leaves of some trace of S.

Sketch of Proof: First, note that the least common ancestor
of any two basic states (i.e., leaves) which belong to a common
trace is always an OR state, and that the least common ancestor of
any two basic states which do not belong to a common trace is
always an AND state, so the first part of the claim follows. For the
second part, given an exclusivity set E, consider the subtree T of
the state chart tree whose set of leaves is precisely E. Clearly, an
AND state vertex in T can have only one substate because elements
of E are pairwise exclusive. Hence T is a subtree of a trace of S,
with a common root, so the second claim holds as well. Q . E . D .

Consequently, finding a maximum-cardinality exclusivity set is
equivalent to finding a trace with a maximum number of leaves.
Such an algorithm is induced by the following recursion for the
computation of a trace T(S) , with a maximum number of leaves,
N(T(S)) .

For a basic state S, T(S) = S, and N (T (S)) = 1.
For an OR state S with substates SI, . . . , S I , T (S) is the tree
whose root is S with substates SI, . . . , S I , which in tum are
roots of the subtrees T(SI) , . , T(SI) , respectively; N (T (S))
= N(T(Si)) .
For an AND state S with substates SI , . . . , SI, T (S) is the tree
whose root is S with one substate Si such that the subtree T(Si)
rooted at Si is the subtree with a maximum N(T(Si)) ; N (T (S))
= maxi=l...IN(T(Si)).

V. DISCUSSION
Fig. 8(a) is a PLA implementation of the state chart of Fig. 3,

according to the decomposition described previously. Fig. 8(b)
shows the mapping between state chart transitions in Fig. 3 and the
terms of the PLA. The PLA consumes an area of (16 x 2 + 15)
X 24 = 1128 transistors, and the state register consumes an ap-
proximate area of 30 X 12 = 360 transistors. Hence the total im-
plementation area is 1488 transistors. The 1-hot implementation
consumes a total of (26 X 2 + 25) x 24 + 30 x 22 = 2508
transistors.

An interesting aspect of the implementation has to do with un-
specified inputs. Assume, for example, that in Fig. 3 the present
configuration is <S6, SIs) and that the input (U,, v2, 1 u 3 , 1 u 4)
has been received. Clearly one would expect the next configuration
to be (S,, Sls) . All terms of Fig. 8(a), however, will specify Y6 Y,

inferior to the proposed implementation, as exemplified by the state
chart of Fig. 3, for which an implementation according to the old
method consumes a total PLA area of between 850 and 1450 tran-
sistors, and a total state register area of 30 X 16 = 480 transistors.
The range depends on the type of implementation with respect to
unspecified transitions for the problem discussed above, where the
smaller implementation is not entirely correct in this respect and
the larger one is. In addition, this implementation includes exten-
sive inter-FSM communication wires, two to four wires between
each pair of machines. The cost of this overhead depends on the
layout and is estimated to be area equivalent to more than 400 tran-
sistors. Moreover, if one wishes to reduce inter-FSM synchroni-
zation problems, more flip-flops are required to latch inter-FSM
communication signals. Obviously, when these FSM’s are encoded
with a 1-hot state-assignment, the consumed area is larger.

VI. CONCLUSION

We have presented a simple, single-block implementation meth-
odology for state charts, together with an appropriate optimization
technique. Our methodology does not require communication and
synchronization between FSM’s, which makes it easy to implement
and verify and allows the use of existing CAD tools (e.g., PLA
optimization for the combinational logic generated by this method).
Although asymptotically inferior, our scheme is expected to be su-
perior to the previously known method for the synthesis of state
charts with a state chart tree out-degree that is not constant with
respect to the number of basic states, namely, for small and me-
dium sized state charts and even some large ones. Also, its effi-
ciency does not depend on the number of edges that cross state
boundaries.

REFERENCES

[l] A . Amroun and M. Bolton, “Synthesis of controllers from Petri net
descriptions and application of Ella,” in Proc. IFIP Workshop on
Applied Formal Methods for Correct VLSI Design, Nov. 1989, pp.
51-74.

[2] G. De Micheli, R. K . Brayton, and A. Sangiovanni-Vincentelli,
“Optimal state assignment for finite state machines,” IEEE Trans.
Computer-Aided Design, vol. CAD-4, pp. 269-285, July 1985.

[31 D. Drusinsky, “On synchronized statecharts,” Ph.D thesis, The
Weizmann Institute of Science, Rehovot, Israel, 1988.

[4] D. Drusinsky, “State assignments for extremely concurrent finite-state
machines,” in Proc. IFIP Workshop on Applied Formal Methods for
Correct VLSI Design, Nov. 1989, pp. 198-205; also presented in the
1989 SASHIMI Workshop, Osaka, Japan.

[5] D. Drusinsky, “Symbolic-cover minimization of fully 1-0 specified

1576 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 10, NO. 12, DECEMBER 1991

finite state machines,” IEEE Trans. Computer-Aided Design, vol. 9,

[6] D. Drusinsky, “A simple single-block implementation and efficient
state-assignments for statecharts,” presented at SASHIMI-90 Work-
shop on Synthesis, Japan, Oct. 1990.

[7] D. Drusinsky and D. Harel, “Using statecharts for hardware descrip-
tion and synthesis,” IEEE Trans. Computer-Aided Design, vol. 8,
pp. 798-807, July 1989; also, registered U.S Patent 4 799 141.

[8] D. Drusinsky and D. Harel, “On the power of cooperative concur-
rency,” in Proc. Concurrency ’88, 1988, pp. 74-103.

[9] D. Harel, “Statecharts: A visual formalism for complex systems,’’
Sci. Comput. Prog., vol. 8, pp. 231-274, 1987.

[lo] D. Harel and A. Pnueli, “On the development of reactive systems,”
in Logics and Models of Concurrent Systems, K. R. Apt, Ed. (Nato
AS1 Series). Berlin: Springer-Verlag, 1985, p. 477-498.

[l l] D. Harel, A. Pnueli, J . P. Schmidt, and R. Sherman, “On the formal
semantics of state charts,” in Proc. 2nd IEEE Symp. Logic in Com-
puter Science (lthaca, NY), 1987, pp. 54-64.

[12] C. Huizig, R. Gerth, and W. P. deRoever, “A compositional seman-
tics for statecharts,” Tech. Rep., Eindhoven University of Technol-
ogy, The Netherlands, 1987.

[13] C. Huizig, R. Gerth, and W. P. deRoever, “Modeling statecharts
behavior in a fully abstract way,” in Proc. Colloq. Trees in Algebra
and Programming, 1988, pp. 271-294.

[14] T. Murata, “Petri nets: Properties, analysis and applications,” Proc.
IEEE, pp. 541-580, Apr. 1989.

[15] 1. D. Ullman, Computational Aspects of VLSI. Rockville, MD:
Computer Science Press, 1984.

pp. 779-781, July 1990.

Decision Problems for Interacting Finite State
Machines

Doron Drusinsky-Yoresh

Abstract-Given a system of n interacting finite state machines
(FSM’s) and a state configuration, the reachability problem is to ex-
amine whether this configuration is reachable within the system. We
investigate the complexity of this decision problem and three of its de-
rivatives, namely l) verifying system determinism, 2) testing for the
existence of unspecified inputs to any FSM within the system, and 3)
testing for the exclusiveness of two intra-FSM signals. We prove that
these problems are all PSPACE-complete. We show the effect of these
problems on the state assignment process for concurrent systems of
interacting FSM’s.

I. INTRODUCTION

Logic synthesis of sequential finite state machines (FSM’s) is a
well-developed field of knowledge. There is a massive body of re-
search in this area, originating in the fundamental research of
Steams and Hartmanis [7], [8]. See, for example, [l] and [6].

In this paper we examine logic synthesis of concurrent FSM’s.
It is our belief that concurrent FSM’s will be increasingly used in
the future, as exemplified by the following three scenarios:

Consider a real-time control system; here, the real-time con-
straints impose hardware concurrency of several, perhaps

Manuscript received October 5, 1989; revised April 5, 1990, and August
7, 1990. This paper was recommended by Associate Editor R. K. Brayton.

A preliminary version of this paper was presented at the IFIP Workshop
on Applied Formal Methods for Correct VLSI Design (1989) and the Syn-
thesis and Simulation Meeting and International Interchange (1989).

The author was with the LSI-Logic Development Department, Sony Cor-
poration, Atsugi-shi, Kanagawa-ken 243, Japan. He is now with SSL, Sony,
61 1-B River Oaks Parkway, San Jose, CA 94087.

IEEE Log Number 9100303.

communicating, sequential controllers where, typically, each
controller is modeled as an FSM.
Consider a design task which is divided between design
groups, where each group designs a designated subsystem.
When several such subsystems are individually controlled by
a finite state mechanism, the whole system is conceptually
controlled by a system of communicating concurrent FSM’s.
Finally, consider the process of silicon compilation of a be-
havioral hardware description language (HDL). Convention-
ally, such a compilation output is an FSM for a control mech-
anism that generates the sequencing instructions for the
controlled data path. Naturally, with the advent of higher level
HDL’s (e.g., VHDL), and for increasingly sophisticated de-
signs, the controlled data path might be inherently concurrent
and hierarchical, requiring a network of concurrent FSM’s to
control it efficiently. Also, it seems quite natural to expect a
concurrent behavioral description to be implemented by many
controlling FSM’s, perhaps one for each sequential process
in the high level specification.

Hence, it is important to examine existing, predominantly se-
quential logic synthesis methodologies in the concurrent realm. To
date, this has not been thoroughly done.

In this paper we reexamine the well-known state assignment
methodology in this context. In Section 11, we examine three im-
plicit assumptions made by conventional state assignment tools and
review them in the light of concurrency. We describe appropriate
decision problems and analyze their complexity in Section 111.

11. MOTIVATION: STATE ASSIGNMENTS FOR SEQUENTIAL A N D

INTERACTING FSM’s

Consider the FSM of Fig. l(a) and its PLA implementation of
Fig. l(b). This PLA was generated by NOVA [13], a well-known
state assignment program, and embodies three typical assumptions
made by such a program:

1) Determinism (DET): the FSM is assumed to be determinis-
tic; i.e., for every state and every input there is at most one
next state. This assumption enables the state assignment pro-
gram to implement an n-state FSM with as few as log n state
variables.

2) Unspecified input (UT): if at some state there is an input
configuration that causes no next state (it triggers no transi-
tion; e.g., (a, 0) = (T, F) in state s3 of Fig. l(a)), then
it is assumed to be an “impossible” input for this state. In
other words, it is assumed to be the designer’s responsibility
to verify that such an incident does not occur. This enables
the state assignment program to exploit the free space for
optimization; hence, the PLA of Fig. l(b) generates s2 as the
next state in the above case. Note that in the conventional
FSM implementation scheme, where a state register is con-
nected to a combinational logic block, the combinational
logic always produces a (perhaps erroneous) next state.

3) Input and output orthogonality (100): the FSM is assumed
to have orthogonal (independent) inputs and outputs, i.e., all
combinations of signal values over the IO wires, except those
found to be impossible earlier, are possible. Hence, in Fig.
l(a) all four input configurations of (a, p) : (T, T) , (T, F) ,
(F , T) , and (F , F) , are possible, except for (a, 0) = (F ,
T) in state s3. This assumption is self-evident in the single-
FSM case, where the IO signals are connected to an unex-

0278-0070/91$01 .OO 0 1991 IEEE

