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Short Papers 
A State Assignment Procedure for Single-Block 

Implementation of State Charts 

Doron Drusinsky-Yoresh 

Abstract-State charts have been investigated recently as a powerful 
specification language for control structures. They extend classical fi- 
nite state machines (FSM’s) in several ways, catering mainly for hier- 
archy, concurrency, and communication. We present a novel, simple, 
single-block implementation scheme for state charts, which uses a sin- 
gle conventional combinational-logic block and a state register. The 
most attractive feature of the proposed scheme is the absence of com- 
munication. It eliminates the need for communicating FSM’s owing to 
an older realization method, and does so without having to account for 
all state configurations implied by concurrency. We investigate the state 
encoding conditions for our implementation and suggest an appropri- 
ate optimization technique. 

I. INTRODUCTION 
Finite state machines (FSM’s) have constituted one of the main 

formalisms underlying the prevailing approaches for the descrip- 
tion and implementation of hardware control units. Their advan- 
tages are mainly their simple semantics as well as their simple and 
regular implementation scheme, based on a combinational-logic 
unit and a state register, illustrated in Fig. 1. 

Typically, FSM’s are pictorially represented by state diagrams. 
These diagrams, however, are inherently sequential and flat. ’ Re- 
cently, an attempt at overcoming these limitations has been made 
with the advent of state charts, [7], [9], which extend state dia- 
grams to cater for hierarchy, concurrency, and synchronization, 
while retaining their formality and visual nature. In a recent paper 
[7], we investigated their use for hardware description and synthe- 
sis. 

One of the major drawbacks of state charts is the absence of a 
simple, easy-to-implement implementation method that will be rea- 
sonably economical in terms of VLSI resources. In this paper we 
investigate a novel implementation scheme based on the classical 
model of Fig. 1, namely, a single combinational-logic block and a 
state register. In Section 111, we investigate the sufficient conditions 
for this scheme to realize state charts correctly. In Section IV we 
investigate the state-assignment optimization problem for this im- 
plementation scheme. 

The only existing synthesis method for state charts in the liter- 
ature is that of [7]. There, the suggested synthesis technique is 
asymptotically efficient for very large state charts, where the state 
chart tree out-degree is assumed to be of constant size with respect 
to the number of states in the state chart. It is based on a tree of 
communicating FSM’s which is isomorphic to the state chart tree. 
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ing should be clear from the context. 
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Fig. 1. Conventional FSM implementation scheme. 

The major drawback of this method derives from its multiple-block 
implementation scheme, where several communicating FSM’s, ar- 
ranged in a tree structure, realize the state chart. The communi- 
cation and synchronization messages within the FSM tree require 
considerable care to be implemented correctly. This is especially 
true for submicron technologies, where communication delays are 
dominant. Also, the old method is inefficient with respect to area 
and speed for small and medium sized state charts, where constant 
factors play an important role, and it is sensitive to other parame- 
ters (e.g., the out-degree of the state chart tree). In Section I1 we 
present a brief overview of the state chart formalism and the im- 
plementation method of [7]. 

The major contribution of this method is its handy implementa- 
tion scheme. Having to deal only with a single combinational-logic 
block and a state register, we managed to make the actual low-level 
implementation of state charts identical to that of a conventional 
FSM, thus enabling the use of most CAD tools built for FSM im- 
plementation (e.g., PLA optimization techniques). This is done 
without having to enumerate all state configurations implied by 
concurrency and without any state blow-up caused by the power of 
high-level transitions implied by hierarchy. 

Other related synthesis methods are FSM synthesis and Petri-net 
synthesis. FSM synthesis is related as follows. Given a state chart, 
one can unfold its concurrency and hierarchy and generate an 
“equivalent FSM,” namely, a sequential state machine that will 
accept (and produce) the same formal language. This is done es- 
sentially by considering the state set defined by the Cartesian prod- 
uct of the state sets within the state chart [3]. This process can be 
automated so that one can consider the following alternative syn- 
thesis method for state charts: 1) convert the state chart into an 
equivalent FSM and 2) synthesize the FSM using existing CAD 
tools. However, existing results exhibit exponential lower bounds 
for the conversion step [8]. Consequently, this method becomes 
useless even when small degrees of concurrency exist in the state 
chart. For this reason we shall not review conventional FSM syn- 
thesis methods. 
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Petri nets (PN’s) have an extensive body of literature (cf. [14]). 
In their finite resource versions, PN’s resemble nondeterministic 
FSM’s, which allow many simultaneous computation paths. PN’s, 
however, do not incorporate hierarchy as part of their syntax. Con- 
sequently, there is no known method for emulating state charts on 
finite-resource PN’s without using extensive communication. As 
pointed out later in this paper, the major difficulty in synthesizing 
state charts is due to the combination of hierarchy and concurrency. 
For each feature alone, there exist relatively simple implementa- 
tion methods. For example, one recent implementation method for 
PN’s [ l ]  uses a 1-hot state assignment (also suggested in [15] for 
nondeterministic FSM’s), later optimized so that sets of “exclu- 
sive” places (i.e., places that are never reached simultaneously) 
use a logarithmic number of bits. This is essentially what our 
method does when the state chart incorporates concurrency without 
hierarchy (;.e, when it is a set of concurrent FSM’s), with the ex- 
ception that in our case these sets of “exclusive” states are given 
syntactically by the state chart whereas for PN’s one must find them 
somehow. When the state chart has no concurrency, the equivalent 
FSM is not exponential and FSM synthesis tools are indeed rele- 
vant. 

11. STATE CHARTS, LANGUAGE, DEFINITIONS, A N D  OLD- 

The state chart formalism was introduced in [9] as a visual for- 
malism for specifying the behavior of complex reactive systems 
[7], [IO]. We shall not give their formal syntax and semantics, of 
which several versions exist [3], [ I  11-[13], but rather review their 
behavior through the traffic-light controller example of [7]. Fig. 
2(a) describes the behavior of a traffic-light controller whose I/O 
interface is described in Fig. 2(b). There are two sets of lights: one 
is positioned over the main road and the other is over the secondary 
road. During the day (Day  = = 1) the controller operates according 
to one of two possible programs, whereas during the night it op- 
erates according to a special night program. The controller can be 
operated manually as well (Auto = =O). In this mode whenever a 
policeman pushes the Police button, the lights altemate. A hidden 
camera can be operated by the controller only when it is in AU- 
TOMATIC mode. An ambulance signal can arrive (Amb = = I ) ,  
notifying the controller that an ambulance is approaching the junc- 
tion. Then the lights are set according to the ambulance’s direction, 
and all other events are ignored. The controller can receive an error 
message (Errin = = l ) ,  which will cause yellow lights to flicker. 
Another possibility for an ERROR occurs when the controller op- 
erates manually for more than 15 min without a policeman pushing 
the police button. A reset signal resets the controller to the AU- 
TOMATIC state. Note that this state chart is not given in detail; 
such details are available in [7], whereas a more elaborate descrip- 
tion of the formalism is to be found in [9], and formal syntax and 
semantics are available in [3] and [ 1 I].  

In Fig. 2(a), we have exclusive states, which can never be reached 
simultaneously (e.g., DAY and NIGHT), and orthogonal states, 
which can be reached simultaneously (e.g., AUTOMATIC and 
CAMERA). Note that these relations are symmetric and not tran- 
sitive; e.g., DAY and AMBULANCE are exclusive and so are 
AMBULANCE and CAMERA, but DAY and CAMERA are not; 
they are orthogonal. We have basic states (e.g., AMBULANCE) 
and superstates (e.g. LIGHTS, CONTROL, NORMAL). We use 
default entrances (e.g. the entry to AUTOMATIC within NOR- 
MAL). We have high-level transitions, such as the Errin transition 
to ERROR, which is equivalent to drawing all transitions that lead 
from any configuration within OPERATE to the default state of 
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Fig. 2.  (a) Traffic-light controller of [7]. (b) U0 interface for the traffic- 
light controller. 

ERROR. We also have flexible concurrency, where concurrency is 
described at any hierarchical level, without causing sequential de- 
scriptions to become an awkward exception. Hence, in Fig. 2(a) 
CAMERA is orthogonal to AUTOMATIC, but LIGHTS is orthog- 
onal to both of them, on a much higher level. Sometimes we think 
in terms of concurrent processes,  where several states that are 
reached simultaneously are considered as concurrent processes. We 
call such an element a state configuration and denote it as a tuple 
of states. Note that because of the flexible-concurrency feature, the 
number of processes in a state configuration is not necessarily fixed. 
We will see in the sequel that this is the reason for naive state 
assignments for state charts to be incorrect. Finally, intemal com- 
munication between concurrent superstates is possible; throughout 
this paper we shall assume that such communication is operation- 
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Fig. 3. (a) State chart. (b) Corresponding I/O interface. (c) State chart tree 

induced by the state chart of (a). 

ally defined as a delayed feedback loop, from the appropriate out- 
put port to the corresponding input port of the black box. 

Throughout the rest of this paper we shall use the state chart of 
Fig. 3(a), which describes the (complex) behavior of the black box 

FSM for A 

r h  

Fig. 4. FSM tree 9 for the state chart of Fig. 3. 

illustrated in Fig. 3(b), with four input channels, each of which 
receives U, (meaning U, = 1) or T U ,  (U, = 0), i = 1, 2, 3, 4, and 
three output channels, each of which produces U, or 1 U ( ,  i = 1, 2, 
3. Note how the state chart svntax induces an AND/OR tree, where 
hierarchy and concurrency are replaced with OR and AND relation- 
ships, respectively, as illustrated in Fig. 3(c). This state chart tree 
is frequently used for the definition of various important relations, 
one of which is the least common ancestor (LCA) relation, where 
the LCA of S, and S, is E, the LCA of S, and SI3 is D, and the 
LCA of S8 and SI5 is C. Now, two states are formally defined as 
exclusive if their LCA is an OR state, and as orthogonal otherwise. 
Also, the state chart tree serves as the basis for the implementation 
method of [7], which will be reviewed in the sequel. 

Intuitively, the semantics of state charts can be understood as 
follows. The state chart computation visits state configurations, 
which are elements of a Cartesian product. For example, starting 
at SI (as indicated by the default transition), when input ul is re- 
ceived, the next state configuration will be (S,, s,), and the output 
event u I  is produced. Next, when the pair of inputs ( u ~ ,  v3) is 
received, the following state configuration is ( S3, S 5 ) ,  and the tri- 
ple ( U , ,  U*, u 3 )  of output events is produced. The transitions S, -+ 

S3 and S, + S5 are said to be orthogonal. Hence, computation takes 
place in the form of global transitions between state configurations, 
global transitions which are composed of one or more orthogonal 
state chart transitions, each of which either encapsulates one or 
more transitions from basic states, owing to hierarchy, or is (re- 
cursively) a global transition. 

Clearly, these examples illustrate, on the one hand, the tremen- 
dous flexibility within the language and, on the other hand, the 
difficulty of emulating this behavior in a simple way. Currently, 
more than one version of formal semantics exists for the formalism 
[3], [11]-[13], differing mainly in the notion of time and commu- 
nication. Hence, our implementation scheme will not be based on 
formal semantics but rather on the intuitive behavior of the main 
features of state charts. 

The synthesis methodology of [7] maps the state chart tree onto 
an isomorphic tree of communicating FSM’s, one FSM for each 
superstate. Such an implementation of the state chart of Fig. 3 is 
illustrated in Fig. 4. Each FSM implements a single superstate and 
its immediate substates. Hence, FSM DI implements an FSM with 
two states, E and SII, and an extra idle state, whereas FSM E im- 
plements an FSM with four states, S8, S9, Slo, and idle (see [7 ] ) .  
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Later the FSM tree is laid out using well-known layout techniques 
for trees. Hence, this synthesis methodology is efficient when d, 
the state chart tree out-degree, is constant with respect to n,  the 
number of states within the state chart. This, of course, is true only 
if n is extremely large. Also, special communication signals are 
generated for transitions that cross state boundaries, such as the 
transition from S, to S5. Naturally, such communication overhead 
degrades performance significantly. The biggest drawback of this 
implementation scheme, however, is its complexity. (The FSM tree 
requires special attention for the correct implementation of the in- 
ter-FSM communication and synchronization, which is a nontrivial 
design problem.) 

111. THE SUGGESTED SINGLE-BLOCK IMPLEMENTATION’ 

In order to reduce the variety of possible transitions within a 
state chart, we use the abstraction step illustrated in Fig. 5; namely, 
we replace high-level transitions with a primitive form of concur- 
rency. Both state charts in Fig. 5 are equivalent; in the original 
state chart the a, 0 transitions take place from either A ,  or A,, 
whereas in the transformed one they take place concurrently with 
the activity within A,  which has the same final effect. This is true 
no matter how high the states are within the hierarchy; we simply 
add an orthogonal state to the superstate A (the original source of 
the high-level transition), which consists of precisely one basic 
substate A’, and change the corresponding high-level transition so 
as to depart from A’. Also, transitions will always be used with 
basic states as their target states (e.g., instead of D -+ D we will 
use D --t (S,, SI3)). These two transformations are done for every 
transition in the state chart. Fig. 6 is the basic structure of the 
transformed state chart equivalent to that of Fig. 3. Hereafter, we 
shall refer only to the transformed state chart, and we will omit the 
prime. 

Consequently, there is now only one general type of state cham 
transition, namely, a quadruple (X, Y, a, @), where X and Yare 
tuples of basic states, representing the transition’s source and tar- 
get, respectively, a is the transition’s label (input), and /3 is the 
output produced when this transition is traversed. The transition’s 
source and target are subtuples of a state configuration (in our ex- 
ample, (E, SI3) is a subtuple of (E, SI3, SI,)). 

Now, consider the FSM emulation method of Fig. 1. Here, there 
is an isomorphism between the FSM state set and the code words 
stored in the state register. Also, the FSM transition function is 
emulated by the combinational logic. Obviously, if we try to em- 
ulate a state chart in the same way, we might need an enormous 
combinational-logic block to emulate an exponential number of 
global transitions between state configurations induced by concur- 
rency. Hence, we shall emulate all state chart transitions in the 
combinational-logic block in a way which will preserve the global 
behavior of the state chart. Our implementation scheme is illus- 
trated in Fig. 7. The combinational logic implements the original 
state chart transitions in the conventional way; a point on the LSI 
grid which represents a transition (i.e., the value at this point is 1 
iff the transition is traversed) is called a term. For example, in the 
PLA of Fig. 8(a), rows 1 through 24 represent 24 terms. 

Based on Fig. 7, a state chart implementation consists in imple- 
menting all terms for all state chart transitions, in a way that is 
similar to the conventional FSM implementation. For a transition 
( X ,  Y, a, P),  the source block contains a conjunction of the code 
words that represent the basic states within X (and of a, the inputs). 

’All methods presented in the following sections are protected by a pend- 
ing patent. 

A 

m 
m 
I 

Fig. 6. Transformed state chart structure. 

For a given basic state (or a given output), the target block contains 
a union of all terms that represent transitions whose target tuples 
contain this basic state. 

State assignment is the crucial step within this implementation 
if one wants to implement both hierarchy and concurrency cor- 
rectly. We shall further elaborate this point through a sequence of 
three abstractions. First, consider the extremely restricted case 
where state charts are restricted to be FSM’s only (i.e., no con- 
currency or hierarchy is permitted). In this case, any log n bit un- 
ambiguous code assignment suffices for a correct implementation 
of the model of Fig. 1. Next, Assume that state charts are permitted 
to have concurrency, but no hierarchy. In other words, consider 
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Fig. 7 .  An implementation scheme for state charts. 

only state charts that consist precisely of m concurrent FSM’s. In 
this case we can simply derive a state assignment for each FSM 
individually, and then for every state configuration, concatenate 
the appropriate individual code words into one wider code word. 
Note that in this case, an unambiguous individual state assignment 
for each FSM will suffice. Finally, we end our abstraction process 
in the general case where both hierarchy and concurrency exist. 
Now, not every such individual state assignment is correct. Con- 
sider a state assignment where 0 and 1 are assigned to Yo to rep- 
resent S2 and &, respectively, whereas 00, 01, and 10 are assigned 
to Yl and Y, to represent SI5, SI6, and SI,, respectively, in Fig. 6. 
Now, when the transition SI -+ (S,, S,, B )  is traversed, Y, and Yz 
are not affected by the target block, and might be assigned an er- 
roneous code. In fact, when a PLA is used, this code will be 00, 
so SlS will become part of the next configuration. Hence, as dis- 
cussed in the introduction, the main cause of difficulty is that be- 
cause of hierarchy, state chart concurrency is flexible, so one can- 
not naively assign a fixed portion of a code word to each process. 
For this reason, state chart state assignment is not a naive extension 
of an FSM state assignment, as in the restricted case discussed 
earlier. 

We shall distinguish between state assignments and conjigura- 
tion assignments. A configuration assignment is a code that rep- 
resents state configurations, whereas a state assignment is a code 
that maps basic states to binary strings. Our goal is to find a state 
assignment such that the induced n,-bit configuration assignment 
will be unambiguous. We define the U operator to extend the bi- 
nary “or” operator with VUa = alJ9 = a for a = 0, 1, g. Now, 
for a well-dejned state assignment, we require the following state 
chart state assignment conditions: 

1) There exists a 1-1 function p :  basic states + {0, 1, tri- 
nary strings, where g in coordinatej means that state variable 

does not depend on the current basic state; p is considered 
the state chart state assignment. 

2) There exists a 1-1 function 7:  state configurations + (0, 
lJnb; this is the (conceptual) configuration assignment. Here- 
after, 7((S,, * * - , &)) = p(SI)U . * . Up(&). 
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Fig. 8. (a) PLA implementation for the state chart of Fig. 3.  (b) Transition 

to term mapping for (a). 

The first condition describes the nonambiguous state assignment 
we are looking for, whereas the second condition guarantees that 
the configuration assignment is nonambiguous and (because it per- 
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mits binary strings only) guarantees that code words, in their entire 
length, describe legal configurations in a precise way. Hence, these 
conditions ensure that inductively, as computation proceeds, the 
binary code words of length nb represent, in a unique and precise 
way, only legal state configurations. It is the responsibility of the 
combinational logic to implement the induction correctly with the 
correct implementation of terms as described earlier. Stated infor- 
mally, a well-defined state assignment p is such that when code 
words of elements of a state configuration are summed (U), the 
resulting configuration assignment T is well defined (i.e., binary) 
and nonambiguous. Hence, in the previous example, the 3-bit pre- 
fixes of p(S2), p(S4), and p@), are m, m, and m, respectively; 
thus the 3-bit prefix of r(&, S4, B) is w h i c h  is not well defined. 

A trivial well-defined state assignment resembles the well-known 
FSM 1-hot state assignment. Here, nb = n, where n is the number 
of basic states in the state chart (e.g., in Fig. 6 ,  n = 21). We assign 
to p(Si) a tuple of nb trinary symbols, where 1 is assigned to the i th 
variable, 0 is assigned to thej th  variable for every j # i such that 
Sj and Si are exclusive, and 9 is assigned to every other symbol. 
For our example, the 1-hot state assignment for SI3 and SII  are, 
respectively, 

(where we consider B, C, D, E to be SI8, S19, S20, and S,,, respec- 
tively). 

Theorem I: The 1-hot state assignment satisfies the state chart 
state assignment conditions. 

Sketch ofProofi  Clearly p is 1-1. That r maps configurations 
to (0, l}nb follows from the fact that for every configuration c = 

(SI, - * , Sk) and every i 5 nb, the ith symbol of the code word 
p(Sj) for some Sj, j 5 k ,  is not $4. This is because either Si is in c 
or it is exclusive to some such Sj in c; otherwise the configuration 
is not “complete” (some concurrent process is not described in c). 
Consider any two different configurations cI, c2. Clearly, there must 
be two exclusive basic states Si in cI and Sj in c,; hence ~(CI) and 
T(c,) differ in the ith andj th  symbols. Thus,  is 1-1. Q.E.D. 

IV. EFFICIENT STATE ASSIGNMENTS 

As with conventional FSM state assignment, where the total im- 
plementation area is optimized (e.g., [2]), we wish to optimize the 
total area consumed by our implementation. This includes two main 
aspects: minimizing the number of terms and minimizing the num- 
ber of state variables. Term minimization is outside the scope of 
this paper mainly because it seems to be tightly coupled with state 
chart minimization, which has not yet been s01ved.~ 

Hence, we shall concentrate on the minimum state-encoding 
problem, where a state assignment is sought that is of minimum 
width (i.e., nb is minimum). This state assignment should be con- 
strained to satisfy the state assignment conditions described ear- 
lier.4 We do not know how to solve this problem in general. In- 
stead, we shall investigate one approach, the exclusivity encoding 
state assignment. Generally speaking, it is identical to the 1-hot 
assignment, except that sets of basic states, called exclusivity sets, 
are coded with a logarithmic number of bits. Formally, we split 

’In [5] there is a minimization theorem for hierarchical FSM’s that are 

41t might be the case that a shorter state assignment exists for a sequential 
state charts without concurrency. 

machine that enumerates all possible state configurations explicitly. 

the set of basic states into m pairwise disjoint exclusivity sets R I ,  
, R,, where each such set consists of states that are pairwise 

exclusive. For the example of Fig. 6, we can divide the basic sets 
into {s1, s,, s3, S6, S7, Sg, S,, Slo, SI,), {S4, S5, S12, SI39 S14}, 

{SI,, SI6, SI,}, {a, E}, {D}, and {C}. Now we encode all states 
that belong to a common set R, with [log !Ri l l  bits instead of the 
(Ril bits used by the 1-hot assignment. This reduction is possible 
because all states in each such set Ri, i E 1, . . . , n, are pairwise 
exclusive. These groups of bits are then concatenated to form a 
state configuration code word. Hence, in the above example, we 
use 4, 3, 2, 1, 0, and 0 bits, respectively. However, a subtle point 
now emerges. Consider, in the above example, states Sls and S2 .  
They are exclusive, and in the above decomposition they belong to 
two different exclusivity sets. As a result, when the present config- 
uration is (S,, S4), the pair of bits representing the exclusivity set 
{SI5, S16, SI,} should represent a dummy state so that, say, ( S 2 ,  
S,, SI,) will not be represented. Formally, for the two exclusivity 
sets Ri and Rj, when there is a basic state in Ri which is part of a 
state configuration c in which no basic state of Rj is included, then 
Rj needs a dummy state to ensure its exclusivity from other ele- 
ments of c .  Hence, when the present configuration is ( S2 ,  S,) the 
pair of bits representing {SI5, Sl6, SI7} should hold the code for a 
dummy state. 

Once such exclusivity is guaranteed, T becomes 1-1, and we can 
conclude. 

. . .  

Theorem 2: The exclusivity encoding state assignment method 
satisfies the state chart state assignment conditions. 

The exclusivity encoding optimization problem (EEOP) is the ap- 
propriate optimization problem, namely, the problem of splitting 
the basic states into pairwise disjoint exclusivity classes R , ,  * * , 
R,, such that 

is minimum, taking into account the need for dummy states as well. 
We have investigated a simpler 

where the need for dummy states is not considered. Note that the 
solutions for both problems do not necessarily unify. For example, 
the decomposition given above is EEOPl optimal for our example, 
although not EEOP optimal. This is evident from the state assign- 
ment in Fig. 8(a), where we have moved SI and S,, from the first 
set to the second and forth sets, respectively, and thus saved one 
state variable. 

We say a state chart is m-concurrent if m is the maximal dimen- 
sion consumed by any configuration. For example, the state chart 
of Fig. 6 is 6-concurrent. The dimension m is defined recursively 
over the state chart tree as 

for a basic-state S, m ( S )  = 1; 
, SI, m ( S )  = max for an OR state S with substates SI, * . . 

{ m ( S j ) / i  = 1 * * 1) ;  
for an AND state S with substates SI, . * . , SI, m ( S )  = 
C { m ( S i ) / i  = 1 * * 1) .  

The following lemmas reveal two important properties of 

Lemma 3: An optimal solution for EEOPl for an m-concurrent 

EEOPl . 

state chart consists of m exclusivity sets. 
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Sketch of Proof: Clearly, at least m exclusivity sets are re- 
quired, one for each basic state in the configuration that has m pro- 
cesses. If more than m sets are used, then one set R is redundant 
in the sense that for every basic state S E R there is an exclusivity 
set Rj to which S can be appended (otherwise the system is not 
m-concurrent but has a higher degree of concurrency, thus reducing 
the total cost). Q . E . D .  

As a consequence of Lemma 3, given an m-concurrent state chart, 
an algorithm for solving EEOPl consists of finding m, and then 
finding the m largest exclusivity sets. 

Given a state chart AND/OR tree A ,  we define a trace to be a 
subtree A’ that contains A’s root, and satisfies the following: 

= 0 0, which means an illegal next state in C,. This is because 
there is no specified transition for the input 1 v4 when in SIs of C,. 
The problematic issue here is that detecting such a situation of un- 
specified transitions in an m-concurrent state chart is NP-complete 
in the number of input channels, and PSPACE-complete in m [3], 
[4]. This is a general problem in concurrent systems and is dis- 
cussed in detail in [4]. It is outside the scope of this paper, and we 
would like to mention only that the solutions suggested in [4] are 
applicable here too. Yet another interesting phenomenon is non- 
determinism. In Fig. 3, for example, the configuration ( S 2 ,  S 5 )  has 
two consecutive configurations for the input tuple ( 1 v l ,  U*, u3, 
U,). The I-hot state assignment can emulate this nondeterminism 
as a form of concurrency similar in behavior to PN concurrency. 

1) If S iS an OR state in A’, then all of S’s substates in A are its 
substates in A’; 

2) If S iS an AND state in A‘, then one of S’s substates in A is 
its only substate in A’.  

As described in [3] and [4], nondeterminism in state charts is also 
extremely difficult to detect, because of concurrency. 

Although asymptotically more area-efficient (in fact, almost Op- 
timal), the method of [7] might generate an implementation that is 

The following lemma follows. 
Lemma 4: Given a state chart S, the set of leaves of a trace of S 

forms an exclusivity set, and every exclusivity set within S is a 
subset of the set of leaves of some trace of S. 

Sketch of Proof: First, note that the least common ancestor 
of any two basic states (i.e., leaves) which belong to a common 
trace is always an OR state, and that the least common ancestor of 
any two basic states which do not belong to a common trace is 
always an AND state, so the first part of the claim follows. For the 
second part, given an exclusivity set E, consider the subtree T of 
the state chart tree whose set of leaves is precisely E. Clearly, an 
AND state vertex in T can have only one substate because elements 
of E are pairwise exclusive. Hence T is a subtree of a trace of S, 
with a common root, so the second claim holds as well. Q . E . D .  

Consequently, finding a maximum-cardinality exclusivity set is 
equivalent to finding a trace with a maximum number of leaves. 
Such an algorithm is induced by the following recursion for the 
computation of a trace T(S) ,  with a maximum number of leaves, 
N( T(S )) . 

For a basic state S, T(S)  = S, and N ( T ( S ) )  = 1. 
For an OR state S with substates SI, . . . , S I ,  T ( S )  is the tree 
whose root is S with substates SI, . . . , S I ,  which in tum are 
roots of the subtrees T(SI) ,  . , T(SI) ,  respectively; N ( T ( S ) )  
= N(T(Si ) ) .  
For an AND state S with substates SI ,  . . . , SI, T (S)  is the tree 
whose root is S with one substate Si such that the subtree T(Si) 
rooted at Si is the subtree with a maximum N(T(Si ) ) ;  N ( T ( S ) )  
= maxi=l...IN(T(Si)). 

V. DISCUSSION 
Fig. 8(a) is a PLA implementation of the state chart of Fig. 3, 

according to the decomposition described previously. Fig. 8(b) 
shows the mapping between state chart transitions in Fig. 3 and the 
terms of the PLA. The PLA consumes an area of (16 x 2 + 15) 
X 24 = 1128 transistors, and the state register consumes an ap- 
proximate area of 30 X 12 = 360 transistors. Hence the total im- 
plementation area is 1488 transistors. The 1-hot implementation 
consumes a total of (26 X 2 + 25) x 24 + 30 x 22 = 2508 
transistors. 

An interesting aspect of the implementation has to do with un- 
specified inputs. Assume, for example, that in Fig. 3 the present 
configuration is <S6, SIs)  and that the input (U,, v2, 1 u 3 ,  1 u 4 )  
has been received. Clearly one would expect the next configuration 
to be (S,, Sls) .  All terms of Fig. 8(a), however, will specify Y6 Y, 

inferior to the proposed implementation, as exemplified by the state 
chart of Fig. 3, for which an implementation according to the old 
method consumes a total PLA area of between 850 and 1450 tran- 
sistors, and a total state register area of 30 X 16 = 480 transistors. 
The range depends on the type of implementation with respect to 
unspecified transitions for the problem discussed above, where the 
smaller implementation is not entirely correct in this respect and 
the larger one is. In addition, this implementation includes exten- 
sive inter-FSM communication wires, two to four wires between 
each pair of machines. The cost of this overhead depends on the 
layout and is estimated to be area equivalent to more than 400 tran- 
sistors. Moreover, if one wishes to reduce inter-FSM synchroni- 
zation problems, more flip-flops are required to latch inter-FSM 
communication signals. Obviously, when these FSM’s are encoded 
with a 1-hot state-assignment, the consumed area is larger. 

VI. CONCLUSION 

We have presented a simple, single-block implementation meth- 
odology for state charts, together with an appropriate optimization 
technique. Our methodology does not require communication and 
synchronization between FSM’s, which makes it easy to implement 
and verify and allows the use of existing CAD tools (e.g., PLA 
optimization for the combinational logic generated by this method). 
Although asymptotically inferior, our scheme is expected to be su- 
perior to the previously known method for the synthesis of state 
charts with a state chart tree out-degree that is not constant with 
respect to the number of basic states, namely, for small and me- 
dium sized state charts and even some large ones. Also, its effi- 
ciency does not depend on the number of edges that cross state 
boundaries. 
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Decision Problems for Interacting Finite State 
Machines 

Doron Drusinsky-Yoresh 

Abstract-Given a system of n interacting finite state machines 
(FSM’s) and a state configuration, the reachability problem is to ex- 
amine whether this configuration is reachable within the system. We 
investigate the complexity of this decision problem and three of its de- 
rivatives, namely l) verifying system determinism, 2) testing for the 
existence of unspecified inputs to any FSM within the system, and 3) 
testing for the exclusiveness of two intra-FSM signals. We prove that 
these problems are all PSPACE-complete. We show the effect of these 
problems on the state assignment process for concurrent systems of 
interacting FSM’s. 

I. INTRODUCTION 

Logic synthesis of sequential finite state machines (FSM’s) is a 
well-developed field of knowledge. There is a massive body of re- 
search in this area, originating in the fundamental research of 
Steams and Hartmanis [7], [8]. See, for example, [ l ]  and [6]. 

In this paper we examine logic synthesis of concurrent FSM’s. 
It is our belief that concurrent FSM’s will be increasingly used in 
the future, as exemplified by the following three scenarios: 

Consider a real-time control system; here, the real-time con- 
straints impose hardware concurrency of several, perhaps 
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communicating, sequential controllers where, typically, each 
controller is modeled as an FSM. 
Consider a design task which is divided between design 
groups, where each group designs a designated subsystem. 
When several such subsystems are individually controlled by 
a finite state mechanism, the whole system is conceptually 
controlled by a system of communicating concurrent FSM’s. 
Finally, consider the process of silicon compilation of a be- 
havioral hardware description language (HDL). Convention- 
ally, such a compilation output is an FSM for a control mech- 
anism that generates the sequencing instructions for the 
controlled data path. Naturally, with the advent of higher level 
HDL’s (e.g., VHDL), and for increasingly sophisticated de- 
signs, the controlled data path might be inherently concurrent 
and hierarchical, requiring a network of concurrent FSM’s to 
control it efficiently. Also, it seems quite natural to expect a 
concurrent behavioral description to be implemented by many 
controlling FSM’s, perhaps one for each sequential process 
in the high level specification. 

Hence, it is important to examine existing, predominantly se- 
quential logic synthesis methodologies in the concurrent realm. To 
date, this has not been thoroughly done. 

In this paper we reexamine the well-known state assignment 
methodology in this context. In Section 11, we examine three im- 
plicit assumptions made by conventional state assignment tools and 
review them in the light of concurrency. We describe appropriate 
decision problems and analyze their complexity in Section 111. 

11. MOTIVATION: STATE ASSIGNMENTS FOR SEQUENTIAL A N D  

INTERACTING FSM’s 

Consider the FSM of Fig. l(a) and its PLA implementation of 
Fig. l(b). This PLA was generated by NOVA [13], a well-known 
state assignment program, and embodies three typical assumptions 
made by such a program: 

1) Determinism (DET): the FSM is assumed to be determinis- 
tic; i.e., for every state and every input there is at most one 
next state. This assumption enables the state assignment pro- 
gram to implement an n-state FSM with as few as log n state 
variables. 

2) Unspecified input (UT): if at some state there is an input 
configuration that causes no next state (it triggers no transi- 
tion; e.g., (a, 0) = (T,  F )  in state s3 of Fig. l(a)), then 
it is assumed to be an “impossible” input for this state. In 
other words, it is assumed to be the designer’s responsibility 
to verify that such an incident does not occur. This enables 
the state assignment program to exploit the free space for 
optimization; hence, the PLA of Fig. l(b) generates s2 as the 
next state in the above case. Note that in the conventional 
FSM implementation scheme, where a state register is con- 
nected to a combinational logic block, the combinational 
logic always produces a (perhaps erroneous) next state. 

3) Input and output orthogonality (100): the FSM is assumed 
to have orthogonal (independent) inputs and outputs, i.e., all 
combinations of signal values over the IO wires, except those 
found to be impossible earlier, are possible. Hence, in Fig. 
l(a) all four input configurations of (a, p ) :  (T, T ) ,  (T,  F ) ,  
(F ,  T) ,  and (F ,  F ) ,  are possible, except for (a, 0) = (F ,  
T )  in state s3. This assumption is self-evident in the single- 
FSM case, where the IO signals are connected to an unex- 
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