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Abstract

The particle finite element method (PFEM) is a powerful and robust numerical tool for the simulation of multi-physics 

problems in evolving domains. The PFEM exploits the Lagrangian framework to automatically identify and follow interfaces 

between different materials (e.g. fluid–fluid, fluid–solid or free surfaces). The method solves the governing equations with 

the standard finite element method and overcomes mesh distortion issues using a fast and efficient remeshing procedure. 

The flexibility and robustness of the method together with its capability for dealing with large topological variations of the 

computational domains, explain its success for solving a wide range of industrial and engineering problems. This paper pro-

vides an extended overview of the theory and applications of the method, giving the tools required to understand the PFEM 

from its basic ideas to the more advanced applications. Moreover, this work aims to confirm the flexibility and robustness of 

the PFEM for a broad range of engineering applications. Furthermore, presenting the advantages and disadvantages of the 

method, this overview can be the starting point for improvements of PFEM technology and for widening its application fields.

1 Introduction

The last decades have seen a growing interest in the devel-

opment of computational methods for the simulation of 

engineering problems. A robust and efficient numerical 

simulation is particularly complex in the presence of multi-

physics phenomena and/or large deformations of the physi-

cal domains. Typical examples can be found in unsteady 

free-surface fluid dynamics problems, fluid–structure 

interaction applications with large motions of fluid–solid 

interfaces, non-linear solid mechanics with large changes 

of the topology and contact of solid bodies, and thermal-

mechanical coupled analysis in the presence of phase-change 

phenomena.

To tackle these complex problems, the Finite Element 

Method (FEM) has been generally privileged. In order to 

solve a problem in mechanics with the FEM, the reference 

configuration1 should be provided with a mesh. Depending 

on the framework considered, different FEM approaches 

arise.

For continuum mechanics problems, in a Eulerian 

approach, the finite element mesh is fixed and the material 

moves across the grid, being the mesh nodes dissociated 

from physical particles. Due to the relative motion between 

the material and the grid, convective terms appear in the 

definition of the time derivatives. Eulerian meshes are par-

ticularly suited for large deformation problems in enclosed 

domains, as those generally considered in standard Compu-

tational Fluid Dynamics (CFD). On the other hand, they do 

not provide a natural definition of evolving interfaces (like 

a free surface in fluid flows), calling for ad-hoc techniques 

such as level set [97] or volume of fluid[42] approaches.

On the contrary, in a Lagrangian approach, the finite 

element mesh moves along with the continuum body. Con-

sequently, boundaries and interfaces are naturally tracked 

during the motion allowing for a simpler imposition of 

boundary conditions. As the material points coincide with 

the grid nodes, no convective terms appear in the governing 

equations and material derivatives reduce to time deriva-

tives[23]. Also the integration points move with the material, 

so constitutive laws are evaluated at the same material points 

for all the duration of the analysis. This feature is particu-

larly useful for materials with history-dependent behaviour. 
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Nevertheless, in large-deformation problems, the mesh can 

undergo excessive distortion leading to accuracy loss or even 

to compromise the FEM calculation.

Arbitrary Lagrangian Eulerian (ALE) description gives 

a possibility to overcome the typical difficulties related to 

Lagrangian and Eulerian approaches. In the ALE descrip-

tion, the reference configuration is chosen ad-hoc to reduce 

mesh distortion and, in general, does not coincide either with 

material or spatial configurations. The mesh is defined in 

this reference configuration and moves independently from 

the material motion. ALE strategy exploits some of the 

advantages of both Lagrangian and Eulerian descriptions, 

however, the method has important limitations for very large 

and unpredictable domain deformations. In these cases, also 

the ALE mesh can become too distorted, reducing or com-

promising the accuracy of the computation.

In this work, we focus on the use of Lagrangian 

approaches in the presence of very large deformations of 

the domain. It is worth mentioning that there exist different 

examples of Lagrangian mesh-based solvers for the solution 

of mechanical problems also in the presence of significant 

deformations. For example, Hassager and Bisgaard[40] pro-

poses a Lagrangian FEM for the solution of non-Newtonian 

fluid flows. Ramaswamy et al.[102] uses a Lagrangian FEM 

in conjunction with a fractional step method to solve small-

amplitude sloshing problems. In[101], the same research 

group solves fluid dam-break problems and large-amplitude 

sloshing, and in[41], a solitary wave propagation. All these 

Lagrangian methods maintain the same discretization for all 

the duration of the analysis, leaving the mesh free to move 

and, eventually, deteriorate. Consequently, these approaches 

apply only to analyses in which the discretized domain does 

not undergo very large deformations, thus limiting the appli-

cations to real case problems.

Mesh deterioration constituted for a long time the intrin-

sic limit of Lagrangian mesh-based solvers. In the literature, 

there exist two different options to overcome this endemic 

feature of Lagrangian mesh-based solvers: to introduce a 

remeshing technique or to abandon completely the concept 

of mesh. The latter option gives rise to the so-called mesh-

less methods. These techniques represent the behaviour of a 

physical problem by a collection of particles. Each particle 

has assigned all physical properties and moves according 

to its weight and the interaction forces with the neighbour 

particles. Over the last decades, several meshless methods 

have been proposed, based either on weak or strong forms of 

the conservation equations. Meshless methods fall outside 

the scope of this review. An interested reader can refer to 

e.g.[67].

The second possibility to avoid mesh distortion is a 

remeshing technique. Here, when the Lagrangian mesh 

becomes too distorted, a new mesh is created with an 

ad-hoc procedure. An example of the application of this 

technique to fluid flow problems can be found in[36], where 

the authors reconstruct locally triangular meshes to solve 

fluid dynamics problems with a finite difference approach. 

Alternatively, in[3] a new finite element mesh is built from 

scratch whenever the elements become too distorted. Mut-

tin et al.[80] uses a Lagrangian finite element method to 

simulate metal casting problems with an automatic remesh-

ing technique to avoid mesh distortion. Radovitzky and 

Ortiz[100] and Malcevic and Ghattas[68] propose a con-

tinuous and adaptive remeshing at each time step. All these 

Lagrangian approaches are based on some form of remesh-

ing techniques. In all cases, when a new mesh is generated, 

the results need to be remapped from the old to the new 

mesh. Unavoidably, these operations introduce unwanted 

numerical diffusion into the numerical solution[36].

An innovative idea to exploit the Lagrangian framework 

and overcome mesh distortion issues has been proposed by 

Idelsohn et al.[52]. They introduced the so-called Particle 

Finite Element Method (PFEM), an innovative numerical 

tool able to solve complex non-linear problems in signifi-

cantly evolving domains[52, 87].

The PFEM combines the accuracy and robustness of 

mesh-based techniques with the advantages of particle-based 

methods. The PFEM discretizes the physical domain with 

a mesh on which the differential governing equations are 

solved with a standard finite element approach. Following 

a Lagrangian description, the mesh nodes move accord-

ing to the equations of motion, behaving like particles and 

transporting their momentum together with all their physical 

properties. In the PFEM, the mesh distortion issue, typical of 

Lagrangian mesh-based solvers, is overcome by generating a 

new mesh when the current one gets too distorted. However, 

unlike the previously mentioned methods, to avoid remap-

ping from mesh to mesh, the PFEM keeps the nodes of the 

previous mesh fixed. The new connectivity is built using 

the Delaunay Tessellation and a specific technique is used 

to identify internal and external boundaries. The obtained 

mesh is then used as the support over which the differential 

equations are solved in a standard FEM fashion.

Although the PFEM was initially conceived for fluid 

dynamics and fluid–structure interaction problems, the 

method soon was been extended to the solution of non-linear 

solid mechanics problems and to different types of multi-

physics problems interesting for varied fields of engineering 

and technology. This paper provides an extended overview 

of the theory and applications of the method and it contains 

all the ingredients to understand the PFEM from its basics 

to the more advanced features. A very extended literature 

review of the method is also given by highlighting the main 

advances of each contribution. The new techniques arisen 

from the original PFEM formulation are also presented.

The paper is structured as follows. Section 2 introduces 

the underlying and general concepts of the Particle Finite 
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Element Method (PFEM). Section 3 gives an extended 

review of the application of the PFEM to fluid dynamics 

problems. In Sect. 4, the use of the PFEM in fluid–structure 

interaction problems is examined, while in Sect. 5, the appli-

cation of the method to non-linear solid mechanics is con-

sidered. Section 6 is dedicated to the description of PFEM 

for other coupled problems, namely multi-fluids and ther-

mal–mechanical coupled analysis. In Sect. 7, some signifi-

cant applications of the method to several engineering and 

industrial problems are shown, while Sect. 8 shows some of 

the recent advances in the PFEM formulation. Finally, the 

concluding remarks of this work are given in Sect. 9.

2  The Particle Finite Element Method 
(PFEM)

The PFEM is a numerical technique developed for the solu-

tion of multi-physics problems involving large deformations 

of the domain. It was originally conceived to treat free-sur-

face fluid flows[52] and fluid–structure interaction phenom-

ena[53], but later it has been applied to many other physical 

problems (see next sections for details).

The key idea of the PFEM is to combine a Lagrangian 

Finite Element Method (FEM) with an efficient and fast 

remeshing procedure. In the PFEM, the domain is defined 

by a set of particles (coinciding with the mesh nodes) that 

move in a Lagrangian manner according to the calculated 

nodal variables (e.g. velocity or displacements) and bring-

ing their physical properties (e.g. density, viscosity). Unlike 

meshless approaches, the interacting forces between parti-

cles are evaluated using a finite element mesh. In this sense, 

the PFEM can be seen as both a FEM-based and a particle 

method.

One of the most characteristic features of the PFEM is 

the mesh regeneration algorithm. Whenever the Lagrangian 

motion of the nodes leads to an excessively distorted mesh, 

such mesh is deleted and a new one is generated over the 

same set of nodes. To do so, after the elimination of the ele-

ments of the previous distorted mesh, a Delaunay triangula-

tion algorithm is used to rebuild the element connectivity, 

and an alpha shape scheme [25] is used to define the internal 

and external boundaries (see the next section). In case of 

data stored at the element integration points (typically, his-

torical variables in solid mechanics problems), Gauss points 

data must be transferred from the old mesh to the new one 

(Sect. 5.1).

To summarize, the fundamental features of the PFEM 

are the following: 

1. Lagrangian framework for the description of motion.

2. Mesh nodes are treated as physical particles.

3. All information is stored at the mesh nodes.

4. The FEM is used to solve the governing equations.

5. Mesh connectivity is regenerated with a Delaunay Tes-

sellation.

6. Boundaries are recovered through ad-hoc techniques 

(e.g. alpha-shape method).

2.1  The PFEM Steps

Excluding the FEM solution of the differential equations, 

which differ for each specific problem, the PFEM solution 

algorithm is independent on the physics of the problem. A 

general solution scheme of the PFEM can be summarized 

as follows. 

1. Fill the domain with a set of points referred to as “par-

ticles” (Fig. 1a).

Fig. 1  Steps of Particle Finite Element Method
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2. Generate a finite element mesh using the particles as 

nodes (Fig. 1b).

3. Identify the external and internal boundaries of the com-

putational domain (Fig. 1c).

4. Solve the Lagrangian form of the governing equations 

with the FEM.

5. Update the positions of the nodes (Fig. 1d).

6. Proceed to the next time step. If remesh is needed go 

to step 2, otherwise, go directly to step 5. Figures 1e–g 

show the solution step for the following time instant.

In step 2, the mesh can be regenerated with any tessel-

lation algorithm. Typically, the Delaunay triangulation 

is used in the PFEM (Sect. 2.2.1). The identification of 

boundaries in step 3, needed to compute the domain inte-

grals and to impose correctly the boundary conditions, is 

performed using the alpha Shape method (Sect. 2.2.2).

It is also important to remark that equations of motions 

solved in step 4, can be non-linear and so they may require 

an iterative solution scheme. For those formulations using 

historical variables, e.g. in non-linear solid mechanics 

(Sect. 5), a remap of the historical variables stored at the 

Gauss points on the new mesh is needed before step 4.

At the end of each time step, the quality of the mesh is 

evaluated (step 6). The original works of the PFEM pro-

pose to perform the triangulation at every time step. Other 

papers suggest performing the remeshing only when the 

mesh is too distorted globally. This second strategy leads 

to a reduced computational cost, but also to a lower qual-

ity of the mesh. Examples of both alternatives can be 

found in implicit PFEM formulations (see e.g.[28]). On 

the contrary, for explicit strategies, due to the high com-

putational cost, only the second strategy is suitable[73].

2.2  The Mesh

A key step in the PFEM solution is the generation of the 

finite element mesh. In large deformation problems, this 

operation is performed frequently, eventually at each time 

step for the most critical cases. Therefore, a very fast, 

efficient and robust algorithm is required. In the PFEM, 

this is performed using an enhanced Delaunay triangula-

tion algorithm. It is important to highlight that this pro-

cedure should be considered a redefinition of the element 

connectivities rather than a real remeshing because the 

mesh nodes of the previous mesh are kept in the same 

position. Due to the crucial importance of this step in the 

PFEM solution scheme, a detailed description of the basic 

concepts, of the implementation details and of the impli-

cations of the remeshing step are given in this section.

2.2.1  The Delaunay Triangulation

Before defining the Delaunay triangulation, the Voro-

noï diagram has to be introduced. Given a set of N points 

(n1, ..., n
N
) , the Voronoï diagram is defined as the partition 

of ℝ3 in convex regions T
i
 where a node n

i
 is associated to 

each region T
i
 , such that every point of T

i
 is closer to n

i
 than 

to any other nodes nj with i ≠ j , i.e.

where d(�, �
i
) ∶= ‖� − �

i
‖ is the Euclidean norm. Every 

region T
i
 is called Voronoï cell. Each Voronoï cell is convex 

and closed if internal, open if placed at the boundary.

The Delaunay triangulation can be constructed by joining 

the points whose Voronoï cells have a common boundary. 

The Delaunay triangulation can be considered the dual of the 

Voronoï diagram because two nodes of the Delaunay trian-

gulation are joined by an edge, only if the respective Voronoï 

cells share a boundary. As a consequence, the Delaunay tes-

sellation generates a mesh of tetrahedra (in 3D) and triangles 

(in 2D). Figure 2 shows a 2D example of points, Voronoï 

cells (dashed line) and Delaunay triangulation (solid line).

A fundamental property of the Delaunay triangulation 

is that none of its vertices lays inside any tetrahedron’s cir-

cumsphere (in 3D) or triangle’s circumcircle (in 2D), see the 

blue circle in Fig. 2. Moreover, the vertices of Voronoï cells 

represent the center of tetrahedron’s circumsphere (in 3D) 

or triangle’s circumcircle (in 2D) of the Delaunay triangula-

tion (Fig. 2). Given a set of points in the space, the Voronoï 

diagram is unique, whereas different Delaunay triangulations 

may exist.

In 2D, the Delaunay triangulation has remarkable proper-

ties such as the minimization of the maximum radius of an 

(1)Ti =
{

� ∈ ℝ
3 ∶ d(�, �i) ≤ d(�, �j) ∀j ≠ i

}

Fig. 2  Example of Voronoï diagram (dashed line) and Delaunay tri-

angulation (solid line)
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element circumcircle and the maximization of the minimum 

angle among all the elements (max-min property). On the 

other hand, the 3D Delaunay algorithm loses some of the 

optimal properties of its 2D counterpart. Unfortunately, this 

has important consequences on the possible presence of bad 

quality tetrahedra in the mesh, such as zero-volume elements 

(slivers).

The mesh given by the union of the generated tetrahedra 

or triangles is the convex hull of the points, i.e. the convex 

figure with minimum volume (area in 2D) that encloses all 

points. Consequently, the Delaunay triangulation can gen-

erate only convex domains. In the next section, it is shown 

how in the PFEM, this geometrical limitation is overcome 

through the application of the alpha-shape technique. It is 

worth noting that non-convex domains can be created by 

Constrained Delaunay tessellation algorithms. However, 

these methods do not allow the reconnection of different 

parts of the computational domain and for this reason, can-

not be used for several free-surface fluids applications, while 

they have potential for solid mechanics problems.

The overall good properties of the Delaunay triangula-

tion together with the availability of several fast open-source 

algorithms, explain the popularity of this tessellation pro-

cedure in the PFEM framework. Nevertheless, we remark 

that using Delaunay meshes is not mandatory for the PFEM 

solution scheme. The key point is to obtain a mesh very 

rapidly starting from a points distribution. Hence, also non-

Delaunay meshes could be used without altering the nature 

of the method.

2.2.2  Boundary Recovery through the Alpha-Shape 

Technique

In a Lagrangian framework, the current volume �
t
 and its 

external boundary �
t
= ��

t
 are defined by the position of 

the material points. As introduced in the previous section, 

the Delaunay triangulation generates a convex figure which 

encloses all the nodes belonging to the set. As the convex 

hull may be not conformal with the actual external bounda-

ries of the computational domain, the new contours have to 

be identified every time the Delaunay triangulation is done. 

To clarify this problem, a 2D example is presented in Fig. 3: 

a set of points is shown in Fig. 3a and its Delaunay triangu-

lation in Fig. 3b. It is clear that the Delaunay triangulation 

does not match the real internal and external boundaries.

As originally proposed in[54], a possible method to 

recover the real shape of the point distribution is the so-

called alpha-shape method[25]. This technique is based on 

the observation that the unphysical elements which do not 

belong to the real domain, are in general the largest and 

most distorted ones because they connect nodes that are far 

from each other.

The basic idea is to remove these unnecessary elements 

from the mesh using a geometrical criterion based on the 

mesh distortion. For each element e of the mesh, an index 

of elemental distortion �
e
 is defined as:

where R
e
 is the radius of the circumsphere (or circumcircle 

in 2D) to the considered element and h
mean

 is a characteristic 

mesh size. An example of h
mean

 can be the average of the 

minimum element side among all the elements of the initial 

mesh[18].

A threshold value �̄ for the distortion of the mesh can be 

fixed and, consequently, all the elements that do not satisfy 

the condition:

are removed from the mesh. Figure 4 shows the Delaunay 

triangulation coupled with the alpha-shape scheme for the 

example introduced previously.

A proper definition of the distortion threshold �̄ is manda-

tory for the correct boundary recognition. Different values 

of �̄ can lead to different configurations (see e.g. Fig. 4). If �̄ 

is too large, some overly distorted or too large elements can 

(2)�
e
=

R
e

h
mean

(3)�
e
≤ �̄

Fig. 3  a Distribution of points, b delaunay triangulation

Fig. 4  Delaunay triangulation with alpha-shape: a �̄ = 1.9 , b �̄ = 1.4
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be incorporated into the mesh. On the contrary, if �̄ is too 

small, too many elements are removed creating unphysical 

holes within the analysis domain. Obviously, for �̄ → ∞ , the 

original Delaunay tessellation is recovered. A critical review 

of the effect of the parameter �̄ can be found in[28].

An alternative definition of the alpha-shape method can 

be found in the first papers on the PFEM (see e.g.[52, 87]). 

Considering that the particles follow a variable distribution 

h(x), where h(x) is the minimum distance between two par-

ticles, the following criterion has been used:

All particles on an empty sphere with a radius r(x) bigger 

than �̄h(x) are considered as boundary particles. 

It is important to note that the two definitions give the 

same results.

More advanced versions of the PFEM, allow using differ-

ent values of �̄ for distinct parts of the domain. A possibility 

is the use of a lower value of �̄ for the elements whose nodes 

belonged to the boundaries in the previous time step and 

larger values for the internal elements.

An alternative technique to efficiently manage the bound-

ary definition in the PFEM is the Constrained Delaunay 

tessellation. However, it is difficult to apply this method to 

problems with significant changes of the material bounda-

ries, like in many free-surface fluids applications. Moreo-

ver, the separation and reconnection of different parts of 

the computational domain are difficult to be handled with 

this technique. On the other hand, the Constrained Delaunay 

tessellation can be used for some solid mechanics problems 

where no significant changes in time of the boundary are 

expected.

It must be noted that the local changes of topology due to 

the alpha-shape technique may produce the lack of preserva-

tion of the volume. If the sum of the volume of the erased 

elements is different than the one of the new simplices, the 

overall volume of the analysis is not conserved. Neverthe-

less, it must be noted that this inconvenience of the PFEM 

remeshing procedure is proportional to the mesh size and 

can be reduced to the desired accuracy by refining the mesh. 

An accurate description of the effect of the parameter � on 

the accuracy of the results can be found in[28].

2.2.3  Separation and Reconnection of Nodes 

and Subdomains

One of the main strengths of the PFEM lays in its capability 

to model separation and reconnection of parts of the com-

putational domain and also single isolated particles. This is 

of great relevance for the simulation of several engineering 

applications and natural phenomena, such as breaking waves 

and splashes formation in free-surface fluid flows.

The identification of the parts detaching from the rest 

of the domain is done automatically by the alpha-shape 

method. When a boundary node belongs to a too distorted 

element, the criterion of Eq. (3) removes the element and the 

node is separated from the domain. After the separation, the 

particle motion is governed by the body force and the initial 

velocity which it is subjected to. At each new Delaunay tri-

angulation, the detached particle becomes again a vertice of 

the new tessellation and its connection with the rest of the 

domain is evaluated. If the particle has approached enough 

the boundary, the element is not eliminated by the alpha-

shape check, and it is again incorporated in the main mass. 

Figure 5 shows an example of separation and incorporation 

of a particle.

The same considerations described for isolated nodes 

apply for groups of nodes linked together by elements. Nev-

ertheless, in this case, the motion of these subdomains is 

computed through the FEM equations.

2.2.4  Adding and Removing Nodes

In mesh-based Lagrangian approaches, the nodes move 

as a consequence of the equation of motion. Hence, some 

nodes may concentrate in a region of the domain and, on the 

contrary, in another region, the number of nodes becomes 

too low to obtain an accurate solution. Such a situation 

may affect the quality of the mesh and, consequently, the 

accuracy and effectiveness of the FEM solver, especially in 

3D problems. To overcome this drawback, it is possible to 

remove and add nodes in the mesh zones that need it. The 

same idea was originally proposed in the very early work on 

Lagrangian FEM for fluid flow[36]. It is important to remark 

that in the PFEM, insertion and removal of mesh nodes can 

be safely done because the mass is not associated with the 

nodes but with the elements, as in standard FEM.

In the PFEM literature, different algorithms to add and 

remove particle have been proposed. However, the key idea 

is always based on the two following concepts:

Fig. 5  a Separation of a fluid particle from the bulk. b Incorporation 

of a fluid particle in the bulk
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• If a node comes too close to another node (or to a 

boundary) the node should be removed (or moved to 

another location), see Fig. 6;

• If an element becomes too large, a new node should be 

inserted, see Fig. 7.

The nodes insertion can be done inside the element (for 

example, in its center of mass, Fig. 7b) or along an edge 

(for example, in the middle of its largest edge, Fig. 7c).

Removing nodes is also important to avoid the unde-

sired situation of artificial leakage. This pathological 

situation mainly refers to fluid dynamics problems and 

it occurs when a node comes so close to a boundary wall 

that the alpha-shape removes the element connecting it to 

the boundary nodes. A void is then produced and material 

could pass through the wall nodes. To prevent this, it is 

recommended to remove those nodes that come to close 

to the fixed domain boundaries.

It is important noticing that the previous operations 

can be performed without generating a new mesh with the 

Delaunay triangulation and by only changing the local ele-

mental topology. However, in this case, the mesh cannot be 

longer considered as a Delaunay mesh.

Adding and removing nodes can also be done without 

altering the total number of nodes. In this case, a new node is 

added only if a node can be removed from another position. 

Doing so, the mesh size tends to remain constant during the 

analysis. Moreover, this is also useful from the implementa-

tion point of view, as it enables the use of simplified data 

structure with dimensions fixed in time.

2.2.5  Mesh Re�nement

The Delaunay tessellation coupled with the alpha-shape 

leads to uniform meshes if a unique threshold value �̄ in Eq. 

(3) is used for the whole domain. However, there exist situ-

ations in which a non-uniform mesh is recommendable, for 

example in the regions close to boundary layers, in nozzles 

or at the interface between different materials.

In these cases, one may define different values of the 

parameter �̄ depending on the position of the nodes. Conse-

quently, nodes can concentrate automatically in the desired 

zones and get rarefied elsewhere. A similar mesh refinement 

technique was applied in[15].

Another possibility is to modify the alpha-shape criterion 

according to error estimation considerations. For example, in 

manufacturing processes to simulate complex large deforma-

tion, the insertion of particles is based on the equidistribu-

tion of the plastic power and the removal were driven by a 

Zienkiewicz-Zhu error estimator [104, 106].

2.3  Implications of Remeshing on the FEM Solution 
Scheme

The use of remeshing has some important implications on 

the FEM model that can be used in a PFEM framework. As 

explained in previous sections, a key characteristic of PFEM 

remeshing is that the new mesh is not created from scratch, 

but is built keeping the nodes of the previous mesh. This fea-

ture, allows avoiding data interpolation from the old to the 

new mesh when only nodal variables are used (typically in 

fluid dynamics), on the other hand, it limits the applicability 

of the method to linear elements. Higher-order interpolations 

would require to remap from mesh to mesh the unknowns 

placed in the middle of the edges of the elements. Further-

more, the element curvature will be lost at each step of the 

Delaunay triangulation. As a consequence, only linear shape 

functions should be used in a PFEM framework.

In this respect, we note that low order elements can 

be unstable for incompressible or quasi-incompressible 

problems, also in case of using mixed formulations (e.g. 

Fig. 6  Example of node removal. a Original mesh; b mesh without 

the removed node

Fig. 7  Example of node addition. a Original mesh; b addition of a 

new node inside an element; c addition of a new node along an edge
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linear shape functions for velocity and pressure). This issue 

explains why the PFEM formulations for fluid mechanics 

are generally provided with some stabilization methods. A 

description of the most commonly used stabilization proce-

dures in PFEM can be found in Sect. 3.6.

Another important implication of remeshing on the FEM 

solution is related to the continuous elimination of the ele-

ments. In standard methods using Gaussian integration, this 

makes necessary the implementation of specific techniques 

for the recovery of historical variables[96]. Nevertheless, 

remapping can be avoided in case of using a nodal inte-

gration scheme, as the historical variables are stored at the 

nodes[126]. More details can be found in Sect. 5.1.

PFEM remeshing also affects the choice of the reference 

configuration used in the FEM solution. Typically, three pos-

sible reference configurations can be chosen: 

1. The initial configuration;

2. The configuration at the beginning of each time step;

3. The configuration at the beginning of each non-linear 

iteration.

Due to the excessive distortion of the mesh, the first choice 

(Total Lagrangian method) is practically unfeasible and only 

the other two choices (Updated Lagrangian methods) are 

exploitable. Keeping the reference configuration constant 

in a time step, the shape functions, their derivatives and all 

the geometrical quantities can be computed only once in the 

time step, but the computation of the deformation gradient 

has to be performed at each non-linear iteration. Instead, if 

the configuration at the last non-linear iteration is used, the 

deformation gradient coincides with the identity matrix, but 

the geometrical quantities must be updated at every iteration. 

In both cases, the connectivity does not change within the 

same time step.

3  PFEM for Fluid Dynamics Problems

The PFEM was originally conceived for the solution of free-

surface fluid flow problems[52]. The method was designed 

to deal with the large motion of the fluid domain and to track 

its highly deforming free boundaries, which could eventually 

fold, break and reconnect. The range of possible applications 

of such a technology is wide and interests several branches 

of engineering and applied sciences.

In fluid dynamics, the automatic capability of tracking the 

evolving free-surface is not the only benefit of the PFEM. 

Thanks to its Lagrangian description of the motion, the con-

vective terms do not enter in the PFEM governing equations. 

This is a great advantage as the convective terms are respon-

sible for non-linearity, non-symmetry and non-self-adjoin 

operators, thereby complicating significantly the solution 

of the governing equations in an Eulerian framework and 

typically requiring the introduction of stabilization terms to 

avoid numerical oscillations.

In contrast, in the Lagrangian framework, the non-linear-

ity appears because the governing equations are written in 

the unknown current deforming configuration, which may 

differ by large displacements from the reference one.

The absence of convective terms in the governing equa-

tions represents an important advantage of Lagrangian meth-

ods, such as PFEM versus standard Eulerian formulations. 

However, in fluid dynamics, the price to pay is the need to 

continuously remesh the computational domain. This fact 

has important implications on several aspects of the numeri-

cal solver, such as time integration and spatial discretization, 

the imposition of boundary conditions, or mass conserva-

tion. The following sections aim to analyze in detail the most 

important aspects of using the PFEM for fluid dynamics 

problems.

3.1  Fluid Dynamics Problem Statement

Let consider a moving fluid domain �
t
 in the time inter-

val [0, T]. The motion of the fluid body is governed by the 

Navier–Stokes equations. Introducing the velocity � = �(�, t) 

and the Cauchy stress tensor � = �(�, t) , momentum balance 

and mass conservation read:

where �(�) represents the fluid density, �(�, t) the external 

body forces per unit mass, and D⋅/Dt denotes the material 

time derivative. It is important to remark again that, due to 

the Lagrangian nature of the method, the convective term 

does not appear in the governing equations and the total time 

derivatives reduce to a local time derivative.

Many real fluids tend to an incompressible behaviour. In 

this case, the dependence of the density on time disappears, 

and Eq. (5) simplifies as:

which represents the mass conservation for an incompressi-

ble fluid. However, it must be underlined that a small amount 

of compressibility still exists in all the cases idealized as 

incompressible ones. It is interesting to note that consid-

ering small fluid compressibility can be convenient from 

the numerical point of view also for problems that would 

be classified as fully incompressible. Such an assumption 

(4)�
D�

Dt
= div � + � in �

t
× (0, T)

(5)
D�

Dt
+ � div � = 0 in �

t
× (0, T)

(6)div � = 0 in �
t
× (0, T)
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is referred to as weakly compressible fluid hypothesis. For 

suitable small Mach numbers (much smaller than one), the 

weakly compressible model well approximates the incom-

pressible limit. However, the algebraic nature of the prob-

lems changes: the system of equations is hyperbolic-para-

bolic for the compressible case and elliptic-parabolic for the 

incompressible one. The actual benefit of weakly compress-

ible solvers versus incompressible ones is the possibility to 

compute explicitly the pressure, thereby avoiding the need 

of using a Poisson solver. This aspect explains its popularity 

in PFEM formulations, see e.g. [32, 44, 51, 112]

It is important to remark that in a PFEM framework, also 

real compressible fluids can be considered[21, 57]. In this 

case, the system of governing equations (Eqs. (4)–(5)) must 

be complemented by adding an energy conservation equa-

tion and an equation of state.

Typically, in fluid dynamics, the Cauchy stress tensor � is 

decomposed into isotropic and deviatoric parts:

where p = p(�, t) is the pressure field, � the second-order 

identity tensor, and � is the deviatoric stress tensor, which 

is generally related to the deviatoric strain rate � through a 

rheological law as:

where � = �(�) is the viscosity. The deviatoric strain rate is 

obtained from the velocity field as:

Once the pressure field has been introduced, it is important 

to note that Eq. (5) can also be expressed as:

where � represents the bulk modulus of the fluid.

3.2  Space Discretization and Stabilization

In the PFEM, a standard Galerkin approach is used to 

discretize in space the Eqs. (4)–(5) (or alternatively, Eqs. 

(4)–(10)). As already underlined in Sect. 2.3, in a standard 

PFEM framework, only linear shape functions are used to 

approximate the unknown variables. Introducing an isopar-

ametric finite element discretization, the velocity and the 

pressure can be expanded in terms of the nodal vectors � and 

� , respectively. The semi-discretized equations of motions 

read[23]:

(7)� = −p� + �

(8)� = 2�(�)�

(9)�(�) =
1

2

(

grad � + grad �
T
)

−
1

3
( div �)�

(10)
Dp

Dt
+ � div � = 0 in �t × (0, T)

(11)�
�
�̇ +�� + �

T
� = �

where �
�
 and �

p
 are the mass matrices for velocity and 

pressure unknowns, � is the fluid matrix emanating from 

the viscosity term, � is the discretized divergence operator, 

and � is the vector of body forces and boundary conditions. 

The symbol ̇( ) represents a time derivative.

Using equal order interpolation for both the velocity and 

pressure unknowns, the LBB inf-sup compatibility condition 

is not fulfilled [9]. Hence, the formulation must be stabi-

lized. In the PFEM literature, different kinds of stabiliza-

tion procedures have been applied. For instance, the Finite 

Increment Calculus (FIC) formulation has been frequently 

used to stabilize the PFEM equations (see e.g. [52, 53, 83]). 

Alternatively, the Pressure Stabilizing Petrov-Galerkin tech-

nique has been used (see e.g. [13, 18]). In [61], the Algebraic 

Sub-Grid Scale stabilization technique is introduced to sta-

bilize mixed pressure velocity PFEM formulation. Examples 

of other stabilization techniques can be found in [111, 113]. 

In [2], the authors propose to make use of stable elements 

belonging to the bubble family.

3.3  Time Integration

Equations (11)–(12) must be integrated in time and thus an 

approximation for the time derivative of pressure and veloci-

ties should be provided. Note that for really incompressible 

materials, the time derivative of pressure (or density) does 

not appear. Both implicit and explicit approaches can be 

used in a PFEM framework, although, typically, an implicit 

time integration has been preferred. For example, in[18, 83], 

implicit first-order scheme were used while in[33] second-

order schemes were proposed. To simplify the numerical 

treatment of the coupled equations, fractional step or similar 

partitioned schemes have been used in several PFEM appli-

cations (see e.g.[2, 52, 86, 109]) .

Only recently, explicit time integration schemes have 

been used in PFEM formulations (see e.g.[17, 72, 73]. 

Explicit solvers are very appealing for fast dynamics prob-

lems and also for non-linear problems that may suffer from 

numerical issues of convergence. Moreover, they have good 

parallelization skills as a system of fully decoupled equa-

tions can be obtained. On the other hand, the explicit time 

integration is conditionally stable and the choice of the 

time step size is governed by the CFL (Courant, Friedrichs, 

Lewy) stability condition. This feature gives to mesh quality 

a crucial role for the computation efficiency of explicit meth-

ods because the presence of excessively distorted elements 

may lead to vanishing stable time step size and compromise 

the computation. For this reason[72] proposes an efficient 

mesh smoothing approach based on an elastic analogy to 

improve the worst elements, with a computational cost 

(12)�
p
�̇ + ��� = �
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compatible with the frequent remeshing procedure required 

by the PFEM.

3.4  Rheological Law

The first PFEM works focused on Newtonian flows only 

([52, 87]). However, soon also non-Newtonian fluids were 

analyzed[15, 19].

In Newtonian fluids, the deviatoric stress � is linearly 

related to the deviatoric strain rate � as:

where the fluid viscosity � is constant.

On the contrary, non-Newtonian fluids are characterized 

by a non-linear relationship between the deviatoric stress 

and deviatoric strain rate. The Bingham law is one of the 

most commonly used models. The law is well representa-

tive of some geophysical flows, such as mudflow, lahars 

or debris flows but also fresh concrete and other types of 

materials, like some fresh paints or alimentary sauces. A 

Bingham material undergoes shear deformations only if the 

shear stress overcomes a fixed limit, �
0
 , called yield stress. 

The Bingham law can be expressed with the following piece-

wise equations:

being

The incrementally discontinuous behaviour of Eqs. (14) 

and (15) and the unbounded value of viscosity, introduce 

numerical difficulties in the solution scheme which can be 

avoided using an exponential smoothing approximation[98]:

where the apparent viscosity �̃ has been introduced. When 

n → ∞ , the original Bingham model is recovered. Due to 

its good adaptability to fluid dynamics solvers, the Bingham 

model with exponential regularization has been largely used 

in PFEM works, e.g.[15, 64, 103, 117].

The Bingham model was conceived for materials with 

fixed yield stress. However, in some cases, the definition of 

the yield value can depend on the characteristic of the mate-

rial itself or by its intrinsic multi-physics (e.g. presence of 

the water in partially drained soils). A more general model, 

usually called frictional model, introduces non-constant 

(13)� = 2��

(14)�(�) = 2��(�) + �
0

�(�)

‖�(�)‖
if ‖�‖ > �

0

(15)�(�) = 0 otherwise

(16)‖�(�)‖ =

�
1

2
� ∶ � ‖�‖ =

�
1

2
� ∶ �

(17)�(�) = 2 �̃ �(�) =

�
2� +

�
0

‖�‖
�
1 − e

−n‖�‖�
�
�(�)

yield stress depending on an effective pressure p′ and a fric-

tion angle �:

This relationship, which can be interpreted as a Mohr–Cou-

lomb failure criterion (see e.g.[16]), can be incorporated into 

Eq. (17) to represent the behaviour of frictional viscoplas-

tic materials. This model has been extensively used in the 

PFEM framework to simulate the flow of soil or granular 

material in[22, 61, 117].

3.5  Boundary Conditions

To be well-posed, the problem (4)–(5) has to be supple-

mented with an appropriate set of initial and boundary con-

ditions. As underlined in the previous sections, the Lagran-

gian nature of the PFEM is very useful for the definition of 

evolving free-surfaces, which are automatically detected by 

the position of the external nodes of the domain.

On the contrary, the Lagrangian approach leaves much 

less flexibility to the treatment of constrained contours, 

which are represented by nodes with prescribed velocity. 

In Lagrangian methods, the external boundaries are defined 

by the position of the material particles (mesh nodes in the 

PFEM). These methods have some limitations when the 

boundary condition assigns non-zero velocity components 

to the nodes belonging to a fixed boundary. For these cases, 

the PFEM solver must be complemented by appropriate 

techniques. This section aims to shed light on the treatment 

of the different boundary conditions in the PFEM.

3.5.1  Free Surfaces and Interfaces

The tracking of the free contours of a fluid is a complex 

task for many numerical approaches and, in some cases, it 

requires the additional implementation of ad-hoc techniques. 

This is the case of all Eulerian finite elements or finite vol-

umes formulations that must be complemented by tech-

niques like Volume of Fluid[42] or Level set[97] methods.

On the contrary, the PFEM can automatically define 

the free-surface position without any specific technique, 

because, each node of the domain is tracked during the 

motion, and the free surface can be easily identified directly 

by the position of the nodes of free contours.

The same considerations apply for the detection of the 

interface between different fluids or between a fluid and a 

structure. The Lagrangian nature of the PFEM allows for 

the automatic identification of these interfaces and to follow 

them on time.

Depending on the physics of the problem, different 

conditions can be imposed on the evolving interfaces. For 

free-surface contours, it must be ensured that the normal 

(18)�
0
= p

�
tan (�)
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component of the stress tensor should vanish. This is much 

preferable to the imposition in a strong form of null pres-

sure, which can lead to the violation of mass conservation 

[51, 83, 112]. In the multi-fluid analysis, surface tension has 

significant importance and should be included at the inter-

face between the different fluids. Examples of PFEM formu-

lations for multi-fluid flows accounting for surface tension 

effects can be found in [74, 110]. The accurate imposition of 

boundary conditions at the interface is particularly important 

for fluid–structure interaction problems. The PFEM treat-

ment of these boundary conditions is explained in Sect. 4.3.

3.5.2  Slip Boundary Conditions

No-slip boundary conditions between fluid and confining 

walls are generally considered in fluid dynamics. However, 

there exist cases in which a relative slip between the fluid 

and the surface is observed. A classical example is the so-

called Navier slip boundary condition, which defines a lin-

ear correlation between the slip velocity and the tangential 

stress at the slipping surface. The amount of slip is defined 

through a parameter called slip length, which can range from 

the no-slip condition to free-slip. Free-slip conditions are 

particularly interesting as they may help to avoid using very 

fine boundary layer meshes.

Slip boundary conditions have been applied in a PFEM 

framework using different approaches. Cerquaglia et al.[13] 

proposes to use a layer of contact elements between the fluid 

and the wall to account for the slip effects (both in the weak 

or in strong forms). In[26], the implications in terms of mass 

conservation of using free-slip conditions in the PFEM are 

discussed. Cremonesi et al.[20] suggests the use of a Lagran-

gian–Eulerian approach to describe the slip condition. In this 

method, the fluid domain is solved in a standard Lagrangian 

way, while the slip interface is assumed to be composed by 

Eulerian nodes and solved accordingly.

Note that a symmetry plane can be considered a special 

case of slip boundary conditions where no normal velocity 

is present and free-slip in allowed in the tangent direction. 

Consequently, the same techniques used for the slip can be 

extended also to the symmetry boundary conditions.

3.5.3  In�ow and Out�ow

The same complexity associated with slip boundary con-

ditions arises also for inflow and outflow boundaries. The 

imposition of this kind of boundary conditions is of great 

importance in the simulation of real engineering problems 

but can be critical in a Lagrangian FEM-based method. 

When a velocity profile (or a pressure profile) is imposed 

on a boundary, the nodes belonging to that boundary move 

following the fluid velocity and consequently the definition 

of the boundary is lost.

Ryzhakov et al.[110] presents an inlet technique in which 

the inflow region is treated in a standard Lagrangian form: 

the nodes belonging to the boundary move with the pre-

scribed velocity creating empty space which is then replaced 

with a new set of nodes. In[119], the same technique was 

used to simulate hydraulic channel conditions. Cremonesi 

et al.[20] suggests describing the inflow as an Eulerian 

boundary and the rest of the domain as Lagrangian. This 

technique overcomes the mesh issues of the purely Lagran-

gian strategy, but it requires the modification of the solver 

for the inlet nodes.

For the outflow conditions, in many relevant situations 

where no particular condition is imposed at the outlet sur-

face, it is sufficient to remove from the mesh the Lagrangian 

nodes which have crossed the outflow limit, i.e. nodes that 

are outside the computational domain. On the contrary, in 

the case of prescribing the pressure or velocity at the outlet, 

the same techniques used for the inflow should be applied.

3.6  Mass Conservation

One of the critical points of free-surface fluid dynamics 

analysis is the unfulfillment of mass conservation. For the 

PFEM, like for other FEM-based methods, mass conserva-

tion may be violated due to two distinct reasons: 

1. Due to the numerical solution of the governing equa-

tions;

2. Due to the free-surface tracking technique.

The first source of mass variation is due to the Galerkin finite 

element solution of mass conservation (Eq. (6)) because 

the inaccuracy of the numerical solver affects directly the 

total mass conservation. Moreover, the typical stabilization 

techniques used to circumvent the unfulfillment of the LBB 

condition, have the effect of relaxing the incompressibility 

constrain leading to mass variations. Therefore, it is crucial 

to rely on a fluid dynamics solver with good mass preserva-

tion properties[51, 83, 112]. It is also important to highlight 

that this type of mass conservation violation can be experi-

enced in all the standard Eulerian and ALE approaches, not 

only in the PFEM.

The second mass violation source depends exclusively on 

the technique used to track the evolving fluid contours. In 

the PFEM, the fluid free surface is detected by the position 

of the nodes. However, during the remeshing, the connectiv-

ity may change (see Sect. 2.2.2), and this may lead to local 

topological variations of the fluid domain. These changes, 

besides perturbating locally the equilibrium configuration 

obtained at the previous step, can lead to a global variation 

in the volume of the computational domain, and so a global 

violation of mass conservation. It is important to remark 

that this volume variation reduces progressively by refining 
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the mesh and with a proper definition of the parameter � of 

the alpha Shape method[18, 28]. A detailed analysis of the 

effects of the remeshing procedure on the volume conserva-

tion for free-surface incompressible fluid problems can be 

found in[28].

3.7  An Illustrative Example: The Dam Break Test

The application of different PFEM formulations to the dam 

break test, a classical benchmark for free-surface dynamics 

analysis, is here considered. The problem consists of a col-

umn of water initially located at the left part of a tank and 

sustained by a removable wall (dam) on its right side. At the 

initial time, the vertical wall is suddenly lifted and the water 

flows under the effect of gravity on a rectangular channel 

until it collides with the right vertical wall of the tank. The 

geometry of the problem is depicted in Fig. 8. This test was 

originally proposed in[59], where both experimental obser-

vations and numerical simulation results were provided.

This problem has been also solved many time with 

PFEM, both in 2D (see e.g. [13, 52, 53, 138]) and in 3D 

(see e.g [35, 72]). In Fig. 9, snapshots of a PFEM simulation 

Fig. 8  Dam break test. Geometry of the problem. L = 0.146  m, 

h = 0.175 m

Fig. 9  Dam break test. Snapshots of the simulation at different time steps compared with the corresponding experimental results. Pictures taken 

from [72]
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have been synchronized with the experimental test observa-

tions of [59], showing the good capability of the method 

to reproduce the complex phenomena occuring in this test, 

such as breaking waves, splashes and strong impacts with 

solid boundaries. 

Figure 10 shows the time evolution of the front wave. 

Different PFEM formulations are compared showing a good 

agreement among them and with experimental data. How-

ever, all the numerical simulations (PFEM and not) show a 

slightly faster front advancement of the front versus labo-

ratory observations. The reason for this small discrepancy 

lays in the modelling of the raising wall motion. In all the 

numerical simulations, the wall is removed instantaneously 

while it takes inevitably a finite amount of time in the experi-

ment (see the comments in [43, 120]).

It is worth to note that this test has also been solved many 

times with the PFEM including a rigid obstacle in the middle 

of the container (see e.g.[32, 63, 72, 83, 121]).

4  PFEM for Fluid–Structure Interaction 
Problems

Since the very first works, the PFEM has been applied to 

the simulation of free-surface fluids interacting with mov-

ing solids. In the early applications, the solid objects were 

treated as rigid bodies[53, 87]. However, soon the method 

was extended also to elastic[44, 45] and elastoplastic[34, 

137] bodies.

The main reason that explains the success of PFEM in 

the framework of fluid–structure interaction (FSI) analysis, 

lays undoubtedly in its accurate tracking of moving inter-

faces. This feature is extremely useful for the solution of 

a wide range of engineering and industrial problems with 

fluid–solid interfaces undergoing large motions.

Furthermore, as it will be detailed later, the body-fitted 

mesh arisen from the PFEM interface detection algorithm, 

enables an easy transfer of boundary conditions between 

the different bodies, creating the good basis for an accurate 

solution of the FSI problem.

Finally, it is important to remark that the PFEM allows for 

a very natural coupling with all types of Lagrangian FEM 

because it does not impose any restrictions on their solution 

schemes, enabling the re-utilization of existing solvers.

In this section, after a general classification of FSI meth-

ods, an extended review of theory and applications of the 

PFEM for fluid–structure interaction problems is given.

4.1  General Classi�cation of FSI Methods

Let us consider a continuum domain �t evolving in the time 

interval [0, T] . The domain is constituted by two non-over-

lapping subdomains: a fluid one, �t

F
 and a structural one, 

�
t

S
.2 Let us define the subdomains boundaries: � t

F
= ��

t

F
 

for the fluid and � t

S
= ��

t

S
 for the solid. The fluid–structure 

interface is given by � t

FSI
= ��

t

F
∩ ��

t

S
 (Fig. 11).

At the fluid–solid interface � t

FSI
 , dynamic and kinematic 

coupling conditions should be enforced:

where �
F
 and �

S
 are the fluid and solid velocities, �

F
 and �

S
 

the Cauchy stress tensors in the fluid and solid domains and 

� is the normal to the interface � t

FSI
.

A large variety of schemes has been proposed in the lit-

erature to solve FSI problems. A first classification of these 

depends on the degree of coupling of the method. An algo-

rithm that enforces both the kinematic and dynamic trans-

mission conditions across the fluid–structure interface is 

defined as strongly coupled. If instead, an algorithm does not 

(19)�
F
= �

S
on �

t

FSI

(20)�
F
⋅ � = �

S
⋅ � on �

t
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Fig. 10  Dam break test. Time evolution of the front wave position

Fig. 11  Domain of the FSI problem

2 In the following, the subscript F refers to the fluid domain, while S 

to the solid one.
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satisfy exactly the coupling conditions, is defined as weakly 

coupled or loosely coupled

Another classification of FSI algorithms takes into 

account the structure of the solver. A method is said to be 

monolithic if a unique solver is used to solve the fluid–struc-

ture interaction problem. In this approach, the coupling con-

ditions are enforced exactly, leading to a strongly coupled 

scheme and preserving accuracy and stability. This repre-

sents the main advantage of monolithic strategies together 

with the fact that they do not suffer from added mass effect 

problems. However, monolithic methods do not allow reus-

ing existing fluid and solid solvers, and they potentially lead 

to large ill-conditioned linear systems, as both fluid and solid 

contributions are contained therein.

Alternatively, partitioned (or staggered) schemes solve 

fluid and solid sub-problems independently, and then they 

couple the solutions via transmission conditions. Partitioned 

methods can provide strong coupling, for example through 

sub-iterations or predictor/corrector techniques, or weak 

coupling otherwise. Staggered schemes allow the reuse of 

existing codes and to solve smaller and better conditioned 

linear systems. On the other hand, in some cases, partitioned 

schemes can suffer convergence issues.

4.2  Detecting Fluid–Structure Interface in PFEM 
Framework

One of the key features of the application of the PFEM to 

FSI problems is the possibility to exploit a fully Lagrangian 

description of the fluid and solid subdomains. Therefore, the 

mesh evolves in time with the motion of the different bod-

ies, enabling accurate tracking of the evolving fluid–solid 

interface.

In the most general version of the PFEM, the interface 

detection is done by superposing a set of fictitious fluid 

particles to the structural boundary surfaces: these particles 

have the fluid physical properties, but, in the beginning, they 

are just used for the FSI boundaries identification (Fig. 12a 

or d). These particles are involved in the remeshing step 

of the fluid analysis, as the real fluid nodes. The resulting 

Delaunay mesh discretizes the whole fluid domain and cre-

ates the interface elements between the fluid and the solid 

domain (Fig. 12b or e). After that, the alpha-shape tech-

nique makes a selection of the interface elements eliminat-

ing those too large or too distorted. At this point, if all the 

interface elements are removed, the fluid and solid domains 

are not interacting any longer (Fig. 12c). On the contrary, 

if some interface elements connecting solid and fluid parts 

are not removed (Fig. 12e), a coupled analysis is performed 

(Fig. 12f).

It is important to note that, depending on the location 

of the fictitious nodes, different body-fitted strategies may 

arise. If the fictitious nodes coincide with the solid nodes, a 

conforming-mesh interface is obtained. If, on the contrary, 

the fictitious nodes do not coincide with the solid nodes, 

a non-conforming mesh strategy is obtained. This latter 

method enables the use of different mesh sizes for the fluid 

and the solid elements at the interface, but, it requires map-

ping the variables at the interface to transfer accurately the 

boundary conditions.

4.3  Literature Review of PFEM for Fluid–Structure 
Problems

FSI problems have been solved with the PFEM using dif-

ferent strategies. In all cases, the PFEM is used to solve the 

fluid domain and to detect the interface, while the FEM is 

used for the solid solution. Practically speaking, the remesh-

ing step affects only the fluid parts, while the solid discre-

tization remains unchanged during the entire analysis.

The full monolithic scheme has been used on different 

occasions. The first contribution in this category is[44], 

where the authors solve the FSI problem in a general and 

unified Lagrangian framework, exploiting the similari-

ties between the Newtonian model (used for the fluid) and 

the hypoelastic one (used for the solid). The method was 

extended to quasi-incompressible solids in[33] and to ther-

mal-coupled problems in[34]. Recently, in[27] the method 

has been adapted to a nodal-integration framework.[111, 

113] presented a monolithic approach with a global pres-

sure condensation which enables the definition of a purely 

displacement-based linear system of equations. A matrix-

free technique is used for the solution of such a linear sys-

tem. In[138–140], ill-conditioning issues of the monolithic 

formulation had been overcome by applying a fractional 

step approach to the linear system, segregating pressures 

and velocities unknowns into smaller systems of equations.

Fig. 12  FSI for conforming fluid and solid meshes: a Fluid as a set of 

particles, structure as a mesh of quadrilateral elements with fictitious 

fluid particles at its boundary. b Delaunay triangulation. c Applica-

tion of alpha-shape method. d same as a but subdomains in contact. e 

Delaunay triangulation. f Application of the alpha-shape method
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There also exist several partitioned PFEM approaches 

for FSI problems. In[53], a Gauss-Seidel technique was 

used to treat the FSI problem, although only rigid bodies 

were considered. In[18], a partitioned Dirichlet-Neumann 

algorithm solving the fluid with the PFEM and the elas-

tic solid with a displacement-based FEM was presented. A 

similar algorithm was applied in[114] to the simulation of 

sea-landing of aerial vehicles. Meduri et al.[73] proposed a 

partitioned approach allowing for a non-conforming mesh at 

the interfaces and different time steps for the fluid and solid 

solutions. This work also showed the successful coupling 

of a PFEM fluid solver with commercial software used for 

the solid parts. Recently[14] presented a fully partitioned 

Lagrangian framework using an Interface Quasi-Newton 

Inverse Least Squares strategy to avoid added mass effects.

4.4  An Illustrative Example: The Dam Break 
with an Elastic Obstacle

The collapse of a water column against a deformable mem-

brane is a typical benchmark problem for FSI analysis with 

free-surface fluid flows[123]. The geometry of the problem 

is depicted in Fig. 13. Following[123], the following geo-

metrical parameters are used:

The fluid is water and its physical properties are: viscos-

ity � = 0.001 kg/ms , density �f = 1000 kg/m3 . The solid is 

elastic having Young modulus E = 1000 kPa , Poisson ratio 

� = 0 and density �
s
= 2500 kg/m3.

Figure 14 shows some representative snapshots of the 

simulation. The water column collapses after the removal of 

the vertical wall and spreads on the rectangular channel until 

hits the vertical elastic membrane (Fig. 14a). The obstacle 

blends under the effect of the fluid impact (Fig. 14b). Water 

slips on the deflected membrane and collides with the ter-

minal vertical rigid wall (Fig. 14c). After that, the water 

volume fills the right part of the container (Fig. 14d) impact-

ing again on the right part of the solid object (Fig. 14e, f).

Figure  15 plots the time evolution of the horizontal 

displacement of the left upper corner of the solid object 

obtained by different PFEM strategies. The curves show an 

overall good mutual agreement.

(21)L = 14.6 cm h = 1.2 cm d = 0.8 cm

Fig. 13  Collapse of a water column on a elastic object. Geometry of 

the problem

Fig. 14  Collapse of a water column on a elastic object. Picture from[71]
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5  PFEM for Non‑linear Solid and Contact 
Mechanics

Although the PFEM was originally designed for fluid 

dynamics and FSI applications, the method was soon 

extended to non-linear solid mechanics. Indeed, a 

Lagrangian approach for large-deformation problems 

was appealing for several industrial and natural processes, 

where solid bodies undergo so large motions to behave 

like a fluid. This is the case, for example, of several man-

ufacturing processes and many geotechnical applications. 

In this section, we will refer to PFEM formulations for 

non-linear solid mechanics, in short PFEM-solid, as those 

PFEM strategies that make use of historical variables 

defined inside the elements.

The first PFEM-solid formulation [95] was applied 

to complex industrial processes, such as metal forging, 

machining, or powder filling, and showed the capability 

of the method to track accurately the deforming shape of 

the material and to deal with the complex interactions 

between the different solid bodies. This first work opened 

up the way to many other PFEM-solid formulations. Ref-

erences [84, 104, 106, 107] applied their PFEM-solid 

methods to different types of manufacturing processes, 

[4, 11, 12] analyzed tunneling and excavation applica-

tions, while bed erosion in river dynamics was tackled in 

[81, 82, 86]. Several PFEM-solid formulations have been 

proposed in the field of soil mechanics and geotechnal 

engineering, especially for the modelling of frictional 

materials and granular flows [10, 24, 56, 66, 127, 128] 

and for different types of geomechanics problems [75–78]

5.1  Historical Variable Recovery

One of the most critical points of PFEM-solid formula-

tions is the management and conservation of the historical 

variables during the remeshing step. The solution accuracy 

depends on how well the historical information is pre-

served along with the transition from the previous mesh 

to the new one.

The PFEM remeshing procedure consists of erasing 

all the elements of the distorted mesh and creating the 

new tessellation over the cloud of points composed by the 

mesh nodes (Sect. 2). For PFEM-solid formulations using 

Gaussian integration, this remeshing strategy implies that 

all elemental information must be transferred from the ele-

ments of the old mesh to the nodes, and then, from these 

to the new mesh elements.

This remapping procedure leads inevitably to smooth 

the historical solution, also if the element connectivity is 

not changed. To limit this drawback, Oliver et al.[95] pro-

posed to remap not the whole historical variable but just its 

time step increment. Hence, at the end of a generic com-

putation step 
[

t
n;tn+1

]

 , the nodal stresses �̄n+1 are obtained 

from the incremental elemental stresses ��n+1 as follows

where M
�
 is a standard mass-type matrix and N

�
 is a transfer 

matrix using the shape functions[95].

At the beginning of the new time step, the nodal stresses 

are mapped on the new Gauss points with standard FEM 

interpolation procedures as:

where x
gp

 is the position of the Gauss point, N is the shape 

function and nn is the number of nodes of the element.

In order to avoid excessive smoothing of historical 

variables[104, 106] proposed to transfer the information 

directly from the Gauss points of the previous mesh to the 

closest ones of the new mesh. This way, all information on 

elements that did not modify their connectivity during the 

remeshing, is perfectly preserved. However, in the parts 

of the mesh affected by the change of connectivity, this 

technique introduces inevitably an error, whose magnitude 

depends on the distance between the original and the new 

positions of the Gauss points.

Recently[56, 124, 126] proposed to use nodal integra-

tion rather than the Gaussian one to improve the preserva-

tion of historical variables. In nodal integration schemes, 

all variables (including stresses and strains) are stored at 

the nodes. Hence, this information is not erased during the 

(22)�̄
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n
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�
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Fig. 15  Collapse of a water column on a elastic object. Compari-

sons of the PFEM results of Idelsohn et al.[44], Zhu and Scott[113], 

Meduri et al.[73], and Cerquaglia et al.[14]
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remeshing and neither is affected by remapping operations. 

This solution appears to be a good way to preserve the 

historical variables information in a PFEM-solid formu-

lation. Nevertheless, we note that PFEM-solid strategies 

with nodal integration, analogously to elemental integra-

tion methods, are not completely insensitive to mesh vari-

ations, such as change of connectivity or the elimination/

creation of elements. These mesh modifications, perturbat-

ing the equilibrium configuration obtained at the previous 

computation step, may affect the convergence and accu-

racy of the solution, also when nodal integration is used.

5.2  Contact Problems

Since its first approach to non-linear solid mechanics, the 

potential of the PFEM for dealing with contact interaction 

between solids was explored. The first study that showed the 

suitability of the method for contact problems was[81]. In 

this work, the authors studied FSI problems where the solid 

bodies, dragged by the fluid motion, could eventually hit the 

walls of the computational domain.

The PFEM contact algorithm uses a mesh of interlayer 

elements between the boundaries of the interacting solid 

bodies. This auxiliary mesh is created following the same 

steps of the standard PFEM remeshing procedure (Sect. 2). 

Nevertheless, not all the elements fulfilling the alpha-shape 

criterion are used to compute the contact forces, but only 

those having a size smaller than a fixed critical value ( h
c
 ). 

Over these active contact elements, the elastic and frictional 

forces are computed either with penalty methods or using 

Lagrangian multipliers.

This methodology was also used in [95] to solve mutual 

contacts in manufacturing processes. The paper emphasized 

the property of the auxiliary PFEM mesh, called anticipat-

ing interface mesh, to recognize in advance the solid parts 

getting in contact and to impose the contact constraints in a 

diffusive manner.

Inevitably, the accuracy of this method depends on the 

size of the mesh and, in particular, on the critical distance 

h
c
 , whose value affects the timing of the contact and the 

size of the gap between the solid interfaces. To improve this 

aspect[95] proposed to apply an artificial contraction to the 

solid boundaries to capture more accurately the contact time 

and to reduce the distance between the interacting solid bod-

ies. The same methodology was also used in the so-called 

Contact Domain Method[96] and formalized in[115].

The first three-dimensional (3D) application of the PFEM 

contact algorithm was presented in[86], where the capabili-

ties of the method were proved against complex multi-body 

interactions, either in the presence of water or not.

A different contact algorithm was used in the PFEM-

solid formulations[127, 129] for the simulation of granular 

flows and landslides. In these works, the auxiliary mesh was 

used only to detect the colliding solid boundaries, but not 

to calculate the contact forces, which were computed with a 

strategy originally conceived for discrete element methods 

(DEM)[60].

6  The PFEM for Other Coupled Problems

6.1  Multi-�uid Problems

Heterogeneous fluid flows are involved in several natural 

phenomena and engineering applications. The numerical 

simulation of mixing processes of immiscible fluids is par-

ticularly complex in the presence of very different physical 

properties (density and viscosity) and multiple and articu-

lated interfaces. In this context, the success of the numerical 

simulation mainly depends on the ability of the method to 

track accurately these interfaces and to model the phenom-

ena taking place there.

In the Eulerian framework, standard interface-capturing 

methods, such as Level Set[97] and Volume of Fluid[42] 

should be introduced. However, these front-capturing meth-

ods have some difficulties to avoid the smoothing of the 

interface, in particular in unsteady flows. On the contrary, 

the PFEM can automatically track the evolution of many 

sharp interfaces, thanks to its Lagrangian nature and to the 

definition of the material properties at the mesh nodes.

The PFEM multi-fluid interfaces can naturally fold, break 

and merge, analogously to the fluid free surface (Sect. 3). 

This represents a key capability of the method in the frame-

work of heterogeneous fluids simulation. Furthermore, in 

the PFEM, the finite elements located at the interface can be 

properly enhanced to deal with the numerical issues arisen 

from the abrupt jump of material properties. As in a stand-

ard FEM, to deal with localized pressures jumps and insta-

bilities, ad-hoc stabilization and pressure enrichment at the 

interface should be introduced [46, 48]. In [46], fluids with 

different density are considered, in [48], also the viscosity 

jump is introduced. Moreover [48] shows that discontinu-

ous pressure fields can avoid errors in the incompressibility 

condition. Mier-Torrecilla et al. [74] presents the PFEM 

for large jumps in the physical properties, including also 

surface tension. Figure 16, taken from [46], shows the mix-

ing process of two fluids with different density and initial 

temperature. 

In the PFEM, the interface separating two materials can 

be considered inside an element (elemental interface) or 

along its edges (nodal interface)[46]. Elemental interfaces 

are more stable as they do not change much when remesh-

ing is performed. On the other hand, nodal interfaces are 

more accurate because they allow representing exactly the 
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gradient pressure jump that normally occurs when with a 

jump in the density.

One of the most crucial aspects of the PFEM applied to 

multi-fluid flows, is the conservation of fluid volumes dur-

ing the remeshing step. In fact, on the one hand, the change 

of connectivity may modify locally the path of the interface 

elements, and, on the other hand, the insertion and removal 

of mesh nodes may benefit or disadvantage one fluid versus 

the others. For this reason, it is very important to control 

the remeshing operations at the interface to avoid or limit 

the artificial volume variations of the involved fluids[122].

6.2  Thermal Coupled Problems

Thermally coupled flows are of great relevance for many 

fields of engineering and technology as well as for many 

natural phenomena. Since its origin, the PFEM has paid 

great attention to these kinds of problems. The first work in 

the field[1] showed that the Lagrangian nature of the PFEM 

can be very useful to model accurately thermal convection 

(Fig. 17). The work was then extended to 3D analysis in[2]. 

The potential of the method for dealing with thermal prob-

lems was further proved in a multi-fluid framework[46, 47].

Taking advantage of the capability of the method to deal 

with large changes of topologies, the PFEM has been also 

applied to the simulation of melting problems accounting for 

phase changes. The first approach to phase change analysis 

was presented in[90] for the simulation of the melting and 

spreading of polymers. The solid objects were modelled as 

highly viscous fluids with temperature-dependent viscosity. 

The same approach was extended to 3D simulations in[88, 

91] and used in[58, 69] to reproduce a small-scale fire test 

used to assess the flammability of polymers.

An immersed approach was proposed in[70], where 

a burning polymer was modelled with the PFEM and the 

surrounding air with an Eulerian formulation. This hybrid 

method allowed for the solution of the energy equation for 

both subdomains on the Eulerian mesh.

The first extension to thermally coupled fluid–structure 

analysis was presented in[85]. In this work, the fluid was 

modelled with the PFEM, while an elastoplastic FEM model 

was used for the structure. Melting phenomena were mod-

elled by transferring the external solid elements to the fluid 

domain when they fulfilled a melting criterion. The same 

approach was extended to 3D analysis in[34] and applied 

to the simulation of hypothetical scenarios of nuclear core 

melting during a severe accident in a nuclear plant.

Obviously, thermal effects are also of paramount impor-

tance for a wide range of manufacturing processes whose 

overview can be found in Sect. 7.4.

7  Advanced Applications of the PFEM

This section aims to analyze four of the main applica-

tion fields of the PFEM to engineering and environmental 

problems.

7.1  Hydraulic Engineering

Fluid dynamics has been the first field of application of the 

PFEM. The accurate simulation of the fluid free surface, 

also in the presence of breaking waves and splashes, together 

with the automatic modelling of fluid convection and the 

good energy conservation properties, make the PFEM an 

ideal tool for the analysis of different hydraulic engineering 

problems.

Fig. 16  Examples of multi-fluid problem. Mixing of two fluids with 

different densities and initial temperature conditions. Pictures from 

[46] plot the evolution of nodal density
Fig. 17  Examples of thermal coupled problem. Pictures from[1]
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The first PFEM simulation of hydraulic laboratory tests 

was presented in[63]. In this work, a thorough comparison 

of the PFEM results against experimental observations is 

carried on four different free-surface flow configurations.

The suitability of PFEM in modelling wave propagation 

was clearly demonstrated in[92–94] by reproducing accu-

rately different types of propagating waves in laboratory 

channels. Zhu et al.[136] extended the application field by 

also considering the presence of solid structures, repro-

ducing the situation of tsunami waves loading on a bridge. 

Recently[79] showed the successful application of the PFEM 

to the simulation of water dam break impacting water at rest 

and creating impulse waves.

Dam engineering is another main field of application of 

the PFEM. The first works in this area[62, 64, 65] used a 

hybrid FEM-Eulerian approach to simulate overtopping and 

failure of rockfill dam and the related seepage phenomena. 

Salazar et al.[118] studied a real dam geometry and mod-

elled the 3D air-water interaction to estimate the air demand 

at the bottom outlets. On the other hand[119] focused on the 

water shock-waves that form at the exit of dam spillways. 

Figure 18, taken from[119], shows a view of the real dam 

spillway and the 3D simulation with PFEM.

7.2  Granular Flows

Granular flows are involved in many fields ranging from 

geophysics and geotechnical engineering to mining, pharma-

ceutical, and alimentary industries. Their numerical simula-

tion is challenging because, depending on the flow regime, 

granular materials can behave as solids, fluids or gases, and, 

in general, multiple phases may appear simultaneously. 

Granular flows have been approached with PFEM formula-

tions both in a solid and a fluid mechanics framework.

Zhang et al.[127] modelled the granular material as a 

rigid-plastic body and used PFEM-solid formulation to 

reproduce quasi-static and dynamic granular flows, while 

in[128, 131], an axisymmetric PFEM with rate-independent 

plasticity was employed.

A PFEM-solid formulation was also used in[24] consid-

ering large strains plasticity and a Drucker Prager model 

provided yield surface. The method was applied in[10] to 

complex industrial applications, such as silo discharge and 

tumbling mills.

Recently, a PFEM-solid formulation has been validated 

against several experimental tests of the collapse of granular 

columns[66], while in[56] a granular flow simulation has 

been carried out using a nodal integration method.

There exist also examples of PFEM-fluid formulations 

for granular flow simulation. A frictional viscoplastic model 

was used in[116] to simulate a sandy flow on a slope and 

impacting water at rest. Alternatively[29] used a regular-

ized �(I)-rheology to model the 2D and 3D flow of dense 

granular material. Figure 19 shows a series of consecutive 

snapshots of the collapse of a cylindrical granular column 

taken from[29].

7.3  Landslides

Landslides are one of the most destructive and dangerous 

natural hazards. Each year they cause billions of euros in 

damages and thousands of casualties worldwide. Forecast-

ing the effects of these catastrophic events on the civil and 

Fig. 18  View from downstream 

of dam spillway. Compari-

son between numerical and 

experimental results. Picture 

from[119]

Fig. 19  Example of collapse of an cylindrical granular column solved 

with the �(I)-rheology. Pictures from[29]
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natural environment is a complex task. In particular, it is 

hard to predict the landslide runout dynamics, due to the 

complex characterization of the landslide bulk material, the 

highly deforming shape of the sliding bodies, and the large 

size of the events. In this scenario, numerical methods can 

help to reduce the uncertainties in landslide events predic-

tion and to better evaluate the associated risk. In the last dec-

ade, the PFEM has shown to have some potential in this field 

thanks to its capacity of capturing evolving free surfaces and 

the possibility of using accurate constitutive models for the 

landslide material.

The first attempt to simulate landslides events with 

the PFEM was reported in[19]. The work focused on the 

impulse water waves induced by a landslide, a dangerous 

multi-hazard scenario affecting above all mountains’ natural 

and artificial reservoirs. In this first contribution, the land-

slide material was modelled as a non-Newtonian Bingham 

fluid. Similar landslides impulse wave events were analyzed 

in[116] using a frictional viscoplastic model. Preliminary 

3D results were also presented in the same work. 3D simula-

tions of sliding material on an unstable slope have been also 

presented in[16] focusing on the importance in the landslide 

runout of considering the slip velocity between the flowing 

mass and the basal surface.

In[129], a mathematical programming framework is 

introduced to simulate landslide with a plasticity model 

using a Mohr–Coulomb yield criterion. In[132], an elastic-

viscoplastic model for progressive failure analysis of sen-

sitive clays is presented while in[133], its application to 

landslide is shown. The same ideas have been extended to 

simulate submarine landslides in[130] and used to analyze 

the Saint Jude landslide case study in[134]. Very recently, 

a large scale PFEM model has been used to reproduce the 

Vajont landslide and the consequent impulse wave in the 

hydroelectric reservoir[30]. Figure 20 shows some snapshots 

of this 3D analysis.

7.4  Manufacturing

The simulation of manufacturing processes represents one of 

the relevant areas of application of the PFEM. The capabil-

ity of the method to deal with large deformations, complex 

contact interaction, and constitutive models, explains the 

large number of PFEM works on manufacturing processes. 

Furthermore, typically, these problems also include coupled 

thermal effects that can be easily handled with the PFEM.

Traditionally, in the PFEM, manufacturing processes 

have been tackled via a solid mechanics framework. The 

first PFEM-solid formulation applied to this highly non-

linear analysis is reported in[95]. In this work, a PFEM-

solid formulation was used to reproduce industrial metal 

forging, machining, or powder filling problems. PFEM 

can be also efficiently used to simulate cutting processes in 

which phenomena of friction, adiabatic shear bands, exces-

sive heating, large strains, and high strain rates are involved. 

Oñate et  al.[84] showed examples of extrusion of steel 

plates, forging of metal pieces and cutting of metals. Fig-

ure 21 shows some representative results of a cutting process 

modelled with the PFEM. Other examples of manufacturing 

processes can be found in[104, 105, 107] which are focused 

on the simulation of the segmental chips generated during 

metal cutting processes.

Some manufacturing processes involve so large deforma-

tion of the contours that are more conveniently approached 

in a fluid dynamics framework than in a solid one. For 

example, mould filling and casting problems are modelled 

with a PFEM fluid dynamics formulation in[89], while the 

application to forming problems is presented in[84]. These 

latter processes were also considered in[109], where the 

heat equation is coupled to the mechanical model through a 

temperature-dependent viscosity to simulate glass forming 

Fig. 20  Example of landslide-water interaction modelled with the 

PFEM (the Vajont landslide). Pictures from[30]
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processes. An axisymmetric PFEM formulation was pro-

posed in[108] to simulate the forming of glass bottles.

8  Recent Advancement on the PFEM

8.1  The PFEM of Second Generation (PFEM-2)

An alternative PFEM technique to solve the incompress-

ible Navier–Stokes problem with large time steps has been 

presented in[50]. The key idea of the method lays in the 

X-IVAS (eXplicit Integration following the Velocity and 

Acceleration Streamlines) method, which consists of inte-

grating the convective terms following the streamlines rather 

than the particle trajectories. The X-IVAS technique has 

been coupled with the standard PFEM giving rise to the so-

called Particle Finite Element Method—Second Generation 

(PFEM-2).

Two different versions of PFEM-2 have been proposed. 

The first one, the PFEM-2 with moving mesh, is based on 

the standard PFEM scheme and it creates a new mesh using 

the position of the nodes. Conversely, in the PFEM-2 with 

fixed mesh, the initial background mesh is kept unchanged 

during the analysis and the information is mapped on this 

fixed mesh. The first technique needs to re-build the mesh 

when is too distorted, as it happens in standard PFEM, and 

it is very efficient for free-surface flows. The approach with 

fixed mesh, on the contrary, maps the variables on the mesh 

avoiding the generation of a new one, and it is particularly 

suited for fluid flow problems in closed domains.

An interesting feature of PFEM-2 is the possibility to use 

an explicit time integration independently on the Courant 

number. The method remains explicit and stable indepen-

dently on the mesh size. The time step is established follow-

ing only accuracy considerations, besides the limits given by 

the Fourier number.

The PFEM-2 has been applied successfully to different 

engineering problems. In[55], the ideas presented in[49, 50] 

were generalized for multifluid flows with large time steps. 

In[38], an extended validation of the method for academic 

problems is presented. Gimenez et al.[37] shows the poten-

tial of PFEM-2 to simulate industrial problems of large time 

duration. An application of the method to jet atomization 

simulation can be found in[39]. Becker and Idelsohn[5] 

shows the potential of PFEM-2 to simulate large scale land-

slides events. FSI problems are tackled with a monolithic 

PFEM-2 approach in[6]. Finally[8] shows an application of 

the method to the simulation of sediment transport phenom-

ena in rivers.

8.2  PFEM with Nodal Integration

Traditionally, the PFEM has been formulated for standard 

elemental integration, storing stresses and strains at the 

Gauss points. However, in PFEM with Gaussian integra-

tion, due to the continuous elimination of the elements done 

during the remeshing steps, it may be required to transfer the 

elemental information from the old mesh to the new one. 

This is avoided in fluid dynamics problems, where the meas-

ures of stresses and strains are computed from the scratch 

at each time step, but is mandatory for non-linear solid 

mechanics methods that require the storage of historical 

variables. Remapping procedures, besides having a certain 

computational cost, introduce interpolation errors into the 

numerical scheme and cause the smoothing of the historical 

variables (Sect. 2).

On the other hand, in nodal integration methods, stresses 

and material historical variables are computed and stored at 

the mesh nodes[99]. Consequently, a PFEM strategy with 

nodal integration does not require variable remapping pro-

cedures along the remeshing step.

This feature motivated recent research on the use of 

nodal integration in a PFEM framework[56, 124, 126]. The 

method, called by the authors Smoothed Particle Finite Ele-

ment Method, took inspiration from the Smoothed Finite 

Element Method[135] and was successfully applied to 2D 

geomechanics problems with large deformations.

Fig. 21  Examples of a cutting problem. Pictures from[84]
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The use of nodal integration is also appealing in fluid 

dynamics analysis. FEM models with nodal integration 

are expected to suffer less from the low quality of the 

mesh[125]. This feature is particularly important for PFEM 

models because it would allow reducing the number of 

remeshing events and the associated drawbacks. Good resil-

ience to mesh distortion was also found in the first applica-

tion of PFEM with nodal integration to free-surface fluid 

dynamics problems[31]. The same work showed that the 

scheme gives a faster stress convergence than the standard 

element-based method. On the other hand, using stiffness 

matrices with larger bandwidth for the same mesh, nodal 

methods have a higher computational cost for the solution 

of the linear systems.

Very recently[27] showed the accuracy of PFEM with 

nodal integration for the solution of FSI problems in pres-

ence of free-surface fluid flows.

From a broader perspective, the demonstrated suitabil-

ity of PFEM with nodal integration for fluid dynamics[31], 

solid mechanics[56, 124, 126], and FSI analysis[27] opens 

the field to a unified treatment of a general multi-physics 

continuum within a unique PFEM framework.

9  Conclusions

The PFEM is a powerful and well-assessed numerical tech-

nique that has been extensively used to simulate complex 

engineering problems. This work aimed to give an extended 

overview of the method describing its basic ideas, the main 

strengths and weaknesses, and the spectrum of applications.

In the first part of the work, the method has been 

described in its general form without focusing on specific 

physics or application fields. The remeshing procedure of 

the PFEM has been described in detail. The properties and 

implications of the Delaunay Tesselation, used to re-build 

the elemental connectivities, are analyzed and the alpha-

shape method used to identify internal and external bounda-

ries, is presented in details. Particular attention has been 

devoted to describing the techniques to improve the mesh 

quality, as the insertion and removal of mesh nodes, and to 

highlight the capability of the method to reproduce separa-

tion and reconnection of parts of the computational domain.

After this general description, different physical problems 

have been analyzed separately focusing on the particulari-

ties of their respective PFEM solution scheme. Free-surface 

fluid dynamics was historically the first field of application 

of the PFEM and, for this reason, has been analyzed first. 

Crucial aspects of fluid dynamics analysis and their treat-

ment with the PFEM have been presented. Particular care 

has been devoted to the modelling of the different bound-

ary conditions and to discuss mass conservation issues. A 

benchmark problem for free-surface fluid dynamics solved 

with different PFEM formulations has also been presented, 

showing the capability of the method to deal with com-

plex phenomena such as breaking waves, strong impacts 

and water splashes formation. Then, the application of the 

PFEM to fluid–structure interaction (FSI) problems has been 

shown. After a general classification of the FSI methods, the 

PFEM strategy to track the evolving fluid–solid interfaces 

has been accurately described. An extended literature review 

of the different PFEM formulations for FSI has also been 

provided. Finally, different PFEM solutions of the collapse 

of a water column against a deformable membrane have 

been presented, confirming the suitability of PFEM for solv-

ing complex FSI problems with large solid–fluid interface 

motions. Finally, the application of PFEM to non-linear solid 

mechanics (PFEM-solid) has been described. The advan-

tages and disadvantages of PFEM-solid formulations have 

been highlighted. Particular attention has been devoted to 

describing the re-mapping methodologies used to recover 

the historical information during the remeshing step, and 

the strategy used to model solid–solid contact interaction. 

An extended literature review of PFEM-solid formulations 

has been also provided.

Other main multi-physics problems tackled with the 

PFEM have been analyzed. First, the suitability of the 

method to multi-fluid flows has been highlighted and then 

thermally coupled problems have been analyzed. The PFEM 

has shown to have a high potential for both multi-physics 

problems, proving to be able to handle multiple, articulate 

and sharp fluid–fluid interfaces, and to model naturally and 

accurately thermal convection in different application fields.

Interesting engineering and industrial applications of the 

method have been also presented. Obliviously, many other 

applications of the method have been reported in the lit-

erature. In this review, we limited our analysis only to the 

applications of PFEM to hydraulic engineering, granular 

flows, manufacturing and landslides problems. For all the 

mentioned fields, the potential of the PFEM has been dem-

onstrated and the main works have been referenced.

Finally, the recent advances in the method have been pre-

sented. First, the second generation of the PFEM (PFEM-

2) has been introduced. Then the use of nodal integration 

in the PFEM has been described. PFEM-2 allows reducing 

computational cost enlarging the time steps of the analysis. 

Nodal integration algorithms give the possibility to avoid 

remapping and reducing remeshing events. The potential of 

both methods has been generally presented together with the 

significant literature.

In conclusion, this work aimed to show the potential of 

the PFEM for solving a broad range of applications in engi-

neering and applied sciences. By highlighting the advan-

tages and disadvantages of the method, this work wants also 

to stimulate future improvements of the PFEM technology 

and to widen its field of application.
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Appendix: The Lagrangian Framework

Consider a continuum body occupying an evolving domain 

�
t
 in the time interval [0: T]. The domain occupied by the 

body a time t = 0 is defined as �
0
 and called initial configu-

ration (see Fig. 22). The domain of the body at a generic 

time instant is denoted as �
t
 and defined as current con-

figuration. Moreover, we define reference configuration the 

configuration at which the equation are referred[7].

In the reference configuration, the position vector of a 

material point is defined as material coordinates (or equiva-

lently Lagrangian coordinates) and labelled as � . Similarly, 

in the current configuration, the position of a point is defined 

as � and called spatial or Eulerian coordinates.

The motion of the continuum body is described by:

where the function � maps the reference configuration into 

the current configuration.

Two different approaches are typically used to describe 

the response of a continuum: the Lagrangian description 

and the Eulerian description. In the Lagrangian framework, 

the material particles are followed in their motion and, in 

this description, the independent variables are the material 

coordinates � at time t. On the contrary, in the Eulerian 

framework, a fixed region of space where the material par-

ticles pass is considered, in this case, the independent vari-

ables are the spatial coordinates � at time t. Typically, the 

Lagrangian framework is preferred in solid mechanics, while 

the Eulerian framework is typically used in fluid mechan-

ics. However, the focus of this work is the application of 

the Lagrangian description to fluid, solid and multi-physical 

problems.

According to the definition of the reference configuration 

(i.e. where the equation are written) different Lagrangian 

approaches can be defined. In the total Lagrangian formula-

tion the reference configuration is the initial configuration 

and it is fixed in time. In the updated Lagrangian formula-

tion, the reference configuration changes in time and typi-

cally corresponds to the last known configuration (i.e. the 

configuration at the previous time instant or at the previous 

load increment)[23]. In both formulations, the variables 

are a function of material coordinates, but derivatives and 

integration are defined differently. In the total Lagrangian, 

derivatives are taken with respect to the material coordinates 

and the integrals (e.g. for the weak form of the equations) 

are defined over the initial configuration. In the updated 

Lagrangian method, the derivatives are written with respect 

to spatial coordinates and the integration is performed over 

the current configuration.
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