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A state-of-the-art review of �ow observability, estimation, and prediction problems in tra	c networks is performed. Since
mathematical optimization provides a general framework for all of them, an integrated approach is used to perform the analysis of
these problems and consider them as di
erent optimization problems whose data, variables, constraints, and objective functions
are the main elements that characterize the problems proposed by di
erent authors. For example, counted, scanned or “a priori”
data are the most common data sources; conservation laws, �ow nonnegativity, link capacity, �ow de�nition, observation, �ow
propagation, and speci�c model requirements form the most common constraints; and least squares, likelihood, possible relative
error, mean absolute relative error, and so forth constitute the bases for the objective functions or metrics. �e high number of
possible combinations of these elements justi�es the existence of a wide collection of methods for analyzing static and dynamic
situations.

1. Introduction

�e problem of knowing how tra	c behaves in areas of
di
erent zones (cities, regions, etc.) has deserved the atten-
tion of researchers for a long period, not only because of
its theoretical interest but because of its important practical
implications.Observing, estimating, and predicting link,OD,
and route �ows are considered as very relevant problems in
the tra	c �eld, so thatmany papers have dealt with this prob-
lem. In this context, the role of sensors and their location and
the �ow observability, estimation, and prediction problems
become important. �ough sensors can be used for many
di
erent purposes in the tra	c �eld (see, e.g., Gil Jiménez
andFernández-GetinoGarćıa [1], Liu et al. [2], andKong et al.
[3]), in this paper, we use sensors to determine the tra	c �ow.
In particular, it is important to distinguish between passive
and active sensors. Following Gentili and Mirchandani [4],
we call passive sensors to those sensors that simply count

vehicles at points in a network and active sensors to those
able to identify vehicles, so that routes can be determined.
For a detailed description of the di
erent types of sensors see
Gentili and Mirchandani [4]. �e di
erence between active
and passive sensors is very relevant to the studied problem
because the �rst provide much more information on �ows
and in particular on route �ows, not provided by the last ones.
Typical questions of location problems arising in a natural
form are the following: determining how many, what type,
andwhere theymust be located to observe a given set of �ows.

In this paper, we review the existing literature, aiming at
trying to analyze the di
erent approaches. However, before
starting our study, we want to mention and recognize some
previous works related to the reviews of existing works that
can be useful to readers. For example, Branston [5] reviews
the state of the art of link capacity functions, or volume-
delay curves, for use in tra	c assignment procedures; Abra-
hamsson [6] presents a survey of generic approaches and an
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annotated bibliography of some individual contributions on
the ODmatrix estimation problem based on tra	c counts on
links in the transport network and other available informa-
tion; Montoya-Zamora et al. [7] compare di
erent methods
and algorithms; Li et al. [8] present an overview of dynamic
tra	c assignment models using the variational inequality
method and describe the equivalent relations between the
variational inequality model and the dynamic user optimal
condition model; Peeta and Ziliaskopoulos [9] provide an
important state-of-the-art review of dynamic tra	c assign-
ment models; Boyce et al. [10] review some analytical for-
mulations of the dynamic tra	c assignment problem under
a variational inequality point of view; and Szeto and Lo [11]
present a very complete and excellent analysis of the dynamic
tra	c assignment problem and suggest new lines of research.

In this work, we distinguish between observability, esti-
mation, and prediction problems. In the �rst, we look for
information derived exclusively from sensors and other gen-
eral mathematical relations that need to be satis�ed, such as
conservation or balance laws, �ow nonnegativeness relations,
or di
erent �ow de�nition relations. In the second, we add to
the previous sources of knowledge about the network other
information such as prior �ow information and/or statistical
models that cover the lack of knowledge required for a proper
estimation. Finally, in the third one, we use models to simu-
late travelers’ route choice behavior and load tra	c according
to the network for prediction purposes.

(1) 
e Flow Observability Problem. Given a tra	c network(N,L), where N and L are the sets of nodes and links,
respectively, and assuming that a given subset O (observed
links) of �ows have been determined by installing a set of
tra	c measuring devices, a subset of unobserved �ows U is
said to be observable if its �ows can be calculated in terms of
the observed �ows inO. We note that in general the setO can
include any type of �ows, such as link, OD, and route �ows.

In other words, given the target subset U of �ows, the
typical observability problem consists of determining which
minimum set of �ows O must be observed (measured) in
order to be able to calculate the �ows inU.

�e reason why the �ows inU can be calculated based on
the �ows in O is that all these �ows are not independent but
related. �us, the knowledge of all the relations among �ows
is crucial in the observability problem.

It is important to realize that in the observability problem
we look for exact �ows. �is di
erentiates this problem from
the other two, estimation and prediction of �ows, where only
some estimates (approximate but not exact �ows) are the aim
of the analyses.

�e above observability problem, de�ned for the static
case, can be extended to the dynamic case and then �ows
must be understood as �ow-time functions. In other words,
in the dynamic case we are interested in observing how �ows
change with time. For the dynamic case, the time delay in
arrival from upstream links to downstream nodes needs to
be incorporated formaintaining the conservation conditions.
We must note, however, that almost all works related to the
observability problem deal with the static case. �us, some

research for the dynamic case in this direction would be very
useful.

For the sake of illustration, we include below a simple
observability problem for the static case, consisting of observ-
ing a given subset of routes with a minimum number of
cameras (active sensors) and determining where to locate
them.�e problemwritten as an optimization problem is (see
Castillo et al. [12])

�1 = min
y,z,��

�� − �1∑
�∈R

�� (1)

subject to

∑
�∈A|���+�

�1
� =1

�� ≥ ��; ∀
, 
1 ∈ �; 
 ̸= 
1 ∈ R,
(2)

∑
�∈A

����� ≥ ��; ∀
 ∈ R, (3)

∑
�∈A

�� = ��, (4)

�� = 1, ∀
 ∈ Robs, (5)

�� ≤ �max
� , (6)

∑
�∈A

����� ≤ �max; ∀
 ∈ R, (7)

where �� is theminimumnumber of required cameras; �� is a
binary variable that equals one if link � contains a sensor and
zero; otherwise�� is a binary variable that equals one if route 

is observed (can be distinguished from others) and zero; oth-
erwise, y and z are the vectors of the corresponding variables;
R is the set of routes;A is the set of links; ��� is the element in�th row and 
th column of the link-route incidence matrix;

Robs is the subset of routes that we want to observe; �max
�

is the maximum number of available cameras; �max is the
maximum number of scanned links per route; and �1 is a
nonnegative small number.

Objective function (1) minimizes the number of cameras
and among all solutions chooses the one with the most
observed routes. Constraint (2), if the binary variable �� is
equal to 1, guarantees that route 
 is able to be distinguished
by the subset of scanned links from the other routes. Note that
if ��� + ��1� = 1, link � belongs only to one of the routes and
that if∑�� ≥ �� and �� = 1, at least one scanned link has this
property. On the other hand, if �� = 0, the constraint always
holds. Constraint (3) if �� = 1 ensures that route 
, which is
able to be distinguished by the subset of scanned links from
other routes, contains at least one scanned link. Constraint
(4) guarantees that �� cameras are used. Constraint (5)
guarantees that each route inRobs is identi�ed by the subset
of scanned links. Constraint (6) is a budget constraint, which
limits the number of cameras to a maximum �max

� . Finally,
constraint (7) limits the maximum number of scanned links
in any route to �max.
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�e interested reader can see other simple observability
problems for the static case in Yang and Zhou [13] or Gentili
and Mirchandani [14].

(2) 
e Flow Estimation Problem. If �ows are unobservable
or there are variations in the observations, the observability
methods are not su	cient and we must look for alternative
options; then the estimation problem arises. �e problem of
estimating a set of �ows consists of using methods to guess
the unobservable �ows in this set with maximum possible
precision. To this end, observed �ows and other sources of
information, such as �ow prior information or mathematical
models and statistical methods, must be used.�e estimation
problem refers to past �ow values, that is, �ows that could
have been measured but were not. Typical examples of
tra	c estimation problems are determining point estimates
or con�dence intervals of link, OD, or route �ows.

A simple example of the �ow estimation problem for the
static case stated as an optimization problem is the following:

min
f,t,k

� = �1∑
�,�

(�� − �0��0� )�	�,� (�� − �0��0� )

+ �2∑

,�

(�
 − �0
�0
 )��
,� (�� − �0��0� )

+ ∑
�,�

(V� − V
0
�

V
0
�

)�ℓ�,� (V� − V
0
�

V
0
�

)

(8)

subject to the constraints

�
 = ∑
�∈R�

��; � ∈ W, (9)

V� = ∑
�∈R

�����; � ∈ L, (10)

V̂� = V�; � ∈ C, (11)

�̂ = ∑
�∈R

����; � ∈ S, (12)

�� ≥ 0; 
 ∈ R, (13)

where f , t, and v are the vectors of route, OD, and link �ows,
respectively, �1 and �2 are nonnegative numbers that measure
the relative weight we give to the prior information of route

and OD �ows with respect to link �ows, ��, ��, and V� and �0� ,�0� , and V
0
� are the route, OD, and link �ows and the corre-

sponding previous values, respectively, �	�,�, ��
,�, and �ℓ�,� are
the elements of the covariancematrices associated with route,
OD, and link �ows, respectively, V� is the �ow on link �, V̂�
are the counted (observed) �ows on link �,C is the subset of
links where the �ow is counted,S is the subset of all observed
combinations of links associated with the di
erent cameras,�� is the element of route-scanned combination incidence
matrix for route 
, which equals one if route 
 contains the
subset � ⊆ S of scanned links and no more scanned links

and zero otherwise, and �̂ is the �ow associated with the
plate scanned link combination �.

Objective function (8) is a least squares function, con-
straints (9) and (10) are the relations between OD and link
�ows with route �ows, respectively, constraints (11) and (12)
force the corresponding �ows to coincide with the observed
�ows, and (13) forces the nonnegativity of route �ows.

Solving this problem, estimates of all �ows ��, V�, and �

can be obtained. Note that since the observed �ows are not
su	cient to estimate all �ows, we use extra information, nor-
mally previously observed �ows, and a least squares metric to
get the estimated �ows. �e interested reader can see other
simple estimation problems in Cascetta [15] or Papola and
Marzano [16].

Since observations play a key role in this type of problems,
the optimization problem above can be complicated by
including some location problems and then we obtain a spe-
cial case of problem known as “sensor location �ow estima-
tion problem” (see Gentili and Mirchandani [14]). �e prob-
lems analyzed in this paper are very general and include these
as particular cases.

In addition, the �ows can be replaced by �ow-time func-
tions and then we have dynamic estimation problems, which
are stochastic estimation problems. Research in this direction
is needed too.

(3) 
e Prediction Problems. �e �ow prediction problem
consists in predicting a certain subset of �ows that will
take place under given circumstances. Prediction models are
mainly based on statistical tra	c data and on simulating the
route choice behaviors of users or drivers, assuming either
user equilibriumor system optimal or stochastic user equilib-
rium. In the �rst case, we have macro, meso, and micro mod-
els and also static and dynamicmodels, point queue, or spatial
queue models, depending on the detail at which the tra	c is
modelled. Prediction models use mathematical equations to
reproduce reality and previous data on which the predictions
or the model parameters are based on. Typical examples of
prediction problems involve questions such as the following:
how do the tra	c �ows change if some changes in the tra	c
network are done?

Contrary to the estimation problem, the prediction prob-
lem refers to future �ow values; that is, only �ows that
occurred at the prediction time can be measured.

In prediction problems the mathematical models repro-
ducing the vehicle behavior play a relevant role and constitute
its main components. However, in some cases, estimation
models are complemented with these mathematical models
and then they can be considered in the border between
estimation and prediction models.

A very simple example of the �ow prediction problem
stated as an optimization problem, o�en referred to as the
Beckmann transformation, is the following:

min
f,k

� = ∑
�∈A

∫V�

0
 � (V) !V = ∑

�∈A
"� (V�) (14)
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subject to the constraints

∑
�∈R

%���� = ��; � ∈ OD,
∑
�∈R

����� = V� � ∈ A,
�� ≥ 0; 
 ∈ R,

(15)

where f and k are the vectors of route and link �ows, respec-
tively, V is a dummy variable,  �(V�) is the link � travel time
function (e.g., the BPR function), "�(V�) is its integral, %�� is
the element of the route-OD incidence matrix, which equals
1 if route 
 belongs to OD pair � and zero otherwise, and ���
is one if link � belongs to route 
 and zero otherwise. Note
that the travel time function  �(V�) reproduces the congestion
e
ect. Note also that the selection of the objective function
in (14) implies a Wardrop solution; that is, vehicles with the
same OD use only some routes that have the same associated
minimum travel time.

�is problem can be complicated by adding �ow obser-
vation and sensor location constraints and variables and
considering the dynamic case, that is, time-dependent �ow
travel time functions, rather than static travel time functions.
�us, in this paperwe understand the prediction problem in a
general sense.

2. An Integrated View of the Problems

With a great generality, we can state all the above as optimiza-
tion problems. In fact, mathematical optimization provides a
general framework to all of them. In order to understand an
integrated view of all the previous problems, we dedicate this
section to analyze the di
erent components involved in tra	c
�ow problems when considered as optimization problems.

As it becomes apparent from the previous three examples,
an optimization problem has four main components as
follows.

(1) Data. �ey mainly consist of the network topology and
the observed �ows but in some cases can include �ow prior
information and some �ow parameters such as OD-link
proportions, route-OD, or node-link probability choices.

(2) Variables. �ey are the unknown �ows, the number of
sensors, and their locations and can include some of the above
parameters: OD-link proportions, route-OD or node-link
probability choices, and so forth, when they are unknown.

�e optimal variable values resulting from solving the
optimization problem provide the solution to the problem
being considered.

(3) Constraints. �ey are relations that must be satis�ed by
the unknowns for them to provide a credible and realistic
solution.

�ere are several types of constraints:

(a) Conservation constraints: they express a �ow balance
that alwaysmust be satis�ed. For example, if no �ow is

retained at the nodes, the total �ow entering any node
must be equal to the total �ow exiting the node.

(b) Nonnegativity of �ows: it is obvious that unidirec-
tional �ows cannot be negative.

(c) Bounded link capacities: these are a clear physical
condition.

(d) Flow de�nition constraints: they are a consequence of
the de�nition of certain �ows such as link, OD, and
route �ows and their relations.

(e) Choice probability de�nition: this is a consequence of
the de�nition of choice probabilities.

(f) Observation constraints: when �ow data are
observed, we can enforce the network �ows to be
consistent with the observations. �ese relations
take a di
erent form depending on the type of data
(counts, plate scanned data, AVI, etc.).

(g) Flow propagation constraints: they depict how �ow
propagates within a link and reproduce how conges-
tion increases the link travel time.

(h) Speci�c model constraints: if some models are used
to improve the knowledge of the tra	c behaviour,
they provide relations that increase the number of
constraints to be satis�ed.

We note that the �rst six types of constraints are linear, but
the rest can be nonlinear.

�e model constraints play a very important role in
observability, estimation, and prediction problems. In par-
ticular, if the system of constraints has a unique solution,
the optimization problem degenerates and we can reduce our
problem for solving the system of constraints to get the
desired �ow solution and/or sensor locations.�is can occur,
for example, when plate scanning data is su	cient to identify
uniquely all �ows involved in the problem.

However, the set of constraints normally has in�nitely
many solutions and we need to add more constraints if a
unique solution is desired. �e most common methods to
add this complementary information are the least squares
and the generalized least squares methods. For example,
some authors minimize the sum of squares of the di
erences
between the predicted and the prior matrices, correcting for
the variances and covariances of each �ow, as Cascetta [17],
who uses the link tra	c counts to estimate the ODmatrix by
means of an assignment model, proposes a generalized least
squares estimator, and considers the measurement errors
and the temporal variability in the observed �ows (see also
Cascetta and Nguyen [18], Doblas and Benı́tez [19], Wong
et al. [20], Castillo et al. [21], and Mı́nguez et al. [22]).

It is also important to realize that the above constraints
are not necessarily independent; that is, there can be some
redundancies that must be taken into account. It is important
to realize that redundancy can lead to incompatibility of
the system of constraints in which case the resulting opti-
mization problem has no solution. Incompatibility is real in
practice when we have redundant constraints and/or observe
redundant data because measurements have errors that can
lead to inconsistency. In this case, the corresponding equality
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constraints must be replaced, for example, by least squares
type constraints, which allow us to consider these errors and
minimize them. For example, Li and Ouyang [23] propose a
reliable facility location model to optimize tra	c travel time
estimation in addition to individual sensor �ow coverage,
while considering probabilistic sensor failures.

(4) Objective Function. �is element is crucial in an opti-
mization problem and expresses the criterion under which
we select one optimal solution among all the consistent
candidate solutions.

We note that when the system of constraints is consistent
but undetermined, the optimality conditions (Karush, Kuhn,
and Tucker (KKT) or other ones) complete and replace the
required set of constraints to limit the set of feasible solutions
and lead to a unique solution in many cases. Under this point
of view the optimality conditions can be considered as an
additional set of constraints that we �nally impose to our
problem.

In this paper we use as reference the above structure
to discuss the di
erent approaches used to solve the �ow
observability, estimation, and prediction problems.

Before analyzing the existing solutions given to the
observability problem in the existing literature, it is conve-
nient to discuss in detail the di
erent elements: data, con-
straints, and objective functions that appear in tra	c prob-
lems. �is is the aim of the following sections.

2.1. Data Components. As previously indicated, data consists
of several components. Probably, the most important data is
the network topology that reveals and limits the possible vehi-
cle displacements. If somemodels are used, themodel param-
eters can also be a part of the data.�ough di	cult to obtain,
sometimes this information is complemented with the allow-
able routes. In addition, the observed data obtained from
active or passive sensors are basic to solve these problems.
However, when observed data are not su	cient for observ-
ability, they can be complemented with prior information to
allow for unique estimates. �is supplementary information

consists of prior or obsolete data �0� , �0
 , and V
0
� of route, OD,

and/or link �ows, respectively.
In the case of underspeci�cation, the only possibility for

solving the problem and getting a unique solution consists
of adding some extra information, which normally comes in
the form of a combination of prior information and observed
�ows together with some optimization property.

2.2. Constraints. For the sake of generality and to facilitate the
understanding, we �rst present the dynamic case and later we
deal with the static case (a.k.a. steady state, �xed point, etc.).
See Friesz et al. [24], Cantarella and Cascetta [25], and Lo and
Szeto [26] for a particular example.

2.2.1. Tra�c Flow Dynamics. We start by saying that obvi-
ously the tra	c �ow dynamics case is much more compli-
cated than the static one (see Cascetta et al. [27]).

In dynamic tra	c assignment we normally consider two
components: travel choice and tra	c �ow. At �rst we analyze
how the users select their routes. Second we analyze how

tra	c propagates in a network once the users have decided
where to travel and which routes are used.

In this context, we have the following dynamic con-
straints.

(1) Dynamic Conservation Equations. �ey correspond to the
�ow conservation laws at the nodes. �e conservation equa-
tions (total �ow entering the node = total �ow exiting the
node) for the link �ows are

∑
�∈I�

&�� (') − ∑
�∈O�

&�� (') = *� (') − -� (') ;
� ∈ N; ' ∈ T,

(16)

where &��(') and &�� (') are the cumulated �ow that have
entered and le� link � at time ', respectively, I� and O� are
the set of all links that supply or take �ow from the node �,
respectively, *�(') and -�(') are the cumulated external �ows
entering and exiting node � up to time ', respectively, andT

is the set of selected times:

&�� (') = &�� (' + !� (')) (17)

and !�(') is the travel time of a vehicle that enters link � at
time '.

�e set of (16) implies one conservation equation per
node � (�nite number) and time ' in set T (�nite or
in�nite).�emain advantage of considering cumulated �ows&��(') instead of �ow intensities is that we do not need
to use di
erential equations but functional equations. In
other words, this statement avoids derivatives. Replacing
di
erential equations by functional equations is very relevant
and should not be overlooked (see Wu et al. [28] and Castillo
et al. [29]).

(2) Nonnegativity of Link Flows. Since �ows cannot be neg-
ative, we must have an increasing cumulative �ow function
and

&�� (0) ≥ 0; � ∈ L. (18)

If this condition is not explicitly considered, we can have
invalid (negative) �ow solutions.

(3) Link Capacity Constraints. Since the link capacities are
�nite, we must have bounded link �ows; that is,

&�� (') − &�� (' − /) ≤ / 2�; � ∈ L; ' ∈ T, (19)

where  2� is the capacity of link � and / is an arbitrary small
positive number.

�is is another important condition that should not
be forgotten. For example, Bierlaire [30] mentions that
unbounded �ows can arise in some models. �is is the
consequence of omitting this constraint.

(4) Flow De�nition Constraints. �e de�nitions of OD and
route �ows lead to the following set of constraints.
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Figure 1: Illustration of how the tra	c pro�les associated with
di
erent points and times are related.

(i) OD-Link Flow Relations. �e OD-link �ow relations are
given by

&�� (') = ∑
�∈OD

∑
�∈R�

���2�� (3�� (')) 4� (3�� (')) ;
� ∈ L; ' ∈ T,

(20)

whereR� is the set of routes ofODpair�,��� is the element of
the link-route incidence matrix and equals one if link � is on
route 
 and equals zero otherwise;W is the set of all OD pairs
and 2��(') is the proportion of cumulated users choosing
route 
 in OD pair� at time ' and4�(') is the cumulated �ow
that has entered a route in OD pair� at time ' and 3��(') is the
entry time to route 
 of a vehicle entering link � at time ' (see
Figure 1).

(ii) OD-Route Flow Relations.�eOD-route �ow relations are
given by

4� (') = ∑
�∈R�

5� (') ; ' ∈ T; � ∈ W, (21)

where 5�(') is the cumulated �ow that has entered route 
 at
time '.

�ese relations (21) can also be written as

5� (') = 2�� (') 4� (') ' ∈ T, 
 ∈ R, (22)

whereR is the set of all routes.

(iii) Route-Link Flow Relations. �e route-link �ow relations
are given by

&�� (') = ∑
�∈R

���5� (3�� (')) ; � ∈ L; ' ∈ T. (23)

(5) Observation Constraints. When we observe data, the
following relations must hold.

(i) Counting Data Information. �e most common technique
to count link users consists in using link counters that provide
information on link �ows.

Counting data can be taken into consideration by means
of constraints such as

&�� (') = &̂�� (') ; � ∈ C, ' ∈ T
∗, (24)

where &̂��(') is the counted cumulated �ow that has entered
link � at time ', C is the subset of links where the �ow is
counted, andT∗ is the set of times at which data are collected.

(ii) Plate Scanning Data Information. If a set of cameras are
located to register car plate numbers of vehicles travelling on
links, plate scanning data can also be considered by means of
constraints:

7̂ (') = ∑
∈S

��5� (3�� (')) ; � ∈ S, ' ∈ T
∗, (25)

where S is the subset of all observed combinations of links
associated with cameras, 7̂(') is the total plate scanned
observations in subset � at time ', and �� equals one if route
 contains the subset � of scanned links � ⊆ S and no more
scanned links and zero otherwise.

(6) Flow Propagation Constraints. �ey describe how �ow
propagate within a link and how link travel time depends on
congestion. �ere are several alternative approaches to for-
mulate the constraints.

(i) Link-based travel time functions: they express the link
travel time as a function of the link volume. Some examples
are the temporal extensions of the BPR function:

�� (') = �0� (1 + 8(9� (')9max
�

)�) , (26)

where 9�(') is the tra	c volume on link � at time ', �0� is the
free-�ow travel time on link �, and ��(') is the link � travel
time of a vehicle that enters the link at time '.

Some authors as, for example, Boyce et al. [10], propose a
mixed function of the form

�� (') = �� (9� (') , :� (') , �� (')) , (27)

where :�(') is the rate of �ow entering link � at time ', ��(')
is the link exiting tra	c density, and 9�(') is the link tra	c
volume.

Unfortunately, these models su
er from realism and
consistency (see Merchant and Nemhauser [31] or Astarita
[32]).

Some examples are the models used by Friesz et al. [33],
Fernández and De Cea [34], and Wu et al. [35].

(ii) FIFO constraints: they guarantee the satisfaction of
the FIFO rule (see Astarita [32] or Peeta and Ziliaskopoulos
[9]):

�� (' + � (')) = :� (')1 + ��� (') . (28)
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(iii) Exit �ow functions: they were suggested byMerchant
and Nemhauser [31] and express the �ow density exiting link� at time ' as a function of congestion; that is,

�� (') = <� (9� (')) . (29)

(iv) Flow-density relations: Daganzo [36, 37] proposed
the following piecewise linear relationship between tra	c
�ow, �, and density, �:

� = min {&�, ?,7(�jam − �)} , (30)

where �jam, ?, &, and 7 denote, respectively, jam density,
in�ow capacity (or maximum allowable in�ow), free-�ow
speed, and the speed of the backward shock wave (or the
backward propagation speed of disturbances in congested
tra	c).

(v) Di
erent queue models: vehicles can be considered as
simple points (point queuemodels) or as elements occupying
a space in the links (physical queue models) (see Szeto and
Lo [38], Lo [39], Rubio-Ardanaz et al. [40], Kuwahara and
Akamatsu [41], Lo and Szeto [26, 42], Nogal [43], or Calviño
[44]). �e above constraints belong to point queue models.
One possibility for physical queue models is to divide links
into moving and queuing sections (see Castillo et al. [45]).

(7) Speci�c Model Constraints. If we use some model, such as
UE or SUE models to reproduce tra	c �ows in the network,
we must add the corresponding constraints. One example is
the case of variational type models for route choices in which
the constraints express a variational principle, such as

�� (') (C� (') − C�(�) (')) = 0; 
 ∈ R; ' ∈ T,
C� (') − C�(�) (') ≥ 0; 
 ∈ R; ' ∈ T, (31)

where C�(') and C�(�)(') are the travel time for travelers
entering route 
 at time ' and the OD pair� containing route
, respectively.

As indicated, we must be careful in selecting the con-
straints of the model in order to avoid violations of the FIFO
rule and causality that means that the speed and travel time
of a vehicle must be a
ected only by the vehicles ahead. For
example, Szeto and Lo [11] show that since

9� (' + �� (')) = 7� (' + �� (')) − D� (') , (32)

the out�ow <�(9�(' + ��('))) depends on the vehicles that
entered link � before ' + ��('), and then causality is violated.

Another important point to be considered is the possibil-
ity of redundancy or contradiction of constraints.�is occurs,
for example, in some mixed approaches that force exit and
travel time function constraints that are contradictory.

2.2.2. Static or Steady State Case. �e steady state case of the
preceding case leads to the well-known system of equations
for the static situation.

(1) Conservation Equations. �ey correspond to the �ow con-
servation at the nodes. In this case the conservation equations

(total �ow entering the node = total �ow exiting the node) for
the link �ows are

Bk = ∑
�∈I�

V� − ∑
�∈O�

V� = *� − -�; � ∈ N, (33)

where B is the node-link incidence matrix that contains
zeroes, ones, and minus ones, V� is the �ow of link �, and *�
and -� are the external �ows entering and exiting node �,
respectively.

�e set of (33) implies one conservation equation per
node. �e rank of the node-link incidence matrix of a
network is � − 1 (see Strang [46]).
(2) Nonnegativity of Link Flows. Since �ows cannot be nega-
tive, we must have

V� ≥ 0; � ∈ L. (34)

Unfortunately, sometimes this condition is not explicitly
considered and this can lead to invalid (negative) �ow solu-
tions.

(3) Congestion and Link Capacity Constraints. Since the link
capacities are �nite, we must have bounded link �ows; that is,

V� ≤  2�; � ∈ L, (35)

where  2� is the capacity of link �. �is is another important
condition that should not be forgotten.

(4) Flow De�nition Constraints

(i) OD-Link Flow Relations. �e OD-link �ow relations are
given by

V� = ∑
�∈W

∑
�∈R�

���2����; � ∈ L, (36)

where �� is the �ow of OD pair �, W is the set of ODs, and�� is the �ow on route 
.
(ii) OD-Route Flow Relations.�eOD-route �ow relations are
given by

�� = ∑
�∈R�

��; � ∈ W. (37)

Since the OD �ows ��; � ∈ W are nonnegative numbers,
(37) shows that the OD �ow vector t is a cone generated by
the column vectors of the OD-route incidence matrix %��.

�ese relations can also be written as

�� = 2���� 
 ∈ R. (38)

However, this is not convenient because 2�� values are di	-
cult or impossible to obtain.

(iii) Route-Link Flow Relations. �e route-link �ow relations
are given by

V� = ∑
�∈R

�����; � ∈ L. (39)
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Since the route �ows ��; 
 ∈ R are nonnegative numbers,
(39) shows that the link �ow vector v is a cone generated by
the column vectors of the link-route incidence matrix.

(5) Observation Constraints. �e constraints associated with
the observations in this case become as follows.

(i) Counting Data Information. Counting data can be taken
into consideration by means of constraints such as

V� = V̂�; � ∈ C, (40)

where V̂� is the counted (observed) �ow on link � andC is the
subset of links where the �ow is counted.

(ii) Plate Scanning Data Information. Plate scanning data can
also be considered by means of constraints:

�̂ = ∑
�∈R

����; � ∈ S, (41)

where S is the subset of all observed combinations of links
associated with the di
erent cameras and �̂ is the number of
observations in subset � ∈ S.

Link �ow estimates can be obtained as

V̂� = ∑
∈S

�̂8� = ∑
∈S

∑
�∈R

����8� ; � ∈ L, (42)

where 8� is one if link � appears in the link combination � and
zero otherwise.

Since the route �ows ��; 
 ∈ R are nonnegative numbers,
(41) shows that the set of plate scanned link �ow vectors is
a cone generated by the column vectors of the link-scanned
combination incidence matrix.

(6) Flow Propagation Constraints. Since �ows and travel
times are dependent on congestion levels, cost or travel time
functions exist that express the cost or travel time as a func-
tion of the congestion level. One example is the BPR function:

�� = �0� (1 + 8( V�
V
max
�

)�) , (43)

where �� and �0� are the travel time and free travel time,
respectively, of link �, 8 and E are positive coe	cients, and
V
max
� is the practical capacity of link �.
(7) Speci�cModel Constraints. Somemodel constraints can be
stated as optimization problems. Some examples are the UE
and SUE models.

If the analytical solution of these models is known they
can be incorporated directly. One example is the case of the
logit model for which the probability of using route 
 in OD
pair � becomes

2�� = exp (−3�F�)∑∈R� exp (−3�F) ; � ∈ W, 
 ∈ R, (44)

where F� is the travel time on route 
 and 3� is a parameter
that scales the perceived travel time by OD pair �.

Another example is the variational model for route
choice:

�� (C� − C�(�)) = 0; 
 ∈ R,
C� − C�(�) ≥ 0; 
 ∈ R, (45)

where C� and C�(�) are the travel time on route 
 and the
minimum travel time in OD pair containing route 
, respec-
tively.�e principle states that only routes with theminimum
travel time are used for each OD pair.

(8) Budget Limit Constraints. �is is a constraint that should
not be forgottenwhen there are budget limits. Some examples
can be found in Ehlert et al. [47] andMı́nguez et al. [22] who
present some optimization problems to locate link counters
taking existing sensors into account, budget limitation, and
prior OD data.

2.3. Objective Functions (Metrics). In the existing literature
there exist statistical measures to quantify the quality of �ow
estimates. �e most common examples are the root mean
square error (RMSE) and the mean absolute error (MAE).
For example, Sherali et al. [48] present twomodels, one based
on a least squares estimation approach and the other based
on a least absolute norm approach, for the estimation of split
parameters that prescribe an OD matrix based on dynamic
information regarding entering and exiting tra	c volumes
through an intersection or a small freeway segment.

Very common methods in the tra	c area are the RMSE
and MAE that measure the closeness between the observed
(true) �ows and the estimated �ows, nomatter if they are link,
OD, route or, any other �ow values.

In the following, some of the most important measures
are described.

(1) Generalized Least Squares (GLS). �e tra	c �ows can be
obtained by solving optimization problems similar to the one
in (8) (see Cascetta [15]) subject to some of the constraints,
such as (33) to (41).

Note that we have used relative errors in the objective
function, in order to get dimensionless ratios, and prior
values have been selected for normalization in order to avoid
the presence of zeros in the denominator.

If the system of constraints has a unique solution, then
objective function (8) has no role and the prior data do not
a
ect the solution of the optimization problem. Otherwise,
the system of constraints has an in�nite number of solutions
and the optimal value of the problem depends on the prior
values �0� , �0
 , and V

0
�. �us, we can interpret that the prior�0� , �0
 , and V

0
� complement the information lacking from the

observations. Nevertheless, even in this case of an in�nite
number of solutions some particular �ows can be unique and
it is important to discover what the subset of these �ows is.

Apart from those already mentioned, the least squares
metric was used by other many authors, for example, Gentili
andMirchandani [4], Eisenman et al. [49], Castillo et al. [50],
and Gentili and Mirchandani [14].
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Expression (8) a�er being modi�ed to take into account
the sensor location problembecomes (seeMı́nguez et al. [22])

� = �1∑
�∈R

�	� (�0� − ∑�∈R �0� ���0� )2

+ �2 ∑
�∈W

��
(�0� − ∑�∈R� �0� ���0� )2

+ ∑
�∈A

�ℓ� (V
0
� − ∑�∈R ����0� ��

V
0
�

)2 ,

(46)

where �0�, �0� , and V
0
� are the prior OD, route, and link �ows,

respectively, �� is the set of routes of OD pair �, and �� is a
binary variable equal to one if route 
 is identi�ed (observed)
uniquely through the scanned links and zero otherwise.

Note that because of �� binary variable the covered �ows
are considered in (46).

(2) Mean Absolute Relative Error (MARE). �is metric was
proposed by Mı́nguez et al. [22]:

MA = 1|W| ∑
�∈W

IIIIIIIIII
�0� − ∑�∈R� �0� ���0�

IIIIIIIIII
= 1|W| ( ∑

�∈W
∑
�∈R�

�0� (1 − ��)�0� ) ,
(47)

which implies that minimizing the MARE is equivalent to
minimizing the sum of relative route �ows of unobserved
routes or equivalently maximizing the sum of relative route
�ows of observed routes.

(3) Possible Relative Error (PRE). Yang et al. [51] were
concerned about the quality of the estimated OD matrix and
proposed the concept of “Maximum Possible Relative Error”
(MPRE) and showed that it can be formulated as a simple
quadratic programming problem. �is concept was used by
Yang and Zhou [13] too.

�e MPRE is the optimal value of the optimization
problem:

Minimize
�∈W

1|W| ∑
�∈W

(�∗� − ���� )2 (48)

subject to

∑
�∈W

2�� (�∗� − ��) = 0; � ∈ A, (49)

where �∗� are the true or reference OD values.
Viti et al. [52] present a newmethod to optimize the posi-

tion of tra	c counts for reliable state estimation and predic-
tion in complex networks by reformulating theMPRE tomin-
imize the error in link tra	c states. A simple solution algo-
rithm to the problem was proposed that uses link �ow and
travel time correlations between links to select, in sequence,
the most representative locations in the network.

(4) Total Demand Scale (TDS). It was proposed by Bierlaire
[30] and used by Chen et al. [53] and Gan et al. [54].

�e TDS measures the intrinsic undeterminate nature of
the OD estimation problem and is independent of the OD
estimation method. It is based on the route choice propor-
tions, network topology, and tra	c counts. It can be calcu-
lated by solving two linear programs:

Nmax = Max
�∈W

∑
�∈W

��,
Nmin = Min

�∈W
∑
�∈W

�� (50)

subject to

∑
�∈W

∑
�∈R

��2��%����� = V̂�; � ∈ O,
�� ≥ 0; � ∈ W, (51)

where Nmax and Nmin are the maximum and minimum OD
�ows compatible with the constraints, respectively. Once
these two problems have been solved, we can calculate the
TDS measure as TDS = Nmax − Nmin. We note that if TDS = 0
the set of observations has captured the total demand of the
network; if TDS > 0 and �nite, then the observations are not
capable of capturing the total demand of the network; �nally,
if TDS is in�nity, the �ow of at least one OD pair cannot be
captured by the observed data.

(5) Matrix Rank (MR). It is the rank matrix of the system of
equations used to derive the tra	c �ows.�is rank measures
the number of linearly independent equations and thus the
amount of information.�is metric has been used by Gentili
[55], Castillo et al. [50, 56], Ng [57, 58], or He [59].

(6) Flow Amount of Information (FAI). An interesting and
not easy to solve problem consists of determining how many
linearly independent equations are provided by each set of
observations and in particular by a given subset SC of P
counted or scanned links when the set of routes is �xed and
known. �is problem led to Castillo et al. [60] to introduce
the concept of �ow amount of information supplied by a set
of scanned observations as the number of linear independent
equations it provides.

While a set of P counted link data can provide at mostP linearly independent equations with FAI = P, the rank of
the scanning information matrix H� associated with (41) is
its number of rows.�us, the “�ow amount of information” of
a subset of P scanned links is larger than or equal to P but
normally much larger than P. �e FAI can be easily calcu-
lated by the nontrivial formula (see Castillo et al. [12, 60]):

FAI = ∑
�|�SC� ̸=0

1P − �SC� , (52)

whereP = |R| is the number of routes and

�SC�1 = ∑
�2 ̸=�1

min( ∑
�∈SC

(��1� + ��2� ) (1 − ��1� ��2� ) , 1) . (53)
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(7) Likelihood (LH). In statistical methods one of the most
powerful methods is the maximum likelihood that generally
provides good estimates.�us, the likelihood is a good objec-
tive function to compare the di
erent feasible solutions. Some
examples of authors using this objective function are given
next.

Spiess [61] proposes an independent Poisson model with
unknownmeans and amaximum likelihoodmethod for esti-
mating an ODmatrix from an observed sample matrix, when
the volumes on a subset of the links of the network and/or
the total productions and attractions of the zones are known.

Nihan and Davis [62] present a maximum likelihood-
based method to estimate intersection turning and through
movement probabilities from entering and exiting counts.

Vardi [63] deals with the problem of estimating the
node-to-node tra	c intensity from repeated measurements
of tra	c on the links of a network under Poisson assumptions
and two types of tra	c-routing regimens: deterministic and
Markovian route selection models. �ey discuss maximum
likelihood estimation and related approximations.

Parry andHazelton [64] dealwith the problems of estima-
tion of OD matrices based on link count data and based on
observed routes taken by each vehicle.�ey consider an inter-
mediate problem inwhich link count data is supplemented by
routing information for a fraction of vehicles on the network
and develop a statistical model for these combined data
sources and derive some tractable normal approximations
thereof. �ey examine likelihood-based inference for these
normal models under the assumption that the probability of
vehicle tracking is known.

(8) Entropy (ET) BasedMeasures. Van Zuylen andWillumsen
[65] propose twomodels, based on information optimization
and entropy maximisation principles, to estimate OD matri-
ces from tra	c counts. �e models assume that routes are
known and use tra	c counts to estimate the most likely OD
matrix consistent with observed data and prior information
about the trip matrix.

Since the entropy measure is proportional to the loga-
rithm of the determinant of the covariance matrix, Zhou and
List [66] suggest using this determinant, which is the product
of the eigenvalues associated with the covariance matrix of
estimates. It can be interpreted as a measure of the volume of
a hyperellipsoid for unknown centered �ow variables.

(9) Trace of Posterior Estimates (TPE). �e trace of a covari-
ance matrix is used to measure the amount of variations in
random variables and corresponds to the circumference of
the rectangular region that encloses the covariance matrix
ellipsoid. It is the sum of the eigenvalues associated with the
covariance matrix. Zhou and List [66] have suggested this
measure and was used by Simonelli et al. [67].

(10) Flow Covered (FC). �e �ow covered principle seeks for
the solution that maximizes the �ow covered. Some authors
using this measure are Yim and Lam [68], Chen et al. [53],
and Fei and Mahmassani [69].

(11) Unobserved Variability (UV). It was proposed by Viti and
Corman [70] and is de�ned as the sum of the maximum

estimation errors on the unobservable �ows. �e interested
reader can see details in Viti et al. [71].

(12) Correlation (CR) Based Measures. Castillo et al. [21] deal
with the problem of estimating and updating the OD matrix
and link �ows from tra	c counts and its optimal location. A
combination (bilevel) of an OD pair matrix estimationmodel
based on Bayesian networks and a Wardrop-minimum-
variance model is used to estimate OD pair and unobserved
link �ows based on some observations of links and/or OD
pair �ows. �e Bayesian network model is also used to select
the optimal number and locations of the link counters based
on minimum correlation among link counts.

(13) Number of Sensors (NS). It was used by Ng [57, 58] and
Castillo et al. [72, 73].

(14) Synthetic Dispersion Measure (SDM). �e synthetic dis-
persionmeasure (SDM) was proposed by Simonelli et al. [67]
who consider the variability of the ODmatrix estimate and is
related to the trace of the covariance matrix of the posterior
demand estimate conditional upon a set of sensor locations.
In the case of a multivariate normal distribution for the prior
demand estimate, the proposed SDMdoes not depend on the
speci�c values of the counted �ows, which are unknown in
the planning stage, but just on the locations of such sensors.

�e idea becomes clear now. We normally have a system
of equations (constraints) that has in�nitely many solutions
and we want to add extra conditions to the system to get a
unique solution if possible.�e extra conditions are optimal-
ity conditions associated with an objective function or metric
and set of constraints. Consequently, the objective function
when optimized has the role of restricting the set of feasible
solutions to optimal solutions.�is raises the problem of how
to select an adequatemetric and points out the need of under-
standing what the di
erent metrics mean and what are they
suitable for.

Once we have de�ned what we mean by �ow observabil-
ity, estimation, and prediction problems, we have indicated
that all of them can be formulated as optimization problems
and we have described the types of data, variables, con-
straints, and objective functions that occur; we dedicate the
following three sections to describe the most important
proposed models to solve the three problems.

3. The Observability Problem

�e observability problem has been intensively studied in the
existing literature for the static case but needs research for the
dynamic case. Because of their substantial di
erences, we deal
with these two cases separately.

3.1. Some Approaches to the Observability Problem in the Static
Case. �e observability problem has been solved in the past
by many di
erent approaches, most of them assuming the
static case, to which we refer in this section.

�e observability problems can be classi�ed (see Castillo
et al. [12]) as follows: (a) link �ow observability, (b) OD �ow
observability, (c) route �owobservability, and (d) general case
�ow observability.
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3.1.1. Link Flow Observability. �e link �ow observability
problem (see Hu et al. [74]) consists of observing link �ows
based only on link �ow observations.

However, depending on whether or not some route
knowledge is assumed and the set of relations among link
�ows is used, there have been di
erent approaches to this
problem, such as (a) node based approaches, (b) OD based
approaches, and (c) route based approaches. Next, some of
them are discussed.

(1) Node Based Approaches. In this approach, only (33) is con-
sidered.�e idea consists of determining a minimal subset of
linearly independent link �ows such that a given set of link
�ows can be calculated as linear combinations of them.

�e set of solutions v of linear system (33) with (40)
and/or (41) is an a	ne subspace; that is, it can be written as

k = k0 + N�, (54)

where v0 is a particular solution vector of (33) (any solution
can be used), N is the null-space matrix associated with
the system (33), and � is a column matrix of arbitrary real
numbers (see Castillo et al. [75] or [76]).

�e rows of matrix N play an important role in the
observability problem because if row � is null (all its elements
are zero), the corresponding link �ow V� is observable, and
the number of nonnull elements in each row is the number
of link �ows that need to be observed to convert the corre-
sponding link in observable. �is permits sorting the links
considering how far they are from observability.

Consequently, counting data is su	cient to identify link
�ows even though not all links are counted, because link �ows
are linearly dependent.

Ng [57] proposes for the �rst time a node based approach
that has the advantage of avoiding route enumeration and
provides an upper bound ℓ−�, where ℓ and � are the numbers
of links and no-centroid nodes, respectively, for the number
of links that need to be observed in order to get observability
of all links. �e networks considered by Ng [57] have only
origin, destination, and intermediate nodes, but no node
serves as both an origin and a destination at the same time.
Ng [58] generalized the previousmethod to the case of partial
observability. �is is the best bound that can be obtained if
only (33) and counted link �ows are used. �is problem is
also discussed by Castillo et al. [77], who present alternative
formulas for the link �ow estimates and discuss in detail
the partial observability problem. Since algebraic approaches
are computationally intensive, a graphical method based on
evaluating the minimum spanning tree was �rst suggested by
Mori and Tsuzuki [78] who presented a new uni�ed method
for dealing with the problems of topological observability in
power system state estimation.

Spanning trees were already used by He [59] to solve the
link �ow observability problem without considering routes.
�e idea consists of building a network with a virtual node
and virtual links to reproduce node in�ows and out�ows and
then working with spanning trees. However, a network with
all centroid nodes cannot be analyzed using this method.

Castillo et al. [73] show that the minimum number of
links to be counted for complete observability is ℓ−�+ , where

ℓ, �, and  are the number of links, nodes, and centroid nodes,
respectively.

As indicated, node based approaches give the best upper
bound for the number of links to be counted in order to have
full link observabilitywhen route information is not available,
that is, based on (33).

It is worth mentioning that system (33) with (40) and/or
(41) could be incompatible. �ere are some methods to test
the compatibility of a linear system without solving it (see
Castillo et al. [75, 79]) and even ways of solving simultane-
ously all its subsystems (see Castillo et al. [80]). In particular,
the latter allows us evaluating the contribution of each
observation to the observability of the given subset of �ows.

In addition, constraints (34) and (35) cannot be ignored.
If constraints (34) are added to (33), the set of link �owvectors
v consists of a vector (any particular positive solution of (33))
plus a cone.

If constraints (35) are added to (33) and (34), the set
of link �ow vectors v becomes a polytope (a linear convex
combination of solution �ow vectors).

(2) OD Based Approaches. In these approaches, only (36)
together with (40) and/or (41) are considered. �e idea con-
sists of determining aminimal subset of linearly independent
link �ows such that all other link �ows can be calculated as
linear combinations of themand theOD�ows �� are satis�ed.
Several cases can be considered here depending on the
assumptions.

(1) 
e Proportions ��� of OD Flow �� Using Link � Are
Known. In this case, the resulting system of equations con-
tains unknown links V� and OD �ows ��. We note that ���
values cannot be given arbitrarily, because a set of routes
consistent with these values must exist. In addition, the
solution set is normally undetermined and then more link
counters are needed in order to get a unique solution.

In this case we have

V� = ∑
�∈W

�����; � ∈ L. (55)

(2) 
e Proportions ��� of OD Flow �� Using Link � Are
Unknown. In this case, the problem becomes nonlinear
because of the product ����� appearing in (36), unless the
OD �ows are known.

In this group, there are some important contributions.
Some are given next.

Hodgson [81] deals with observability and �ow estima-
tion problems by �nding the minimum number of sensors
that guarantee full coverage and maximum captured �ow
with solutions of a minimal information redundancy (non-
cannibalizing solutions).

Morrison and Martonosi [82] provide a new necessary
condition on the sensor location problem. �is condition
is not su	cient in general, but for a large class of problem
instances the condition is su	cient.

Castillo et al. [50] present a detailed analysis of the
plate scanning method to estimate OD �ows considering the
optimal location of cameras, the prior information, and error
analysis.
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Castillo et al. [83] deal with the problem of identifying
which subset of OD pair and link �ows that can be calculated
is based on a subset of observed OD pair and link �ows
and related problems. Two algebraic methods for solving the
observability problems are given: a global approach based on
null spaces and a step-by-step procedure allowing updating
the information once each piece of information (OD pair
or link �ow) becomes available. Castillo et al. [56] present
a modi�ed topological version of the previous existing alge-
braic method that is much faster, use much less memory, and
present no rounding errors or zero test problems but identify
fewer observable �ows.

(3) Route Based Approaches. In this approach, (39) are used
together with (40) and/or (42) and complete or partial route
structure information. It is important to clarify that it is
not necessary to include (33), (34), and (35) because they
are automatically satis�ed by nonnegative and �nite route
�ows. Similarly, OD type equations such as (36) and (37) are
automatically satis�ed too.

Considering V� and �� as unknowns, the set of solutions
to the system involving (39), (40), and (42) is an a	ne
space and the associated null space provides information
about the observability of any given sets of V� or ��, that is,
whether or not they are observable and how far they are from
observability. In this case, the required extra FAI for observ-
ability of any V� or �� coincides with the number of nonnull
elements in the corresponding row of the null-space matrix.

Hu et al. [74] solve the whole link observability problem
(observing all link �ows) assuming route information and
using the concept of “reduced row echelon form” (RREF),
a technique based on the well-known Gaussian elimination
method, which emphasizes its algebraic character. Castillo et
al. [77, 84] provide a pivoting technique to solve the same
problem for partial and whole observability and extend the
method to plate scanned data; this problem has also been
treated by Castillo et al. [72, 77, 84] and Ng [57] and consists
of determining which subset of link �ows can be calculated
in terms of another subset of link �ows but now using route
information.

If route information is used, the bound given by node
based approaches can be improved with savings reaching in
some cases 16%, as demonstrated in Castillo et al. [72]. How-
ever, since enumerating all routes is a di	cult task, the �rst
method was improved by considering linearly independent
route vectors by Castillo et al. [72]. More precisely, they show
that only a subset of linearly independent routes is required
and provide a method to select linearly independent route
vectors. Finally, they present real examples in which more
than 84% of the routes need not be enumerated.

Rinaldi et al. [85] observe that using �-shortest routes for
each OD pair can result in an interesting geographical spread
of the sensors and in favouring links near the centroids and
at the major junctions.�ey also point out that using linearly
independent routes may help in �nding lower number of
sensors guaranteeing full observability than the number
indicated analytically by Ng [57].

Contrary to node information alone, route information
remains fundamental, for example, for the following reasons.

(a) It can be combined with �ow estimation approaches
(e.g., for optimizing location for OD estimation); (b) extra
information, such as shortest routes, can be used to re�ne
solutions; and (c) it can be extended to the powerful source
of information provided by scanned links.

Some important conclusions resulting from the previous
discussion are the following:

(1) Counting data is not su	cient to identify OD and
route �ows, because normally the number of these
�ow variables is huge compared with link �ows and
independent of them.

(2) Plate scanning permits following the car routes and
identifying OD pairs and routes if they are con-
veniently located and in a su	cient number. �ey
provide link, node, OD, and route �ows.

3.1.2. OD, Route, andGeneral Case of FlowObservability. One
of the most common observability problems in the tra	c
literature is the OD pair observability problem, in which the
OD pair �ows are estimated in terms of other �ows. Since
in most cases the number of independent link �ows is much
smaller than the number of OD pair �ows, even in the case
in which all link �ows are available, the OD observability
problem based on counting links becomes underspeci�ed;
that is, the OD �ow observability problem based on link
�ows has an in�nite number of solutions. �us, the OD
�ow observability problem based on counting links has no
satisfactory solution in many cases of real practice, and when
it has solution the situation is not realistic.

A more di	cult observability problem is the route �ow
observability problem, in which we aim to observe all route
�ows. Since knowledge of the route �ows leads to knowledge
of the OD pairs and link �ows, through the conservation
equations, the observability problem of route �ows is consid-
ered as the full observability problem. However, it is the most
di	cult observability problem, because its solution requires
the maximum amount of information. �us, the route �ow
observability problem presents the same underspeci�cation
di	culties as the OD observability problem, but even more
exaggerated.

�erefore, similar methods, based on prior information,
or more powerful techniques, such as the scanned link
technology, can be used. �e plate scanning technique opens
the door to full OD and route �ow observability, in the sense
that installation of su	cient number of cameras permits
calculating all OD and route �ows.

However, a general case of observability problem can be
stated, in which we aim to observe a given subset of �ows
U (including any type of �ows) and we must determine the
subset of observed �ows O in order that this is possible.

Castillo et al. [77, 86] deal with the general observability
problem in which link, OD, or route �ows are involved. In
these cases the use of active sensors is required; in particular,
plate scanning is a very e
ective mean of obtaining �ow data.

Table 1 gives the number of unknowns and equations or
inequations of the systems of equations used in the di
erent
observability options and associated ranks. �ese ranks



Journal of Sensors 13

Table 1: Number of unknowns and equations or inequations of di
erent systems of equations and associated ranks.

Equation System
# of unknowns

# of equations or inequations
Rank (
)

V� �� �� Lower bound Upper bound
Equations

(33) Conservation equations |L| — — |N| |L| − �0 − ℎ |L| − �0 − ℎ
(40) Counting data |C| — — |C| 1 |C|
(41) Plate scanned data — — |R| |S| |S| |S|
(33), (40), (41)

Conservation, counts, and
plate scanned equations

|L| — |R| |N| + |C| + |S| |L| − �0 − ℎ + 1 |L| − �0 − ℎ + |C|
(37) OD-route �ow relations — |W| |R| |W| |W| |W|
(37), (40), (41)

Conservation, counts, and
plate scanned equations

|L| |W| |R| |W| + |C| + |S| |W| + |S| + 1 |W| + |S| + |C|
(39) Route-link �ow relations |L| — |R| |L| |L| |L|
(39), (40), (41)

Conservation, counts, and
plate scanned equations

|L| — |R| |L| + |C| + |S| |L| |L| + |C| + |S|
Inequations

(34) Nonnegativity of link �ows |L| — — |L| — —
(35) Link capacity constraints |L| — — |L| — —

measure the amount of information associated with the
corresponding systems of equations.

3.2. 
e Observability Problem in the Dynamic Case. �e
main aim of observability analysis in the dynamic case is to
know the �ows in a given network and how they change with
time. �e observability problem in this case is completely
di
erent from the observability problem in the static one,
because the dynamic case implies observing �ow-time func-
tions instead of �ow values. �is means that at several loca-
tions we have di
erent �ow-time functions. Consequently,
we need �rst to de�ne the following: the �ow (what), the
location (where), and the time (when) to be observed.

While the observability problem in the static case has
been widely discussed in the existing literature, as shown
in the previous sections, it is very di	cult to �nd speci�c
research for the dynamic case. In this paper we want to point
out the interest in working in this direction.

In the knowledge of how the �ow evolves with time in
a given network, the link exit time ��(') and travel time
functions ��(') play a very relevant role, because knowledge of
these functions together with some simplifying assumptions,
such as FIFO, allows us to calculate 3��(') functions, that is, the
times at which a vehicle entering link � at time ' initiated its
route 
, and then the route travel time functions, that is, how
the travel times of each route changes with departure times.

We must realize that we can have access to the large
number of 3��(') functions using a reduced set of functions��(') that can be calculated from them, as follows:

3�� (') = �−1��1 (�−1��2 (⋅ ⋅ ⋅ �−1���−1 (�−1���� (')))) , (56)

where �−1� (') is the link � entering time of a user who exits
that link at time ', that is, the inverse of ��(') function, and��1, ��2, . . . , ���� and �� are the links of route 
 and its number of

links, respectively.
�is suggests that we can state a wide collection of

dynamic observability problems by solving the observability
problem of functions ��(') together with tra	c volumes at

some locations. �is interesting problem is suggested for
future research.

4. The Flow Estimation Problem

As indicated, when we are unable to observe the desired
�ows by direct observation and using the conservation and
�ow de�nition equations wemust use additional information
and/or models to estimate �ows. �e additional information
tells us about previous experience so that we can use it for
the actual situation assuming that the actual situation has not
changed or su
ered small changes.

4.1. Static Case. To measure the quality of the �ow estimates
we normally use a measure. Consequently, many of the exist-
ingmethods can be classi�ed by considering what this metric
is. Some examples of the metrics used and a list of some
works using them are given below.

Generalized Least Squares Measures. Least squares are very
powerful and interesting methods to solve the estimation
problems. Some examples are given below.

Lam and Lo [87] are concerned with the reliability of
information and optimize it using generalized least squares;
Bierlaire and Toint [88] propose an improvement of existing
methods of OD matrix estimation by an explicit use of data,
obtained from parking surveys, describing the structure of
the matrix, and propose using the GLS metrics; Asakura et
al. [89] deal with the problem of ODmatrix estimation using
the observed data with the AVI system and a least squares
model. �e results of license plate matching in a pair of AVI
cameras are the input variables; Gan et al. [54] present some
methods for ODmatrix estimation and counter location with
error bound analysis in an integrated formanduse theMPRE,
generalized least squares, and total demand scale (TDS) met-
rics;Marzano et al. [90] deal with the problemof correction of
OD matrices using tra	c counts and con�rm that the main
reason for the data insu	ciency stands in the fact that the
number of equations is lower than the number of unknowns.
To solve the problem, they suggest moving to within-day
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dynamic contexts, where a much larger number of equations
are generally available and usingGLSmethods;Mı́nguez et al.
[22] apply least squares but suggest the use of dimensionless
variables.

Likelihood Measures. �e likelihood function, coming from
the statistical �eld, has a lot of power for estimation purposes
together with a powerful theory supporting it. Some authors
using the likelihood as metrics in the classical sense are
Spiess [61], Nihan and Davis [62], Vardi [63], and Parry and
Hazelton [64]; Bell [91] describes a model that under certain
circumstances yields the most likely OD matrix which is
consistentwithmeasurements of link tra	c volumes;Watling
and Maher [92] and Watling [93] suggest using active sen-
sors together with maximum likelihood and best matching
techniques to estimate OD matrices; Lo and Chan [94] pro-
pose a maximum likelihood procedure for the simultaneous
estimation of anODmatrix and link choice proportions from
OD survey data and tra	c counts for congested networks
recognizing that link choice proportions in a network change
with tra	c conditions; Papola and Marzano [16] using the
maximum likelihood principle and the GLS methods show
through laboratory experiments that the classical correction
of the OD matrix from tra	c counts is generally unable to
provide e
ective correction of the OD matrix.

Maximum Coverage. Several authors realized the importance
of covering with sensors a maximum of �ows, so that the
maximum coverage rule has been widely contemplated. For
example, Church and ReVelle [95] deal with the maximal
covering location problem; Fei et al. [96] identify a set of
sensor locations that optimize the coverage of OD demand
�ows of the road network and maximize the information
gains through observation data over the network, whilemini-
mizing the uncertainties of the estimatedODdemandmatrix;
Larsson et al. [97] compare di
erent methods for allocating
link �ow sensors with respect to the quality of the estimated
ODmatrix and compare three allocation methods. However,
they conclude that maximizing the coverage of OD pairs
seems to be unfavorable for the quality of the estimated OD
matrix; Simonelli et al. [67] provide an innovative and theo-
retically sound methodology for solving the network sensor
location problem, explicitly accounting for the variability of
the OD matrix estimate.

Synthetic Dispersion Measure. Simonelli et al. [67] propose
a speci�c measure, termed synthetic dispersion measure
(SDM), related to the trace of the covariance matrix of the
posterior demand estimate conditional upon a set of sensor
locations and an algorithm to work with it.

Expected InformationGain. Zhou and List [66] discuss how to
locate a limited set of tra	c counting stations and automatic
vehicle identi�cation (AVI) readers in a network in order to
maximize the expected information gain for the OD demand
estimation problem subject to a budget constraint.�emodel
takes into account several important error sources, such as
the uncertainty in historical information, sensor measure-
ment errors, and those associated with link proportions.

Based on a mean square measure, the authors provide a
stochastic optimization procedure and an algorithm to �nd
suboptimal point and point-to-point sensor locations.

Rules for Reduction of Estimate Uncertainties. Since the very
beginning, researchers were concerned with �nding rules to
obtain optimal locations for sensors. �e most relevant were
Yang and Zhou [13] who addressed the problem of how to
determine the optimal number and the locations of sensors in
a road network for a given prior OD distribution pattern and
derived four rules: OD covering rule, maximal �ow fraction
rule, maximal �ow-intercepting rule, and link independence
rule. In addition, the authors presented integer linear pro-
gramming models and heuristic algorithms to determine the
counting links satisfying these rules; Mı́nguez et al. [22] pro-
vided techniques for obtaining the optimal number and loca-
tion of plate scanning devices for a given prior OD distribu-
tion pattern under maximum route identi�ability or budget
constraints, developed two rules analogous to the counting
location problem, and proposed several integer linear pro-
gramming models ful�lling these rules.

Since mathematical models reproducing tra	c �ows
are relevant to provide extra equations (constraints), some
authors have been concerned about the quality of models
that reproduce the tra	c behaviour. Wang et al. [98] provide
a new linear integer programming model for the placement
of sensors to maximize the reduction in the uncertainties in
route �ow estimates.�emodel assumes that a general under-
lying tra	c loadingmodel, the route choice set from eachOD
pair, is known and prior route �ows and their reliabilities are
given.

Similarly, Chen et al. [99] develop strategies in the screen-
line-based tra	c location problem model for selecting addi-
tional tra	c counts for improving OD trip table estimation
using a SUE principle.

Multiobjective Measures. �e observability, estimation, and
prediction problems are essentially multiobjective. �us,
several authors dedicate work to the problem of how to deal
with multiobjective tra	c problems. �is is the case of
Brenninger-Göthe et al. [100] who present some multiobjec-
tive programming formulations for estimating OD matrices
and show howmultiobjective theory can be used in the inter-
pretation of the problem or Fei and Mahmassani [69] who
present a multiobjective model, which considers link infor-
mation gains and OD demand coverage to locate a minimal
number of passive point sensors in a roadway network subject
to budget limits.

Bayesian Methods. Among statistically based methods to
analyze tra	c �ows, Bayesian methods appear very useful
because they allow us to include the expert knowledge by
means of prior distributions. In this context,Maher [101] pro-
poses a method based on Bayesian statistical inference that
allows complete �exibility in the degree of belief placed on
the prior estimate of the OD trip matrix and also in di
erent
parts of the prior estimate; Castillo et al. [102, 103] propose an
extended gamma-shi�ed model to estimate tra	c �ows.
�e reconstruction of the sample �ows can be done exactly
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or approximately, depending on the intensity of the plate
scanning sampling procedure. To this end, a generalized least
squares technique is used together with the conservation and
�ow de�nition laws. A Bayesian approach using special con-
jugate families is proposed that allows us to estimate di
erent
tra	c �ows, such as route, OD pair, scanned link, or counted
link �ows.

To end this section, we consider the problems of error
recovery and some contributions related to some special
solving algorithms.

Error Recovery. �e incompatibility problems derived from
data replications and the distortion produced by measure-
ment errors led some authors to consider the error recovery
problem. For example, Lo et al. [104] review the use of
statistical modeling in the estimation of OD matrices from
tra	c counts and discuss statistical models that consider
explicitly the presence of measurement and sampling errors
in the observed link �ows treating the link choice proportions
as random variables; Castillo et al. [50, 105] and Sánchez-
Cambronero et al. [106] provide models that permit error
identi�cation and recovery.

Branch-and-Bound Methods. Some particular cases, such as
the cordon-screen lines, have been treated by Yang et al. [107]
who dealt with the optimal selection of cordon-screen lines
for tra	c census study in road networks that can be stated
as how to select the optimal locations of a given number of
counting stations to separate as many OD pairs as possible
and how to determine the minimum number of counting
stations and their locations required for separating all OD
pairs. �e authors provide a solution scheme that combines
a shortest route based column generation procedure and a
branch-and-bound technique.

Genetic Algorithms. Since the resulting optimization prob-
lems are in some cases too complex, some authors suggest the
use of genetic algorithms, such as Chootinan et al. [108], who
consider the tra	c counting location problem for the purpose
of OD trip matrix estimation and determine the number and
locations of counting stations that yield maximal coverage
and minimal resources. A distance-based genetic algorithm
is used to solve the proposed biobjective tra	c counting
location problem by explicitly generating the nondominated
solutions.

Similarly, Cipriani et al. [109] deal with two di
erent
heuristic approaches for solving the problem of optimal loca-
tion of tra	c count sections. �e �rst method applies deter-
ministic rules on OD �ows and OD pair coverage, but the
second uses a genetic algorithm.

Finally, as a summary, we include Table 3 with a long list
of contributions, together with the di
erent data, variables,
constraints, and objective functions used and the illustrative
or real examples utilized. Table 2 provides the symbols and
notation used in Table 3.

4.2. Dynamic Case. Most of the works in the existing litera-
ture deal with the static and ignore the dynamic case, which is
a stochastic process estimation problem.�us, some research

Table 2: Table 3 legend.

Data
CP Choice probability
L Link data
OD OD data
P Route data
PA Route knowledge
PI Prior information

Variable
CP Choice probability
L Link variable
OD OD variable
P Route variable
SL Sensor location

Constraint
BC Bounded capacity
CE Conservation equation
CP Choice probability
FD Flow de�nition
FM Flow model constraint
NN Nonnegativity
OC Observation constraint
OT Other constraints

Metric (objective function)
BM Bayesian model
CR Correlation
ET Entropy
FAI Flow amount of information
FC Flow covered
GLS Generalized least squares
IN Information
LH Likelihood
MA Mean absolute relative error (MARE)
MO Multiobjective function
MP Maximum possible relative error (MPRE)
MR Matrix rank
MUV Maximum observability variable
NS Number of sensors
SD Synthetic dispersion measure
TDS Total demand scale
TPE Trace of posterior estimates
UM Unobserved variability
WMV Wardrop minimum principle

Examples
CN Campania region network
CR Ciudad Real network
CU Cuenca network
EN Edwards network
FB Fishbone
FN Fuorigrotta network
GN Gateshead network
HC Helena city
HS Hanshin expressway network
IN Irvine network
KA Kowloon area
LN Leicester network
MN Maryland chart network
ND Nguyen-Dupuis network
NP 30-node problem
SF Sioux Falls network
T Toy
TPE Triangle park
RT Rotterdam
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is needed in this direction. One of the few examples of �ow
estimation in the dynamic case corresponds to the case of
time-dependent OD matrix estimation.

Time-Dependent OD Matrix Models. Time-dependent pro-
posals for tra	c models were suggested by Ashok and Ben-
Akiva [111] who provide a framework for real-time estima-
tion/prediction of time-dependent OD matrices and apply
the model to the Massachusetts Turnpike and Ashok and
Ben-Akiva [112] who present models for the estimation and
prediction of time-dependent OD matrices. �e key contri-
bution of the proposed approach is the explicit modeling
and estimation of a stochastic assignment matrix between
time-dependent OD �ows and link volumes.�e assignment
matrix is assumed to depend on travel times and route
choice fractions in the network; Peterson [113] deals with the
problem of estimation of the ODmatrices based on observed
link counts and considers the time-independent and time-
dependent cases.

As indicated by Barcelò et al. [114], time-dependent OD
matrices are a key input to dynamic tra	c models. Micro-
scopic and mesoscopic tra	c simulators are relevant exam-
ples of such models, which are used in the design of tra	c
systems. Typical approaches to the time-dependent OD
estimation are based either on mathematical programming
approaches or on Kalman �lter models. However, new data
types, such as AVI, plate scanning techniques, and detection
ofmobile devices, make available tra	c data of higher quality
allowing for new modeling hypothesis leading to more com-
putationally e	cient algorithms. In this context, Barcelò et al.
[114] extend the previous research on Kalman �ltering
approaches for OD estimation to more complex topologies
of urban networks, where alternative path choices between
origins and destinations are available.

5. The Flow Prediction Problems

Models used to solve �ow prediction problems incorporate
simulation of the tra	c behavior; that is, they permit ana-
lyzing how changes in the behaviour of the vehicles and
infrastructure modify the �ows; thus, the models are an
important element to be considered.

5.1. Static Models. Some examples of static models for �ow
predictions are given next.

Boyce and Janson [115] analyze the e
ect of di
erent link
congestion functions on equilibrium assignment; Bell [116]
proposes two logit assignment methods that work without
route knowledge as alternatives to Dial’s algorithm; some
models consideringmultiple class users with overtaking were
analyzed in Castillo et al. [117, 118]. Multiclass users with
di
erent concerns about travel time are discussed in Castillo
et al. [119].

5.2. Dynamic Models. �ere is a wide collection of dynamic
models used for �ow prediction. We include below some of
them.

Prior Information Based Models. One way to predict �ows
and �ow evolution with time in the dynamic case is storing
this information in previous periods and trying to identify
the trends from this information. At a given instant, we can
know the tra	c characteristics at other locations in previous
instants, and, looking for similarities or using inference, we
can predict future tra	c �ows. For example, Castillo et al.
[29] develop a stochastic demand dynamic tra	c model to
predict tra	c variables (link travel times, �ows, densities,
etc.) and their time evolution in real networks. �e model
assumes the variables to be generalized beta variables such
that when they are marginally transformed to standard nor-
mal all of them become multivariate normal. �is gives su	-
cient degrees of freedom to reproduce (approximate) the con-
sidered variables at a discrete set of time-location pairs. �e
parameters of themodel are learned based on previous obser-
vations. �e model provides point or con�dence intervals or
the density of the variable being predicted. A closed formula
for the conditional future variable values (link travel times or
�ows), given the available past variable information, is pro-
vided. Since only local information is relevant to short-term
link �ow predictions, the model is applicable to very large
networks.

Mathematical Programming Based Tra�c AssignmentModels.
Merchant and Nemhauser [31] consider a dynamic tra	c
assignment model as a nonlinear and nonconvex mathemat-
ical program. Necessary optimality conditions that require
marginal costs for all the same OD routes that are being
used to be equal are shown to be a generalization of the
optimality conditions of the static tra	c assignment problem.
�ey also show that the behavior of the dynamicmodel under
static demand conditions is a generalized version of the static
model.

Friesz et al. [120] consider two formulations of the
dynamic tra	c assignment problem, system and user opti-
mizations on a single node network using optimal control
theory, and o
er the �rst dynamic generalization of Beck-
mann’s equivalent optimization problem for static user opti-
mized tra	c assignment in the form of an optimal control
problem.

Jayakrishnan et al. [121] present a dynamic tra	c assign-
ment model with tra	c �ow relationships based on a bilevel
optimization framework. Using the modi�ed Greenshields
speed-density relationship, they derive a link-cost function
that is monotonically nondecreasing and convex with respect
to density.

Szeto and Lo [122] compare dynamic tra	c assign-
ment models with point and physical queues and discuss
their implications together with their solution existence and
uniqueness.

Carey and Subrahmanian [123] model link �ows con-
sidering the �ow rate when the vehicle enters and exits the
link and knock-on e
ects from tra	c ahead of the link and
suggest dividing each link into a travel link followed by a
queue link.

Cell Transmission Type Models. �e cell transmission model
(CTM) is a simple representation of tra	c �ow that is



Journal of Sensors 19

consistent with the kinematic wave theory under all tra	c
conditions to predict tra	c’s evolution over time and space,
including transient phenomena such as the building, propa-
gation, and dissipation of queues.

One of the �rst and better knownmodels is Daganzo’s cell
transmission model (CTM). Daganzo [36, 37, 124] presents
the cell transmission model and introduces a numerical
procedure for networks, assuming that a time-varying origin-
destination OD matrix is given and that the proportion of
turns at every junction is known or the best routes to each
destination from every junction are known at all times. �e
di
erence equations are shown to be the discrete analog of the
di
erential equations arising from a special case of the hydro-
dynamic model of tra	c �ow reproducing shockwaves in a
simple way and showing that the model can mimic the stop-
and-go tra	c within moving queues. Daganzo [125] shows
that if the kinematic wave model of freeway tra	c �ow in
its general form is approximated by a particular type of �nite
di
erence equation, the �nite di
erence results converge to
the kinematic wave solution despite the existence of shocks in
the latter.�is result is shown not to hold for other commonly
used �nite di
erence schemes. An error analysis is also
performed.

Lo [39] develops a dynamic tra	c assignment formula-
tion, referred to as DUO, based on a dynamic extension of
Wardrop’s principle. Tra	c is modeled as a cell transmission
model (CTM),which provides a convergent approximation to
the Lighthill and Whitham and Richards (LWR) model and
covers the full range of the fundamental diagram and trans-
forms CTM in its entirety to a set of mixed-integer con-
straints.

Alecsandru [126] presents a series of enhancements to
the original form of CTM such as topological enhancements
and modi�cations to the �ow advancing equation to allow
variable cell lengths and nondiscrete movements of vehicles
between cells and lane-changing behavior.

Zhong and Sumalee [127] develop a stochastic cell trans-
mission model for the evolution of tra	c �ows on freeways
taking into account various uncertainties. �e model is for-
mulated as a discrete time bilinear stochastic system.

Sumalee et al. [128] propose the stochastic cell transmis-
sionmodel, tomodel tra	c �ow density on freeway segments
with stochastic demand and supply considering �ve opera-
tional modes corresponding to di
erent congestion levels of
the freeway segment, which are formulated as discrete time
bilinear stochastic systems. �e model captures the mean
and standard deviation of density of the tra	c �ow and the
propagation of it over time and space.

Carey et al. [129] consider a road link that consists of two
adjacent homogeneous lanes and uses a modi�ed cell trans-
mission model to allow moving between lanes. �e authors
investigate how lane changing and congestion are a
ected
by varying some behavioural parameters.

Multiclass Models. Szeto et al. [130] propose a cell-based mul-
ticlass dynamic tra	c assignment problem that is formulated
as a �xed point problem and considers the random evolution
of tra	c states, where travelers select routes based on per-
ceived e
ective travel time, that is, the sum ofmean perceived

travel time and safetymargin.�e problem includes aMonte-
Carlo-based stochastic cell transmissionmodel to capture the
e
ect of physical queues and the random evolution of tra	c
states.

Tuerprasert and Aswakul [131] present a generalization of
the cell transmission model to a more generalized multiclass
cell transmission model taking into account the several vehi-
cle classes to introduce head-of-cell and end-of-cell vehicles
into the model. Cascading, merging, and diverging scenarios
of cells allow the model to be applied to general road net-
works.

Variational Models.�ese models are represented mathemat-
ically by variational equations. Marcotte [132] deals with the
variational inequality problem formulated as a nonconvex,
nondi
erentiable optimization problem, shows that any sta-
tionary point is optimal, and proposes an algorithm that
decreases the nondi
erentiable objective monotonically.

Zhu and Marcotte [133] deal with the existence of solu-
tions to a dynamic network equilibrium problemmodeled as
an in�nite dimensional variational inequality and introduce a
novel concept that strengthens the familiar concept of FIFO.

Wang and Jiang [134] discuss the problem of tra	c equi-
librium in which the cost of route is not the simple sum of the
cost of links and establish a variational inequality model to
characterize the solutions of tra	c equilibrium problems.

Lo and Szeto [135] present a cell-based dynamic tra	c
assignment formulation that follows the ideal dynamic user
optimal (DUO) principle through a variational inequality
approach, which encapsulates a network version of the cell
transmissionmodel (CTM) and satis�es the FIFO conditions
through the CTM. �e results showed that the formulation
was capable of capturing shockwaves and queue formation
and dissipation.

Bliemer and Bovy [136] considermultiple user classes in a
macroscopic dynamic tra	c assignment model. Considering
di
erent asymmetries, such as interuser-class interaction and
interspatial and intertemporal asymmetries, the model is
speci�ed as a (quasi) variational inequality problem.

Network Loading Models. Network loading models allow
simulating the propagation of tra	c pro�les through link and
networks. To this end, several models have appeared in the
existing literature.

Astarita [32] proposes a dynamic network loadingmodel,
which contrary to exit functions is based on travel times.
Two requirements for a satisfactory model are identi�ed:
allowance for overtaking on a link and �ow propagation
consistentwith speed.�eFIFO rule, not satis�ed in this case,
and its implications are discussed.

Wu et al. [28] formulate the continuous dynamic network
loading problem as a system of functional equations.

Xu et al. [137] present a formulation of the continuous
dynamic network loading problem where travel delays may
be nonlinear functions of arc tra	c volumes and propose a
�nite-step algorithm to obtain solutions.

Astarita et al. [138] investigate threemethods for dynamic
network loading: link-based travel time functions, the cell
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transmission model, and a link-based model derived from a
simpli�ed car-following relationship.

Rubio-Ardanaz et al. [139] present two improved event-
based simulations numerical algorithms for the continuous
dynamic network loading problem.

Dynamic conservation equations (16) and �ow de�nition
constraints (20), by means of 3��(') function, permit relating
the �ows at di
erent locations and times to establish a �ow
balance under a FIFO assumption. �ese relations allow
modelling the �ow evolution through the network. For
example, Castillo et al. [45] present a FIFO consistent model
for the continuous dynamic network loading problem. �e
nonlinear link travel time functions are calculated at a �nite
set of times used to interpolate amonotone cubic spline for all
times.�emodel consists of �ve units: route origin �owwave
de�nition, route wave propagation, congestion analysis, �ow
propagation, and inference engine. Next, the individual route
pro�les are propagated throughout routes using a conserva-
tion equation that stretches or enlarges the wave lengths and
heights, depending on the degree of congestion at di
erent
links. �en, the individual route pro�les are combined
together to generate the link and node pro�les. An iterative
method is used until convergence.

Genetic Algorithms. Since the resulting optimization prob-
lems are in some cases too complex, some authors suggest the
use of genetic algorithms, such as Lo [39] and Lo and Szeto
[140], who use these algorithms to solve dynamic tra	c
assignment problem.

Neural Network Models. Celikoglu [141] proposes a neural
network approximator that supports the dynamic network
loading model to reproduce link �ow dynamics on a sample
network.

Other Models. G. C. K. Wong and S. C. Wong [142] present
an extension of the Lighthill, Whitham, and Richards model
with heterogeneous drivers where faster vehicles can over-
take slower ones under the uncongested condition and the
congested condition and slower vehicles could slow down the
faster ones.

Blumberg and Bar-Gera [143] aim to achieve consistent
integration between the behavior of tra	c at di
erent road-
way elements and the propagation of �ows along routes
focusing in particular on the order of arrival to nodes. �e
authors propose the concept of anticipated arrival order
(AAO) using a tra	c �ow behavior that follows the kinematic
wave model with a triangular �ow-density relationship to
describe the number of vehicles expected to choose a certain
downstream link at a node as a function of the total number of
vehicles at this node. An iterative model permits solving the
problem.

Long et al. [144] develop new formulations for dynamic
tra	c assignment of the step function (SF) and linear inter-
polation (LI) link travel time models in which the pro�les of
cumulative �ows are piecewise linearized and both models
are used to approximate cumulative �ows over time. One of
the formulations ensures causality, strong FIFO, and travel
time continuity.

Kalman Filter Models. Kalman �lter models and extensions
were proposed by Okutani and Stephanedes [145] who pro-
pose two models employing Kalman �ltering theory for pre-
dicting short-term tra	c volume; Barcelò et al. [114] extend
the previous research on Kalman �ltering approaches for
freeway OD estimation to more complex topologies of urban
networks where alternative route choices between origins
and destinations are available.

6. Conclusions

In this paper a state-of-the-art review of observability
together with estimation and prediction methods has been
performed. �e three problems have been analyzed con-
sidering them as optimization problems or their associated
systems of equations.�e roles of data, constraints, and objec-
tive functions or metrics have been discussed to embed the
existing literature under an optimization paradigm.

�e main conclusions of this paper are the following:

(1) �e basic equations or constraints arise from the
topology of the network, the di
erent �owde�nitions,
and nonnegativity or capacity constraints, which can
be stated in a natural way because they must always
hold.

(2) Data arise as the second fundamental information to
solve the three stated problems. �ey can be direct
observations obtained from passive or active counters
or other means or prior information on previous
tra	c �ows.

(3) Since the two previous data items are not su	cient
and lead to in�nitely many solutions, a metric must
be used to select among all feasible solutions one that
is considered as the best under the metric criterion.
Selecting an adequate metric is crucial to have a good
solution to the tra	c problem.

(4) When the objective functions or metrics are not
su	cient to provide unique solutions, a hierarchical
objective function considering several criteria (met-
rics) can be used (e.g., using weights).

(5) While the observability and the �ow estimation prob-
lems have been widely analyzed for the static case in
the existing literature, these problems for the dynamic
case still require a lot of attention. In particular,
observability methods and estimation of ��(') func-
tion that provides the link travel time functions
together with tra	c volumes at some locations are
interesting topics for future research.

(6) Special care must be taken with redundancy because
it can lead to the nonexistence of feasible solutions. In
this case, least squares equations or similar equations
should replace the direct observation equations to
allow for possible errors.

(7) Use of dimensionless equations is much better than
other alternatives. �is has been illustrated with
expression (8), devoted to generalized least squares,
where, instead of absolute �ow values, relative �ow
values were used.
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(8) In the static observability problem, algebraic tools,
such as null spaces, are the basic tools to be used and
the path information is crucial to obtain an important
reduction in the number of links required for par-
tial of complete link �ow observability. Node based
approaches provide interesting and easily obtainable
links but they need not be sharp.

(9) �e consideration of somemodel parameters, such as
link choice proportions, as known values is not spe-
cially recommended, because they are large numbers
and due to the di	culties in guessing realistic values.

(10) �e use of cumulative �ows in dynamic cases arises
as a promising alternative that avoids the use of
partial derivatives and permits replacing di
erential
equations by functional equations. �is alternative
deserves further research.

(11) As indicated in this paper, passive counters provide
a very limited and an insu	cient amount of infor-
mation. �us, active counters must be used if rele-
vant information about path information and good
predictions are required.

(12) �e optimal location of counters leads to important
savings in cost and allows optimizing the resulting
information. Several works dealing with this problem
have been discussed.

(13) As indicated in Section 2.2.1, some constraints sug-
gested for the dynamic case lead to contradiction and
must be avoided.

(14) �e FIFO rule plays an important role in building
an important group of dynamic models but can be
replaced by considering other types of models, such
as multiclass models with overtaking possibilities.

(15) Finally, as indicated in this paper, two di
erent classes
of models, point and physical queue models, must be
di
erentiated depending on the aim of the analysis.

Notations

A: Set of counted links
C: Subset of counted links 2�: Capacity of link � per unit time �(V�): Link � travel time function"�(V�): Integral of the link � travel time function!�('): Travel time of a vehicle that enters link � at time '��: Flow on route 
5�('): Cumulated �ow that has entered route 
 at time '<�(9): Exit function giving the rate at which tra	c exits

link � as a function of link tra	c volume 9ℎ: Number of �nite (bounded) holes
I�: Set of links starting at node �*�('): Cumulated �ow that has entered node � at time '�jam: Jam density�: Flow density

�0: Number of added links to convert the maximal
planar network into a nonplanar hole-generated
network��: Number of cameras or sensors�max

� : Available number of cameras�max: Maximum number of sensors per route
N: Set of nodes
L: Set of links
O: Subset of observed �ows
O�: Set of links ending at node �-�('): Cumulated �ow that has le� node � at time '2��('): Proportion of cumulated users choosing route 
 in

OD pair � at time '?: In�ow capacity
R: Set of routes
Robs: Subset of routes that we want to observe
: Route
R(�): Set of routes in OD pair �F�('): Travel time of route 
 at time '��: Flow that has selected a route in OD pair �
T: Set of selected times
T
∗: Set of times at which data are collected4�('): Cumulated �ow that has entered a route in OD pair� at time ':�('): Rate of �ow entering link � at time '

U: Subset of unobserved �owsD�('): Cumulated �ow at the entrance of link � at time '
V�: Flow on link �
V
max
� : Practical �ow capacity of link �
V̂�: Counted (observed) �ow on link �&: Free-�ow speed&��('): Cumulated �ow that has entered link � at time '&̂��('): Counted cumulated �ow that has entered link � at

time '&�� ('): Cumulated �ow that has le� link � at time '��('): Rate of �ow exiting link � at time '�̂: Flow associated with the plate scanned link
combination �7: Speed of the backward shock wave or backward
disturbances propagation speed

W: Set of OD pairs7�('): Cumulated �ow at the exit of link � at time '7̂('): Total plate scanned observations in subset � at time'9�('): Tra	c volume on link � at time '��: Binary variable that equals one if route 
 is
observed and zero otherwise��: Binary variable that equals one if link � contains a
sensor and zero otherwiseE: Positive coe	cient��� : Element of the link-route incidence matrix, which
equals one if link � is on route 
 and equals zero
otherwise/: Small dimensionless number��: Element of route-scanned combination incidence
matrix for route 
, which equals one if route 

contains the subset � ⊆ S of scanned links and no
more scanned links and zero otherwise
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3��('): Entry time to link � on route 
 of a vehicle that
enters route 
 at time '�1, �2: Nonnegative numbers that measure the relative
weight we give to the prior information of route and
OD �ows with respect to link �ows3�: Parameter that scales the perceived travel time in
OD pair �8: Positive coe	cient8� : Being one if link � appears in the link combination �
and zero otherwise

�	: Covariance matrix associated with route �ows

�ℓ: Covariance matrix associated with link �ows
��: Covariance matrix associated with OD �ows���: Proportions of OD �ow �� using link �%��: �e element of the route-OD incidence matrix,

which equals 1 if route 
 belongs to OD pair � and
zero otherwise��: Travel time on link ���('): Link � travel time of a vehicle that enters the link at
time '�0�: Free-�ow travel time on link �.
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