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Abstract—Over the past two decades, intravascular ultrasound
(IVUS) image segmentation has remained a challenge for re-
searchers while the use of this imaging modality is rapidly growing
in catheterization procedures and in research studies. IVUS pro-
vides cross-sectional grayscale images of the arterial wall and the
extent of atherosclerotic plaques with high spatial resolution in real
time. In this paper, we review recently developed image processing
methods for the detection of media–adventitia and luminal borders
in IVUS images acquired with different transducers operating at
frequencies ranging from 20 to 45 MHz. We discuss methodological
challenges, lack of diversity in reported datasets, and weaknesses of
quantification metrics that make IVUS segmentation still an open
problem despite all efforts. In conclusion, we call for a common ref-
erence database, validation metrics, and ground-truth definition
with which new and existing algorithms could be benchmarked.

Index Terms—Intravascular ultrasound (IVUS), lumen, media–
adventitia (MA), segmentation.

I. INTRODUCTION

A. Medical Background

FOR more than 30 years after its introduction by Andreas
Grüntzig in 1977, percutaneous coronary interventions

(PCI) remain the most widely used methods by interventional
cardiologists to treat coronary artery disease. Lumenology was
initially used for guidance of the interventions based on X-
ray angiography [1], which had been accidently discovered by
Sones and later deployed for coronary catheterization [2]. Inven-
tion and refinement of intravascular ultrasound (IVUS) imaging
has introduced in vivo “histological” assessment of coronary
atherosclerosis and plaques. As an alternative, invasive coronary
angiography depicts planar projections of the contrast-filled lu-
men. Important quantitative information such as cross-sectional
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lumen area, thickness, distribution, and composition of plaques
and remodeling of the vessel wall are only revealed by IVUS
that can improve and guide PCI. Moreover, it enables the mon-
itoring of regression and progression of plaques by measuring
changes over time of the atheroma volume within the vessel wall,
especially when evaluating new pharmacological compounds.
Besides, for chronic disease such as atherosclerosis that may re-
occur after balloon angioplasty, atherectomy, stenting, or bypass
surgery, the accurate diagnosis of vulnerable plaques [3]–[7] is
critical. In brief, what makes atherosclerosis one of the dead-

liest disease is not the stenoses alone but failure in detection

and proper treatment of the vulnerable plaques that will lead to

myocardial infarction. This point has motivated researchers to
develop novel imaging modalities such as IVUS, optical coher-
ence tomography (OCT) [8], or near-infrared signals (NIR) [9]
to characterize atherosclerotic plaque components and identify
vulnerable ones.

B. Specificities of IVUS Images

Angiography is the only system routinely used in all PCI
procedures. It provides immediate visualization of stenoses and
guides interventional cardiologists to advance and deploy bal-
loons and stents. However, it suffers from the lack of adequate
geometrical and pathological information on plaque burden size
and composition. So far, IVUS remains the most favorable imag-
ing modality for coronary plaques for the following reasons.

1) It provides real-time cross-sectional grayscale images of
the arterial wall, including morphological and pathologi-
cal structures. Image resolution and signal penetration are
sufficient to allow precise tomographic assessment of the
coronaries.

2) IVUS grayscale images combined with the processing of
radiofrequency backscattered signals can be employed for
further characterization of plaques and the identification
of vulnerable ones [10].

3) Interventional cardiologists can make therapeutic deci-
sions from IVUS images, such as:

a) the need for further treatment (angioplasty, stent im-
plantation, and bypass);

b) the exact spatial location for angioplasty and stent
implantation;

c) the evaluation of the outcome of an angioplasty or
stenting procedure;

d) the need for aggressive management of risk factors
prior to onset of symptoms and advanced disease
state;

e) the predictors of transplant coronary artery disease.

1089-7771/$31.00 © 2012 IEEE
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Fig. 1. Schematic of four different types of imaging catheters. (a) Catheter
without guide wire rail. (b) Catheter with a guide wire rail on the side.
(c) Catheter with a guide wire rail at its center. (d) Catheter with a
guide wire rail at its center, an inflatable balloon, and a stent. Reference:
http://ee.isikun.edu.tr/research.asp-page = projects_files.

Comparing with other modalities, the scientific and diagnostic
advantages of IVUS are clear. The American College of Cardi-
ology and the American Heart Association (ACC/AHA) guide-
lines for PCI state that “the limitations of coronary angiography
for diagnosis and interventional procedures can be reduced by
the use of adjunctive technology such as intracoronary ultra-
sound imaging” and that IVUS can improve PCI methods and
outcomes [11]. Additionally, IVUS is the primary screening
choice for validation of novel endovascular coronary imaging
modalities (i.e., OCT and NIR). It has been widely used in
prospective trials to investigate the efficacy of new endovascu-
lar devices or drugs. With respect to the detection of vulnerable
plaques, IVUS could become the most common and trustwor-
thy screening technique if reliable and reproducible image or
signal processing methods are provided for quantitative plaque
characterization. Regarding vulnerable plaques, IVUS could en-
compass a greater predictive value in detecting them with the
combination of morphological features (thin-cap fibro atheroma
(TCFA), lipid core size, and calcification patterns) that are all
detectable and measurable at once, which is not the case for
competitive imaging modalities such as NIR and OCT. Among
the morphological features, TCFA (<65 µm) is better depicted
and measured on OCT images with a higher resolution (∼10
µm) comparing to IVUS (∼120 µm). This limitation may be
resolved in the future, developing ultrahigh-frequency IVUS
transducers that provide images with higher axial resolutions.

C. IVUS Acquisition Systems

The IVUS acquisition system consists of a catheter, a pullback
device, and a scanning console.

1) IVUS Catheter: The IVUS catheter carries an ultrasound
transducer that can be combined with an inflatable balloon,
with or without a stent, for imaging assistance and expansion
of narrowed areas, as illustrated in Fig. 1. The IVUS catheter
is 150 cm long, and has a tip size of 3.2–3.5 F (1.2–1.5 mm)
that can go through 5–6 F guiding catheter. It may be used
to visualize over 15 cm of a coronary artery. The imaging field
goes up to 15–20 mm, well enough for coronary arteries, ranging
from 4 to 5 mm in diameter on average at the level of the left
main artery down to 2 mm in the smallest segment considered
for therapeutic intervention (balloon angioplasty and stenting).
The catheter is typically advanced within the femoral artery
toward coronary arteries and site of occlusion under angiogram
guidance. The catheter is visible in angiographic images and
is advanced along with a guide wire. The guide wire rail is
positioned next to the catheter plastic sheath, as in Fig. 1(b),

Fig. 2. (a) Single-element mechanically rotating focused IVUS transducer and
its beam shape. (b) Multi-element phased-array IVUS transducer and its beam
shape.

or within its center, as in Fig. 1(c). The advantage of the latter
design is that there is no guide wire artifact in the reconstructed
grayscale ultrasound images, but at the cost of usually stiffer,
thicker, and less flexible catheters.

2) IVUS Transducer: Currently, there are two types of IVUS
transducers commercially available regardless of their nominal
center frequencies. The main difference relies in the transmit and
receive modes for monitoring ultrasound signals, which are il-
lustrated in Fig. 2. The first system, illustrated in Fig. 2(a), uses a
single-element mechanically rotating focused IVUS transducer
(e.g., Atlantis, Boston Scientific imaging catheter) that rotates
at approximately 1800 revolutions/min. For a 40-MHz trans-
ducer, the axial and lateral resolutions of the beam are about
80–100 and 200–250 µm, respectively. The transducer sends
an ultrasound pulse and receives the backscattered signals. The
transducer is surrounded by a plastic sheath and a syringe is used
to flush saline water inside the sheath to remove air bubbles and
obtain high-quality IVUS images.

The second system, illustrated in Fig. 2(b), uses a multiele-
ment phased-array transducer (e.g., Eagle Eye Gold, Volcano
imaging catheter). An electronic board controls a subset of el-
ements to send several ultrasound pulses at once and receive
the backscattered signals. These circular array systems use syn-
thetic aperture processing to produce images with higher lateral
resolution than single-element transducers.

3) Catheter Pullback Device: The catheter is first manually
advanced to the distal end of the coronary (typically after the
stenoses location) and is then pulled back, manually or with an
automatic pullback system, at a speed of 0.5–1 mm/s.

4) IVUS Scanning Consoles: A scanning console carries a
computer that is used for postprocessing and storage of recorded
IVUS data. A cable from the end of the pullback device is con-
nected, via a dedicated port, with a computer for data processing.
During the catheterization procedure, the clinician uses a key-
board and functional buttons to enter the patient information,
determine the percentage of stenoses, and apply image pro-
cessing and possibly tissue characterization techniques to better
understand and evaluate atherosclerotic plaques.

D. IVUS Image Formation and Display

IVUS transducers operate at different frequencies, depend-
ing on the manufacturer. Fig. 3 displays the schematic of an
artery, an IVUS catheter, and four distinct IVUS image frames
acquired with transducers with different center frequencies. As
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Fig. 3. (a) Schematic of an artery, catheter, atherosclerotic plaque, and
IVUS image cross section (reference: http://www.bmj.com). (b) Cross-sectional
anatomy of the arterial wall. Four distinct IVUS frames acquired with
(c) 20-MHz, (d) 30-MHz, (e) 40-MHz, and (f) 45-MHz transducers. Green
and red borders represent the vessel wall (MA) and lumen (intima) borders,
respectively. The yellow dashed line depicts the trajectory of transducer scan
lines.

illustrated, at higher center frequency, spatial resolution is im-
proved, at the cost of more scattering from red blood cells inside
the lumen. It is worth mentioning that the axial and lateral res-
olutions depend on the transducer center frequency and beam
width, respectively.

During acquisition, IVUS backscattered radiofrequency (RF)
signals that are continuous-time real-valued and band-limited
signals, x(t), are digitized x(nTs) = xn at periodic time inter-
vals of Ts = f−1

s and stored in the hard disk of a computer. fs
is the sampling rate of the digitizing board and may vary from
one system to another. For example, in the Boston Scientific
(Fremont, CA) Galaxy or iLab imaging systems, the acquisi-
tion boards sample IVUS signals at the rate of fs = 400 MHz
whereas the sampling rate for the Volcano s5TM imaging sys-
tem is fs = 200 MHz. Once the IVUS backscattered signals are
digitized, numbers of steps need to be taken in order to convert
digitized RF signals into typical IVUS grayscale images. First,
the envelope of each RF signal (A-line) is computed to generate
a corresponding analytical signal [12]. This is followed by dec-
imation and interpolation along the axial and lateral directions,
respectively. Log compression is also used to enhance image
quality followed by a quantization (e.g., 8 bit).

As depicted in Fig. 3(a), the transducer has a spiral trajectory
(yellow dashed line) while acquiring cross-sectional grayscale
images. The original domain of acquisition is polar (r, θ) and
the resulting grayscale image is transformed to (x, y) Carte-
sian coordinates to reconstruct a typical IVUS frame. Planar
cuts through stack of cross-sectional images provide longitudi-
nal views of an artery. Interventional cardiologists can assess
the length of an artery and the distribution of atherosclerotic
plaques within this pullback direction. Fig. 4 illustrates an IVUS
grayscale image in polar and Cartesian coordinates along with
an example of a cut in the longitudinal pullback direction.

E. IVUS Image Artifacts

IVUS images may suffer from severe acquisition artifacts.
We can cite five main artifacts: presence of the guide wire,

Fig. 4. IVUS grayscale image in (a) polar (r, θ) and (b) (x, y) Cartesian
domains. (c) Longitudinal display along an arbitrary planar cut identified as the
yellow line in (b).

ring-down, nonuniform rotational distortion (NURD), reverber-
ation, and discontinuity at 0◦ in the Cartesian domain. When a
guide wire rail is designed along with a plastic sheath of the
catheter, it obstructs the propagation of ultrasound signals, re-
sulting in shadowing behind the guide wire, as illustrated in
Fig. 5(a). The second artifact arises from the repetitive reflec-
tions of the ultrasound signal from the surface of the transducer
because of impedance mismatch, as illustrated in Fig. 5(b). The
NURD artifact is due to a mechanical glitch in the driving shaft
or the binding of the catheter in curved arteries, as illustrated
in Fig. 5(d). The fourth artifact, known as reverberation, cor-
responds to oscillations of the ultrasound signals between the
transducers and the arc of calcified plaques, which causes mul-
tiple appearances of calcified arcs, as illustrated in Fig. 5(c).
The last artifact corresponds to a discontinuity of tissue appear-
ance at 0◦ in the Cartesian domain due to the spiral trajectory
of the transducer as well as severe catheter or heart motions, as
illustrated in Fig. 5(a).

F. In Vivo Data Collection

Generally, an IVUS catheter is advanced into the left or
right coronary artery and possibly in some side branches on
a guide wire coming out of a guiding catheter inserted in the
femoral artery. Acquisition of cross-sectional ultrasound images
of the right coronary arteries (RCA), left anterior descending
(LAD), and left circumflex (LCX) coronary arteries can be per-
formed with a rotating single-element transducer or a phased-
array transducer. The catheter pullback speed varies between
0.5 and 1 mm/s and the frame rate can be set to 30–60 frames/s.
The IVUS RF data and images are acquired as described in
Section I-D.

G. Image Processing Challenges

During a catheterization procedure, hundreds to thousands
of IVUS images are recorded. Therefore, automatic detection
of the vessel wall [media–adventitia (MA)] and luminal bor-
ders is required to quantify the degree of stenoses and measure
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Fig. 5. IVUS image artifacts. (a) Guide wire artifact and discontinuity artifact at 0◦. (b) Ring-down artifact. (c) Ring-down artifact and reverberation artifact.
(d) NURD artifact. Calibration markers (small white squares) in (b) are used for measurements.

Fig. 6. IVUS grayscale image (a) without TGC adjustment and (b) with TGC
adjustment.

Fig. 7. IVUS grayscale image with (a) manually traced vessel wall (green)
and lumen (red) borders, (b) zoomed-in region with anatomical structures of
the artery such as lumen, intima (I) or plaque, media (M), and adventitia (A),
(c) histology image of artery anatomical structures.

the luminal area in which blood flows. The lumen border is at
the innermost surface of atherosclerotic plaques. Since ultra-
sound signals are progressively weakened with depth, time gain
compensation (TGC) can be applied to compensate for this, as
illustrated in Fig. 6. The vessel wall border, also called the ex-
ternal elastic membrane (EEM) border, is a contour drawn at
the interface between the media and the adventitia. Made of
smooth muscle cells, the media does not reflect the ultrasound
signal and appears as a dark ring. Adventitia is the outer layer of
an artery, formed of sheets layers that are hyperechogenic and
appear as a bright region. Fig. 7 illustrates the borders, the cor-
responding anatomical structures in an IVUS grayscale image
and a histology image of an artery.

Generally speaking, detection of vessel wall borders is less
difficult than that of lumen borders since the vessel media con-

sists of smooth muscle cells and does not reflect ultrasound
signals. It appears as a dark region on IVUS images, which can
be used as a marker to detect the vessel wall. In contrast, due
to high scattering from red blood cells inside the lumen, the
detection of the luminal border is more challenging, especially
when a high-frequency transducer is used. Comparing IVUS
ultrasound probes, the lumen border is more easily detected in
images acquired with a 64-element phased-array 20-MHz trans-
ducer than with a single-element mechanically rotating 45-MHz
transducer, as illustrated in Fig. 3.

In any case, clinical applications of automated segmentation
methods have seen limited success due to several intrinsic arti-
facts (presence of the guide wire, presence of calcified plaques,
presence of side branches, motion of the catheter and the heart)
and extrinsic parameters (such as manual setting of TGC). For
example, the presence of the guide wire, calcified plaques, and
side branches significantly affects an algorithm performance,
particularly when deformable models are employed. On the
other hand, variability among system specifications or changes
of acquisition parameters by an expert would lead to incon-
sistency among datasets so that supervised techniques or those
that rely on statistical properties of gray level intensities may
not perform efficiently.

In this paper, we review state-of-the-art segmentation algo-
rithms that detect either both borders simultaneously or one of
them. These methods can be categorized based on their clinical
application, domain of analysis, transducer center frequency, di-
mensionality, and underlying image processing framework, as
summarized in Table I. To tackle the segmentation problem, re-
searchers have developed several algorithms, employing differ-
ent techniques such as graph searching, gradient-driven methods
with dynamic programming, deformable models in combina-
tion with statistical properties of grayscale values correspond-
ing to blood and nonblood regions, statistical shape models,
probabilistic approaches, edge-enhancement frameworks along
with active contours, or multiscale techniques, for example.
We distinguished three main families of approaches: 1) direct
detection of border(s); 2) blood speckle reduction (i.e., spa-
tiotemporal filtering) as a preprocessing step prior to border
detection; and 3) supervised classification [e.g., support vector
machine (SVM)] of blood versus nonblood regions by extract-
ing appropriate spatial/temporal/spectral features. For each fam-
ily of methods, we describe the main principles, performance,
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TABLE I
LIST OF SOME OF EXISTING SEGMENTATION ALGORITHMS IN IVUS IMAGES AND THEIR SPECIFICATIONS

advantages, and limitations. Particular attention was also paid to
the level of automation of each technique. Some methodologies,
lack complete automation and require user interaction in order
to perform the segmentation tasks.

II. DIRECT DETECTION OF BORDER(S)

A. Edge-Tracking and Gradient-Based Techniques

The interactions of IVUS signal with the blood–tissue inter-
face and smooth muscle cells in media give rise to typical edge
patterns that could be used to distinguish lumen and MA con-
tours, respectively. In practice, these patterns seldom embody
clean borders due to scattering effects within the lumen, dis-
continuity in intensity values, drops in edge reflections, noise.
Hence, further refinement (e.g., smoothing for noise reduction)
and hybrid algorithms were designed to assemble edge fea-
tures into desirable target boundaries. The IVUS segmentation
techniques that deploy such image descriptors usually require
precise initialization and rely on an energy minimization frame-
work. The very first work on IVUS border detection from Her-
rington et al. [13] developed a semiautomated algorithm based
on such principle. Later, Sonka et al. [14] introduced one of the
earliest comprehensive works on the detection of internal and
external elastic laminae borders as well as lumen borders. The
internal and external elastic laminae borders refer to the inner
and outer layers of the media, which consist of smooth muscle
cells. Normally, the MA border can be drawn anywhere be-
tween these two borders (within the corresponding hypoechoic
region). After removing the calibration markers, illustrated in

Fig. 5(b), regions of interest (ROIs) were interactively selected
and Sobel-like edge detectors were applied on subimages to
construct laminae and lumen border graphs. A heuristic graph
search technique [15], [16] was then performed deploying two
distinct cost functions to detect the borders. The key point for
precise identification of borders was to define appropriate cost
functions for each border by incorporating a priori knowledge
such as shape models and edge patterns. The results demon-
strated good correlation between manual and automated lumen
borders (r = 0.96), plaques (r = 0.95), and stenoses areas (r
= 0.93). Although the presented technique required some user
interaction and was only applied on in vitro images using cir-
culating saline water, where there was not much scattering in
the lumen area compared to in vivo images, the results were en-
couraging and this study raised attentions toward this particular
problem. An extended version of this approach using a different
cost function and fully 3-D graph search has been presented in
[17].

With a similar type of approach, the authors in [18] and [19]
presented a semi-automated methodology using dynamic pro-
gramming to find the optimal path within the vessel and detect
both MA and lumen borders in polar coordinates from delineated
contours. The minimal path search was performed between
end points interactively selected in reconstructed longitudinal
images at the intersection of two perpendicular cut planes. The
results were validated using both tubular phantom data and
in vivo images acquired with a 30-MHz transducer [18]. They
studied inter- and intraobserver variability and showed high
consistency of the method. They later evaluated the performance
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of the segmentation by comparing to histological images [20].
The algorithm performance was further refined and correlation
between manual and automated traced contours was improved
from (r = 0.91) to (r = 0.98) by employing electrocardiogram
(ECG)-gated images [21]. The main limitations were related
to non-uniform transducer rotation and high curvature of the
arterial vessel shape that created distortions in planar images. In
addition, accurate positioning of an individual transverse plane
in longitudinal sections was crucial and could affect the quality
of the segmentation. A similar semi-automated knowledge-
guided approach was also proposed by the authors in [22].

Meier et al. [23] proposed a fully automated segmentation
method for the detection of both MA and lumen borders through
the enhancement of image continuity along the circumferential
direction in polar coordinates and speckle noise reduction by
applying iterative nonlinear spatial median filters. Three differ-
ent segmentation techniques were applied to detect the lumen
borders: 1) thresholding of grayscale gradient maps obtained by
convolving the polar image with gradient kernels in the radial
direction; 2) adaptive region growing from a luminal seed point
(after the detection of the catheter); and 3) deformation of a
gradient-based parametric deformable model to search for con-
nected outline points and detect the MA border. Postprocessing
was required to remove remaining outliers and refine the fi-
nal segmentation. Two distinct datasets consisting of 77 and 28
in vivo collected IVUS frames acquired with a single-element
30-MHz transducer were then used for the detection of lumen
and MA borders, respectively. The authors in [24] proposed a
modified image cost function, combining gradient and variance
of grayscale intensities, which was less sensitive to noise and
employed circular dynamic programming for the detection of
the MA borders. The presented algorithm required manual ini-
tialization of ROI in the first frame of analysis. Analogous to
the method in [23], Schmauder et al. [25] used dedicated pre-
processing (i.e., median filtering and histogram equalization) to
remove catheter markers and scaling grids. They started with an
initialized contour to confine the segmentation process within
ROI. A radial search procedure was performed, optimizing an
energy functional formulated as a weighted linear combination
of an edge detector (first derivative of a Gaussian operator), an
appearance feature (mean value of intensity measured within
sliding windows), and a smoothing term. A multi-temperature
simulated annealing optimization was then used to minimize the
energy functional and detect the lumen border. The performance
of the algorithm was evaluated using 160 frames collected from
five patients using a single-element 30-MHz transducer.

B. Active Contour-Based Techniques

Active contours have been widely used in many medical im-
age segmentation applications and most of the IVUS studies
adopted the traditional formulation of a parametric snake [26],
[27]. Rather than implicit shape surface representation to re-
trieve lumen and/or MA boundaries. Parametric model formu-
lation is more intuitive and better IVUS border detection appli-
cations since the topology of different boundaries is simple and
underlying parameterization remains simple and computation-
ally efficient. The tradeoff of using parametric representations

relies in the fact that it is more sensible to initial conditions
because of nonconvexity of the energy functional and the need
for advection forces. Due to intrinsic non-vessel image features
(presence of guide wire, calcified plaques, side branches, motion
artifacts from the catheter and the heart) and image variability
due to extrinsic parameters (system parameter specifications
such as TGC and compression of the dynamic range), the vessel
borders are not well distinguished in IVUS image which hinders
the direct use of a classical deformable model. Moreover, fine-
tuning of parameters and proper initialization are required when
ordinary features such as image gradient and intensity, which
are sensitive to noise, are employed. Hence, several approaches
have been proposed to overcome these drawbacks by modify-
ing the energy terms or incorporating pre-processing techniques
prior to the use of a deformable model. For example, the authors
in [28] and [29] applied nonlinear filters [30]–[32], driven from
the heat diffusion process, to homogenize grayscale values and
enhance edges prior to the detection of MA and lumen borders,
respectively, through a classical snake framework [26]. The au-
thors in [33] utilized a Hopfield neural network [34] to solve
the optimization problem the snake framework with lesser com-
putational complexity. In addition, they modified the definition
of the bias of neurons, incorporating image characteristics as a

priori, to overcome possible distortions in textural patterns due
to the presence of arcs of calcified plaques and detected both
borders. The user only needed to initialized lumen and MA bor-
ders in the very first frames and resulting detected borders then
were automatically employed as initial contours for subsequent
frames.

As an alternative automated approach, Kovalski et al. [35] re-
moved the elasticity term [26] from the internal energy. To con-
trol the smoothness of the contour, they introduced an a priori

on the final desired shape via regularization along longitudinal
direction, and a “balloon” force [36] to control point motion only
along radial directions. The contours evolved toward features of
interest driven by intensity-based external forces. Finally, they
extended the algorithm to 3-D for the automatic detection of
MA and lumen borders. The results demonstrated high correla-
tion (r = 0.978) and low variability 15.2±17.4% and 6.5±7.6%
for lumen and MA borders, respectively, when comparing to
manual tracing. The authors in [37] also developed a semiau-
tomated 3-D segmentation framework called the active surface
model, which was an extension of a 2-D digital dynamic model
(DDM) technique [38], for the detection of both borders. The
internal force comprised distinct tangential and radial compo-
nents derived from corresponding transverse and longitudinal
edge vectors. The external force was based on the gradient of
a 3-D potential field defined by convolving the image volume
with a 3-D Sobel-like kernel. A damping force was used to con-
trol the convergence of the model to its final shape. The algo-
rithm required user intervention to initialize the template every
other ten frames. The results demonstrated robust segmentation
with negligible variability. Later, in a comprehensive study [39],
the performance of the algorithm was evaluated against more
computationally efficient 3-D active surface algorithm using a
so-called neighborhood-search model.

The proposed technique in [37] is of special interest since it
demonstrated encouraging results and potentially can be used
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images acquired with transducers. Although the lumen and MA
borders had been detected in two distinct datasets (see Table I),
simultaneous detection of both borders seems feasible.

C. Statistical- and Probabilistic-Based Techniques

Statistically driven approaches are generally established upon
an assumption that grayscale values corresponding to lumen and
plaque (intima) regions are generated from two different distri-
butions of reflectors and could be modeled parametrically [e.g.,
Rayleigh or mixture of Gaussians probability density functions
(pdf)] [40]–[45] or non-parametrically [46]. In many cases, this
is a valid assumption to differentiate blood textures (speckles)
from tissues and detect the lumen borders. The authors in [47]
took advantage of this property and developed the very first
region-based technique for the detection of lumen borders by
hard-thresholding of images in polar coordinates. They incor-
porated probabilities of grayscale values that corresponded to
lumen and non-lumen areas into a deformable model framework,
generated corresponding edge images, and delineated borders
automatically in Cartesian coordinates with elliptical shape con-
straint. The algorithm was tested on 1200 frames collected from
eight patients using a single-element 40-MHz transducer. The
same group also used a similar approach with different threshold
values to detect the MA border [48]. Taki et al. [49] proposed
a similar automated technique but used two different threshold
values after despeckling through affine invariant anisotropic fil-
ters to detect both borders simultaneously. It has been shown
that if distributions corresponding to lumen and tissue regions
are well separated, simple decorrelation [50], thresholding tech-
niques [51], [52], or unsupervised classification algorithms [53]
along with morphological operations [52], [53] could lead to
accurate identification of vessel borders.

Despite the simplicity of some of the presented works [47]–
[49], [53] encouraging results were produced, especially on im-
ages acquired with low-frequency transducers (20–30 MHz).
However, in reality, the border detection problem is more
complex, especially when high-frequency transducers (above
40 MHz) are used due to intrinsic and extrinsic image artifacts
(see Section I-G) as well as local and global variations among
luminal and intimal grayscale distributions, demanding for more
sophisticated methods. Hence, the authors in [45] incorporated
additional information about the speckle appearance, assuming
a Rayleigh distribution, and modeling the expected contour with
a priori knowledge using Markov processes [54] in 3-D. The
final contours and parameters associated with the Rayleigh dis-
tribution were found in an iterative process employing a max-

imum a posteriori (MAP) estimator. The algorithm was fully
automated and evaluated on 29 in vivo frames acquired with
a 20-MHz phased-array transducer. Two independent experts
manually traced the vessel borders. Although large variation
was observed between automated and manual lumen borders,
the algorithm delivered satisfactory results. Like [45], Brusseau
et al. [42] used a Rayleigh model for image brightness ap-
pearance and estimated the final contour position with a MAP
estimator and a constraint on the first zero crossing of image
derivatives on the borders. The presented technique was fully
automated in 2-D and exploited RF lines. The possibility of ex-

tension of the algorithm to 3-D was also studied by propagating
2-D contours between adjacent frames. Although ultrasound
backscattered RF signals provide quantitative information on
tissue microstructures [55], [56] for atherosclerotic plaque char-
acterization, its use in border detection is somewhat limited to
differentiation between blood and tissue signals and, therefore,
lumen contour delineation. In addition, RF signals are not often
accessible.

Cardinal et al. [57] modeled volumes of IVUS pullback im-
ages with mixtures of Rayleigh pdf corresponding to the lumen,
the intima, the media, and the adventitia. They incorporated this
mixture model into an extension of the fast-marching frame-
work [58] for multiple-front propagation. They initialized the
regions from manually traced lumen and media borders in sev-
eral frames on longitudinal image cuts. Then, the initialized
fronts propagated with different speeds proportional to each
pdf. The unknown pdf parameters were estimated with the it-
erative expectation–maximization (EM) algorithm. They eval-
uated the algorithm performance with different initializations
and in comparison with 3-D gradient-based fast-marching tech-
nique. Statistical analysis was then performed by comparing
automated lumen and MA borders with corresponding manual
ones for every other ten frames, demonstrating the robustness of
the proposed methodology, obtaining small Hausdorff distance
(p < 0.01) with different initializations. The authors in [59] also
presented a 2-D semiautomated approach using a parameteri-
zation of the lumen region with a mixture of Gaussian pdfs.
The curve was then deformed through the optimization of a
Bayesian cost function, comprising likelihoods of grayscale in-
tensities corresponding to blood and non-blood regions. A priori

information, normalized histograms computed from manually
selected regions, corresponding to blood and non-blood areas,
was employed to estimate the likelihoods. Ultimately, the lu-
men border was detected through minimization of a cost func-
tion linearly combining the steepest descent technique and the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) method [60], re-
sulting a faster convergence toward a global minimum. A set of
100 frames acquired with a 20-MHz transducer was exploited to
evaluate the technique. The accuracy was computed according
to [61] and reported to be 98.28±0.49%, 99.43±0.29%, and
95.57±1.69% for the mean, mean true negative, and mean true
positive, respectively.

Although previously mentioned methods demonstrated en-
couraging results, the assumption of an a priori knowledge
about grayscale intensities and speckle patterns through para-
metric distributions may not be applicable in all situations. For
example, the performance of the presented methods [42], [45],
[57] may be degraded if log compression is applied while B-
mode images are reconstructed from RF signals. In this case,
the assumption of Rayleigh distribution may not be truly valid.
Alternatively, Unal et al. [46] presented an automated 2-D algo-
rithm, implemented in the polar domain, which built a statistical
shape space through principle component analysis (PCA). Once
the shape space was built, an initialized contour evolved from
the surface of the transducer (catheter marker) in polar coor-
dinates by the minimization of a region-based non-parametric
probabilistic energy function described in [62]. They estimated
the probability distribution inside and outside the lumen using
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intensity profiles from a training dataset and delineated the lu-
men borders automatically. For MA border detection, they used
edge information instead to evolve the curve. Primarily, this
technique was developed for IVUS images acquired with a 64-
element phased-array 20-MHz transducer and it demonstrated
very promising results. It was later shown that the proposed algo-
rithm provided reliable results given proper training on images
acquired with single-element 40-MHz and 45-MHz transducers
[63].

The authors in [64] suggested to combine a statistical strat-
egy with a supervised classification approach to achieve optimal
performance when detecting the MA border automatically. The
core of the segmentation method consisted of three main steps.
First, a restricted anisotropic diffusion (RAD) filter [30], [31]
was applied for border enhancement. Second, a feature space
consisting of horizontal edges, radial standard deviation, and
radial cumulative mean was constructed. The former feature
represented the MA border while the other two were used to dif-
ferentiate between calcified and fibrotic tissue within the plaque.
Fisher linear discriminant analysis [65] was then performed in
order to achieve a maximum separability among the projected
classes followed by Bayesian thresholding [65] in the feature
space to generate two binary masks corresponding to calcified
regions and the MA border. In the last step, the MA border was
detected via modeling the fragmented segments in the MA bor-
der mask by computing an implicit closed representation using
an anisotropic contour closing (ACC) [29] and then an explicit
B-spline compact parameterization. It is also worth mentioning
that thresholding of feature space was also used in [66].

D. Multiscale Expansion-Based Techniques

It has been shown that multiscale expansions of textured im-
ages replicate human and mammalian vision processing systems
with conservation of energy in both spatial and frequency do-
mains [67], [68]. This observation has motivated researchers to
take advantage of spectral analysis [69] or spatial-frequency-
localized expansions and their generalization to 2-D as well as
3-D to discern textural patterns on backscattered IVUS images.
For instance, Katouzian et al. [70] introduced the first multiscale
expansion approach based on discrete wavelet packet frames
(DWPF) for the automated detection of lumen borders in IVUS
images acquired with a single-element 40-MHz transducer. The
proposed method relied on a 2-D overcomplete representation
of IVUS images. In the first step, they decomposed images onto
orthogonal Lemarie–Battle filters [71] and computed the enve-
lope of the complex coefficients, as features. An unsupervised
K-means clustering algorithm was then used to generate binary
masks corresponding to blood and nonblood regions and the
lumen border was estimated via iterative Spline interpolation
among nearest detected edge sets in the radial direction. The
main limitations associated with the proposed method were the
presence of the guide wire, ring-down artifacts, and attenuation
of signals in regions far from the transducer. Similarly, the au-
thors in [72] also deployed discrete wavelet frames (DWF) and
constructed decomposition trees using Haar filters to identify
both lumen and MA borders in images collected with 20-MHz
and 40-MHz transducers. Both techniques were able to delin-

eate borders fully automatically with four decomposition levels
in polar coordinates, although the detection procedures were
completely different.

In a complementary study, Katouzian et al. [63], [73], [74]
developed a new fully automated technique, motivated by the
procedure used by interventional cardiologists to trace the lu-
men border in images acquired with high-frequency transduc-
ers (40 MHz up and 45 MHz in particular). Prior to tracing,
they usually go back and forth among consecutive frames to
be able to visually locate the lumen contour on a single frame.
By doing so, blood speckle and plaque embody, respectively,
visually incoherent and coherent spatial patterns, suggesting
a 3-D processing approach. IVUS subvolumes were projected
onto orthogonal brushlet basis functions [75] in an overcom-
plete fashion [76] in polar coordinates where the strong spa-
tial coherence in the appearance of plaque, arterial wall, and
surrounding adventitia within an IVUS subvolume is better ex-
pressed. The main advantage of such a redundant representation
was that the brushlet coefficients were invariant to intensity and
only depended on the spatial frequency content of the IVUS
signals. They proposed two different techniques to estimate the
lumen border. First, they thresholded brushlet coefficients, as-
suming that those corresponding to plaque regions had higher
magnitude and applied the iterative conditional model (ICM)
segmentation framework with Markovian regularization [77] to
identify the lumen borders in different classes [73]. Although
the results demonstrated an efficient denoising with brushlet
expansion, the ambiguity in finding the right detected lumen
border remained challenging. To overcome this drawback, they
later showed that the magnitudes and phases corresponding to
blood and non-blood signals were well clustered in brushlet co-
efficients and constructed a 2.5-D magnitude-phase histograms
of coefficients. Using in vitro data (circulated human mimick-
ing blood material inside a cylindrical phantom), they demon-
strated distinct histogram peaks corresponding to blood and
non-blood regions. Thresholding of these peaks leads to binary
masks exploited for the detection of the lumen border with the
surface function active (SFA) framework [78]. In a compari-
son study [63], the performance of the proposed technique was
comparable to the methods from [46], [49]. Furthermore, they
presented dedicated approaches to remove the catheter marker
and get rid of ring-down as well as guide wire artifacts.

III. BLOOD NOISE REDUCTION AND BLOOD POOL

DETECTION ALGORITHMS

To ease IVUS border detection and more specifically the
luminal border, different techniques have been developed to ei-
ther reduce blood speckle appearance or identify the blood pool
directly. Some of the works reviewed in the previous section im-
plemented preprocessing techniques such as median [23], [25]
and anisotropic diffusion filtering [28], [29], [49], [64] prior
to border detection. However, the focus of this section is on
algorithms that are entirely dedicated to blood noise reduction
(BNR) and blood pool detection (BPD). The term blood noise is
associated with scattering from red blood cells inside the lumen.
To the best of our knowledge, the authors in [79] were the first
to employ signal-processing techniques in lateral direction for
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BNR in IVUS images acquired with a 20-MHz transducer. The
framework exploited the Doppler shift in the blood power spec-
trum which could be teased out from the vessel wall spectrum
centered at the zero frequency using a low-pass filter. Simu-
lations and results driven from in vitro data demonstrated the
effectiveness of the proposed technique. The rational behind
most BNR and BPD algorithms [73], [80]–[83] is that blood
and plaques embody incoherent and coherent textural patterns
along the pullback direction. Therefore, spatiotemporal infor-
mation provides discriminative features for blood speckle and
blood pool. Hibi et al. [84] implemented a spatiotemporal fil-
tering technique [83] to reduce blood noise effects. In order
to validate the efficacy of the proposed method, they manually
traced borders, measured lumen and plaque cross-sectional ar-
eas, and reported statistics for results before and after BNR.
The authors in [80] also presented a BNR algorithm based on
the fusion of anisotropically diffused filtered images [85] with
temporal information and detection of the lumen borders by
thresholding of edge images. A multiscale BNR algorithm was
also proposed in [73] as discussed in Section II-D.

BPD has also been a subject of few studies where the pres-
ence of incoherent blood speckle patterns hindered the assess-
ment of lumen size in IVUS images, especially for images ac-
quired with recently developed ultrahigh-frequency transducers
(40 MHz and above). O’Malley et al. [81] presented a 3-D su-
pervised classification approach (one-class SVM) using seven
spatial, temporal, and spectral features. Exploiting three in vivo

datasets collected from swine coronary arteries using a 40-MHz
IVUS transducer, they trained a classifier on 30 frames, and eval-
uated the algorithm for each dataset independently. The overall
classification performance was reported as 97%, 82.3%, 2.8%
and 95.3%, 100%, 4% for sensitivity, specificity, and support
vector fraction, respectively, in two datasets. They concluded
that the highest performance was achieved using features cor-
responding to speckle pattern. The authors in [86] presented a
supervised technique to detect the lumen borders in longitudi-
nal cuts of IVUS pullback images. They extracted 263 spatial,
textural, and spectral features and used an Adaboost classifier
for feature space dimensionality reduction and classification.
Morphological operators were then deployed on classified bi-
nary images for smoothing followed by a Canny edge operator.
The lumen border was detected using a parametric deformable
model on detected edge points. Similarly, Katouzian et al. [82]
detected blood pool and lumen borders extracting features com-
prising redundant brushlet coefficients along with spatial infor-
mation and used a neural network as a classifier. The output
of the neural network was used to reconstruct blood maps and
then thresholded to estimate the lumen border with a parametric
deformable model. The algorithm was evaluated using repeated
randomized experiments to validate the quantification of the
blood maps when compared to expert manual tracings on 258
frames collected from three patients with a single-element 45-
MHz transducer. In order to evaluate the classification accuracy,
they modified the classical correct classification rate and defined
the segmentation rate (S) as (TP)/(TP+FP+FN) for fair repre-
sentation since the lumen embodied small area comparing with
the whole IVUS image, causing large true negative (TN) rate.
The sensitivity (SE) and specificity (SP) rates were then defined

as TP/(TP+FN) and TN/(TN+FP), respectively, and reported
to be S = 79.59%, SE = 86.80%, SP = 97.87 for classification
and S = 79.77%, SE = 89.17%, SP = 97.36% for lumen border
detection results.

IV. DISCUSSION AND CONCLUSION

The main contribution of this paper, as the first review article
in the field, was to introduce state-of-the-art IVUS segmen-
tation techniques developed over the past 20 years. Avoiding
direct comparison, we rather categorized algorithms into three
groups: direct detection of the MA or the lumen borders, clas-
sification of luminal and blood pool areas, and blood speckle
noise reduction (BNR) methods. Techniques belonging to the
first group (direct detection) are usually preferred as they of-
fer instant measurements of lumen and plaque areas, which are
required prior to tissue characterization or balloon angioplasty
and stent implantation. Although all reviewed algorithms bring
specific advantages, they have been only partially successful in
clinical setting. For very precise measurements, e.g., plaque pro-
gression/regression studies during pharmacological trials, most
of the research laboratories still rely on manually traced borders.

To make these methods usable in clinical setting, an auto-
mated adaptation of the algorithms to morphological and patho-
logical textural changes within pullback series of images needs
to be provided. Indeed, most of the validation datasets used in
the literature comprise frames from distinct parts of pullback
series, which do not reflect the needs during catheterization
procedures. Across hundreds to thousands of frames, a pull-
back series encounters merging of side branches, enlargement
of calcified tissue arcs (e.g., larger than 120 ◦), and variation of
ring-down artifact patterns. Despite the fact that aforementioned
factors play important roles on segmentation results, only few
works [46], [49], [63] address these issues implicity. Therefore,
reporting statistics on temporally diverse dataset is of low im-
portance and does not guarantee the claimed reliability or the
usability of the algorithm for real-time application in a catheter-
ization laboratory.

Second, in most studies, the grayscale distributions corre-
sponding to blood and non-blood regions are assumed to be
separable. This is a reasonable assumption for images acquired
with low-frequency transducers (20–30 MHz), and the authors
in [63] have shown that, in such a situation, a thresholding-based
technique with empirically tuned values [49] outperforms more
sophisticated algorithms [46], [74]. However, this assumption is
no longer valid for images acquired with transducers (40 MHz
and above). We illustrate this point in Fig. 8 which shows empir-
ical intensity distributions derived from images acquired with
20-, 40-, and 45-MHz transducers. As we can see, the sepa-
ration between blood and non-blood intensities vanishes when
the transducer center frequency increases from 20 to 45 MHz.
As more scattering from red blood cells emerges with the in-
crease in the center frequency of the transducer, visual detection
of luminal borders becomes impossible without exploiting the
longitudinal incoherence of the blood patterns.

Third, the literature has reported different metrics to compare
the segmentation results to manually traced borders, making di-
rect comparisons very difficult. As we can see in Table I, linear
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Fig. 8 Probability distribution of blood (red) and nonblood (blue) regions
derived from images acquired with (a) 20-MHz, (b) 40-MHz, and (c) 45-MHz
transducers. The probability distributions were computed from two datasets
(solid and dashed lines).

regression is the most common analysis, which seems neces-
sary but is insufficient. On the other hand, clinicians usually
prefer Bland–Altman graphs to visualize potential bias in errors
with respect to vessel diameters. The inter- and intra-observer
manual variability enables us to quantify the consistency and
reproducibility of quantitative measurements made by different
observers tracing the borders. For example, the average inter-
and intra-observer correlation coefficients reported in [18] and
[23] for lumen and MA borders are rinter = 0.962, rintra = 0.988
and rinter = 0.965, rintra = 0.999, respectively. As we can see,
the visual tracing of MA borders is also relatively easier than lu-
men. The same conclusion can also be made where lower inter-
and intra-observer (4.5 ± 3.3% and 3.4 ± 3.4%) variability for
MA borders in comparison with lumen borders (10.5 ± 11.0%
and 8.3 ± 8.9%) was reported in [35].

Finally, there are still no common datasets freely distributed
on which different algorithms could be compared. A joint effort
to develop such a database, as it has been done in the past
for coronary segmentation on CT or carotid segmentation for
example, is urgently needed.

In conclusion, to drive automated quantification tools to
the clinics, more standardization in the validation process,
performance metrics, and construction of globally accessible
databases consisting of pullbacks of images that imitate all pos-
sible scenarios in real catheterization procedures, acquired with
different transducer frequencies, are required.
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