
© 2010 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

4th IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2010)
©2010 IEEE.

A state of the art review on software project
performance management

Surasak Komchaliaw

DEBI Institute, Curtin University
Perth, Australia

Maxtocp@hotmail.com

Abstract- Several domain experts in the field of software

development and project management have commented on the

high failure rate of software engineering and project

management. A lot of money has been wasted on failed software

projects. Additionally, software quality is not improving. Thus

the successful management of software projects is critical. It is

vital to understand what is important to complete software

project on time within budget, and meet user requirements.

Many literatures present project failure causes. However, project

failure still persists. In this paper we outline software

development failure. Then we present two key variables in

software project performance management i.e. trust and

knowledge sharing.

Keywords: software development failure; software project
performance management; trust; knowledge sharing

I. INTRODUCTION

Several domain experts in the field of software
development and project management have commented on the
failure rate of software engineering and project management
e.g.

• Various failure rates for software development projects
are up to 85% [1].

• 50% of all software projects are total failures and
another 40% are partial failures according to widely
quoted surveys in UK, USA, and Norway [2].

• Approximately 31 % of corporate software
development projects are cancelled before completion
and 53% are challenged and cost 180% above their
original estimate according to the Standish Group in
1994 [3].

• 46% of software projects are having cost or time
overruns or not fully meeting user's requirements and
19% are outright failures according to the Standish
Group in 2007 [4].

This has shown that project failure rate is high. A lot of
money has been wasted on failed software projects. According
to the Standish Group International, roughly 15% never deliver
a final product costing $67 billion per year [4]. Stories of
software failure attract public attention. Additionally Cerpa and
Verner [5] believe that software quality is not improving

Pompit W ongthongtham

DEBI Institute, Curtin University
Perth, Australia

P.W ongthongtham@cbs.curtin.edu.au

neither but getting worse. Thus the successful management of
software projects is critical.

It is vital to understand what is important to complete
software project on time within budget, and meet user
requirements. Many literatures [5-11] present project failure
causes. However, project failure still persists. In this paper we
give overview of software development failure in section 2.
Then we present the two key variables in software project
performance management in section 3. We discuss and
conclude the paper in section 4.

II. OVERVIEW OF SOFTWARE DEVELOPMENT FAILURE

A. Teamwork

Teamwork issues refer to issues related to team member
development, communication between members, and team
management. Team members also include customers, users,
and stakeholders. Reason that is most cited for project failure is
ineffective communication and coordination among project
teams. Other factors include inexperienced project manager,
lack of specialized skills, low confidence in team members,
insufficient support from manager, inadequately train of team
members. DeMarco and Lister argued that aspect of the skills
and interactions of software team is most critical and hard to
overcome [11].

B. Project Management

Project management issues refer to issues related to project
plan and schedule, budget, assessment, control, quality
assurance. This includes uncertainty of project milestones,
change management, progress report, and project management
methodology.

C. Technical Aspects

Technical aspects refer to issues related to software process
activities including requirement engineering, design,
implementation, testing, validation and verification. It could
cause by ambiguous system requirement, incorrect system
requirement, wrong development strategies, inappropriate
software design, inadequate testing, lack of reusable support of
data, code, component, document, etc. However, McCreery
and Moranta believe that project challenges were more
behavioral and interpersonal than technical [9]. Issues related

653

4th IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2010)
©2010 IEEE.

to communication, collaboration, and team connectedness are
more critical.

D. Project Complexity

Project complexity issues refer to issues related to the
complexity of project requirements. This includes the projects
utilizing cutting edge technology and that require high level of
technical complexity.

III. KEY VARIABLES IN PERFORMANCE MANAGEMENT

From the above overview of software development failure,
we identifies two key variables i.e. trust and knowledge sharing
as critical influence factors in software development.

A. Trust

The concept of trust is related to different and various fields
including philosophy, sociology, business, computing. There
are number of trust definitions. Mayer et al. define trust as "the
willingness of a party to be vulnerable to the actions of another
party based on the expectation that the other will perform a
particular action important to the trust or, irrespective of the
ability to monitor or control that other party" [12]. Moe and
Smite define trust as "the shared perception by the majority of
team members that individuals in the team will perform
particular actions important to its members and that the
individuals will recognize and protect the rights and interests of
all the team members engaged in their joint endeavour" [10].
Jarvenpaa et al believe that trust has direct positive effect on
cooperation and performance and an increase in trust is likely
to have a direct, positive impact on team members' attitudes
and perceived outcomes [l3). Giddens [14] sees trust in
different view and says that there would be no need of trust if
the activities were clearly visible and easy to understand.
Hence from his view the prime condition for lack of trust is
lack of full information or ambiguous information. As a result
trust requires a good knowledge sharing.

Trust can be founded in different ways. The most common
way is a direct relationship. In vertical view trust is important
to leadership while in horizontal view trust is important for
knowledge sharing and team working. In relation to teamwork
the two most important dimensions of trust that should be
focused are benevolence and competency. Benevolence is
related to willingness within teamwork based on the idea that
members will not intentionally harm another when given the
opportunity to do so. This kind of trust can be positive or
negative which members in the team may believe on others
willingness to share knowledge and trust level can be in highest
level. On the other hand, they may refuse to others willingness
and trust can be negative. The second dimension of trust is
competency. This kind of trust refers to trusting agent's believe
on trusted agent's competency. It describes a relationship in
which a member believes that another member is
knowledgeable about a given subject area. Competence-based
trust also can be negative or positive and members can believe
on others ability or they completely refuse others ability in a
given subject area.

B. Knowledge Sharing

Wang and Yang define knowledge sharing as the action in
which people dispread relevant information to others across the
organization [11). Melnik and Maurer divide knowledge
sharing into two perspectives i.e. codification approach and
personalization approach [15). Codification approach is based
on the notion of knowledge as object [16-19] which can be
created, collected, stored, and reused [15). Personalization
approach is based on the notion of knowledge as relationship
[20-23] which is uncertain, soft, and embedded in work
practices and social relationships [15].

Knowledge sharing in software development can be defined
as activities between team members in spreading project
data/information/agreement. As seen in Figure 1 knowledge
sharing includes communication, updates, advice, problem
solving, decision making, issue raising, discussion, etc. over
project data/information/agreement.

Team Members

Knowledge Sharing

o Communication

o Updates

o Advice

--- 0 Problem solving --

o Decision making

o Issue raising

o Discussion Team Members

o etc.

Figure I. Knowledge sharing definition

Knowledge sharing in software development situation
enables team members to enhance their competency and
mutually generate new knowledge [15]. Knowledge sharing
can be considered by knowledge complexity and knowledge
transferability. The complex knowledge and/or long knowledge
transfer chain suffer from information distortion and loss which
could lead to inefficient knowledge sharing.

IV. CONCLUSION

Trust is the most important issue to create relationship
making value in knowledge sharing. Knowledge itself cannot
lead to a success, as knowledge sharing or flow of knowledge
is of prime importance in an organization. Knowledge sharing
depends on trust between trusted and trustee members in
specific knowledge context and specific time slot. Trust level
between members has a high impact on software project
performance. The future work could include defining a role and
measurement of trust and knowledge sharing in the software
project performance. A developed framework is required to
measure embedded trust in teamwork. Additionally, the
framework should be developed and measured the software
project performance in a dynamic environment as knowledge
and trust are dynamic entities.

REFERENCES

[I] Jorgensen, M. and K. Molokken-Ostvold, How large are software cost
overruns? A review of the 1994 CHAOS report, in Information and
Software Technology 48. 2006. p. 297-301.

654

4th IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2010)
©2010 IEEE.

[2] Gilb, T. No Cure No Pay: How to Contract for Software Services. 2006
[cited accessed 24 May 2006]; Available from:
http://roots.dnd.no/repository/05_Gilb_Tom_No_ Cure_No _Pay.pdf.

[3] International, S.G. CHAOS: Project failure and success report. 1994
[cited; Available from:
http://www.pm2go.comisample_researchichaos_1994_2.asp.

[4] Rubenstein, D. Standish group report: There's less development chaos
today. SO Times [cited Mar. I, 2007]; Available from:
http://www.sdtimes.comlarticie/story-20070301-01.

[5] Cerpa, N. and J.M. Verner, Why Did Your Project Fail?
Communications of the ACM, 2009. 52(12): p. 130-134.

[6] Linberg, K.R., Software developer perceptions about software project
failure: a case study. Journal of Systems and Software, 1999. 49(2-3): p.
177-192.

[7] Chen, J.-C. and S.-J. Huang, An empirical analysis of the impact of
software development problem factors on software maintainability.
Journal of Systems and Software, 2009. 82(6): p. 981-992.

[8] Yong, H., et al. A Neural Network Approach for Software Risk
Analysis. in Sixth IEEE International Conference on Data Mining -
Workshops (ICDMW'06). 2006. Hong Kong, China.: IEEE.

[9] McCreery, J. and V. Moranta. Mapping Team Collaboration in Software
Development Projects. in Portland International Conference on
Management of Engineering and Technology (PICMET'09). 2009.
Portland, Oregon USA.

[10] Moe, N.B. and D. Smite, Understanding a lack of trust in Global
Software Teams: a multiple-case study. 2007, Springer-Verlag Berlin
Heidelberg.

[II] Juan-Ru, W. and Y. Jin. Study on Knowledge Sharing Behavior in
Software Development Team. in Fourth International Conference on
Wireless Communications, Networking and Mobile Computing
(WiCom'08). 2008. Dalian, China.

[12] Mayer, R.C., OJ. Davis, and F.D. Shoorman, An Integrative Model of
Organizational Trust. Academy of Management Review, 1995. 20(3): p.
709-734.

[13] Jarvenpaa, S.L., T.R. Shaw, and D.S. Staples, Toward contextualized
theories of trust: The role of trust in global virtual teams. Information
Systems Research 2004. 15(3): p. 250-267.

[14] Giddens, A., The Consequences of Modernity. 1990: Stanford
University Press.

[15] Melnik, G. and F. Maurer. Direct Verbal Communication as a Catalyst
of Agile Knowledge Sharing. in Proceedings of the Agile Development
Conference(ADC'04). 2004. Salt Lake City, UT, USA.

[16] Alavi, M. and D. Leidner, Knowledge Management Systems: Issues,
Challenges, and Benefits. Communications of the AIS, 1999. 1(7): p. 2-
36.

[17] Hansen, M. and M. Haas, Competing for Attention in Knowledge
Markets: Electronic Document Dissemination in a Management
Consulting Company. Administrative Science Quarterly, 2001. 46(1): p.
1-28.

[18] Szulanski, G., The Process of Knowledge Transfer: A Diachronic
Analysis of Stickiness. Organizational Behavior and Human Decision
Processes, 2000, 82(1): p. 9-27.

[19] Zack, M., Managing Codified knowledge. Sloan Management Review,
1999. 40(4): p. 45-58.

[20] Boland, R. and R. Tenkasi, Perspective Making and Perspective Taking
in Communities of Knowing. Organization Science, 1995. 6(4): p. 350-
372.

[21] Brown, J. and P. Duguid, The Social Life of Information. 2000, Boston,
MA: Harvard Business School Press.

[22] Nidumolu, S., M. Subramani, and A. Aldrich, Situated Learning and the
Situated Knowledge Web. Journal of Management Information Systems,
2001. 18(1): p. 115-150.

[23] Nonaka, I. and N. Konno, The Concept of "Ba": Building a foundation
for Knowledge Creation. California Management Review, 1998. 40(3):
p. 40-55.

655

