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Abstract—This paper develops a state-queueing model to ana-
lyze the price response of aggregated loads consisting of thermo-
statically controlled appliances (TCAs). Assuming a perfectly di-
versified load before the price response, we show that TCA setpoint
changes in response to the market price will result in a redistribu-
tion of TCAs in on/off states and therefore change the probabilities
for a unit to reside in each state. A randomly distributed load can
be partially synchronized and the aggregated diversity lost. The
loss of the load diversity can then create unexpected dynamics in
the aggregated load profile. Raising issues such as restoring load
diversity and damping the peak loads are also addressed in this
paper.

Index Terms—Demand-side management program, load con-
trol, load modeling, price responsive load, power distribution,
state-queueing model, thermostatically controlled appliances.

I. INTRODUCTION

DEMAND-SIDE management (DSM) programs [1] and
load response, in general, have long been considered

effective strategies to alleviate excessive price volatility and its
adverse impact on electricity markets when there is a shortage
of generation and transmission capacity. In a bid-based market,
increased demand elasticity has a moderating effect on sup-
pliers, reducing their ability to exert market power and set the
price above the competitive price. Because loads can be viewed
as negative generation, price-responsive loads can also bid
in the ancillary service market to enhance system reliability.
However, the influences of the load-responsive programs on
the overall load profile are not well understood. Issues such
as the loss of load diversity caused by synchronous on/off
equipment behaviors, load peak shaving percentages, and
peak-load shifting time need to be examined to ensure that load
response is an effective way to reduce the system stress and
enhance the system reliability, without introducing detrimental
effects to the system.

There are a number of DSM programs that claim to be able to
respond to market price and significantly reduce the system load
on call. Depending on the nature of electricity usage, responses
to the spot prices can be classified into four different categories:
curtailment [2], substitution [3], storage [4], and shift. Load
shift is done by pre-consumption or post-consumption of the
electricity to reduce the power consumption during the antic-
ipated peak-price period. An important feature of this type of
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load management program is that it targets the cyclic loads such
as thermostatically controlled appliances (TCAs). The power
consumption is determined by the appliances’ ability to “coast”
through the peak-price period, rather than the substitution of
other energy sources for electricity. Therefore, the on-peak con-
sumption can be shifted rather than simply reduced, and the
electricity will have to be consumed either earlier or later.

Probabilistic calculations of aggregate storage loads [10] and
duty cycle approach [11] have been developed for aggregate cy-
cling load models. These models are based on the end-use data
analysis. Historical data collected at the substation level are used
to account for nonengineering factors such as weather patterns
and customer behaviors. The drawback of these models is that
they are empirically driven and noninteractive. The thermody-
namic and cyclic character of the loads and their controls is not
considered either.

This paper focuses on the behavior of TCAs when they are
capable of price response, as is the case with building heating
ventilation and air conditioning (HVAC) systems. Based on the
thermal model developed in [5], we study the load diversity
and state shift behavior of HVAC systems after a change in en-
ergy price, in response to which their thermostat setpoints are
changed. Physically-based methodologies for synthesizing the
hourly residential HVAC load, such as was developed by Chan
et al. [13] can be used to evaluate the impacts of load manage-
ment programs. An estimate of the diversified load from a lim-
ited number of load shapes of individual households was used
to form a load-diversification model. Our approach differs by
assuming a uniformly randomized load as an initial condition,
from which we derive the probability distribution function (pdf)
after the setpoint changes. This reveals the fundamental reason
for the reduced load diversity in large scale direct load control
systems, which has been observed and discussed by Weller in
[12]. Based on the pdf, the resulting load behaviors are suc-
cessfully captured. A computationally efficient state-queueing
model is developed to model the price response of TCAs. Be-
cause TCAs contribute to a large fraction of the total residential
load, this research can be applied to create simulation tools to
study the effectiveness of residential load-response programs,
which are important in the establishment of sustainable and suc-
cessful DSM programs.

II. CHARACTERISTICS OF TCAS

TCAs include residential HVAC systems, electric water
heaters, and refrigerators. Because the characteristics of these
TCAs are similar and therefore can be modeled in a similar
fashion, this paper focuses on HVAC models for illustrative
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Fig. 1. Differential models of controlled thermal behavior.

purposes. Fig. 1 shows the thermal behavior of an HVAC unit
over time. The rising curves indicate the operation of the HVAC
heater, when the home heating system is “on”, and the falling
curves represent the cooling down period, when the home
heating system is “off”. During the summer air-conditioning
months, the situation is reverse and the “on” period occurs
during the cooling cycle. As the HVAC unit cycles, the temper-
ature in the house rises and falls accordingly. The cycling points
of the HVAC unit are shown as times , and [5].

The upper and lower limits are set by the thermostat set-
point, and changing the setpoint allows one to regulate the power
consumption of the HVACs. Because the asymptotic equilib-
rium temperatures are generally far beyond these limits for ap-
propriately sized equipment, the exponential rising curve and
falling curve are almost linear between the upper limit and the
lower limit, as shown in Fig. 1. To simplify the analysis, a linear
approximation of HVAC thermal characteristics, as shown in
Fig. 2, is used in our model.

III. PRICE RESPONSES OF HVACS

An HVAC unit can respond to market price by rising or
lowering its setpoint , which will then determine its power
output . Therefore, we have control functions (1) and (2), as
follows:

(1)

(2)

Fig. 3 shows several possible versus curves, based on
which HVAC units can respond to market price changes. For
example, based on curve 1, the setpoint is 72 F for an HVAC
unit when market price is between 50 and 100 $/MWh. When
the price rises higher than 100 , the thermostat setpoint
of the unit will be lowered to 69 F.

This paper focuses on solving (2) to calculate the aggregated
TCA load after the setpoint changes. The TCAs are as-
sumed to have same thermal characteristics and use the same
control functions.

Two cases are studied in the following sections: the TCA re-
sponse to a price increase and the TCA response to a price de-
crease.

Fig. 2. The simplified thermal characteristic of an HVAC.

Fig. 3. Setpoint changes in respond to price changes.

A. Initial Conditions

We start the derivation with a simple example. We observe a
system containing HVAC units with the initial thermal states
shown in Fig. 4, where a unit will be “on” for 5 min and “off” for
15 min for a given ambient temperature and a given setpoint.
and are the upper and lower temperature limit for a given set-
point . A state is then defined by both the temperature and the
on/off status of a unit. We subdivide the time cycle into 20 states
of equal duration such that there are five distinct “on” states and
15 distinct “off” states in a temperature range of . Ini-
tially, we assume a uniformly diversified load and the units are
distributed uniformly among all 20 states. If the whole time pe-
riod is divided into 20 time steps, then at time Step 1, we will
have nearly equal numbers of HVAC units in each of the 20
states. At the end of each time step, units will move one state
ahead. For example, at time Step 2, units in State 1 will move to
State 2, units in State 2 to State 3, and units in State 20 to State
1, as shown in Table I.

Assume the power of each unit is equal. The total load at
each time step is simply the total number of units in all the “on”
states (States 1–5).
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Fig. 4. The states of an aggregated TCA load.

TABLE I
STATE DISTRIBUTION OF THE HVAC UNITS

When the units are uniformly distributed among the states,
the expected load can be calculated as:

where is the total number of states and is the number of
“on” states. is the number of units, is the number of “on”
units, and is the power demand of each HVAC unit.

Table I shows the state evolution along the timeline. Columns
represent time and rows represent the unit temperature corre-
sponding to the states. The shaded states are the “on” states. One
can calculate the aggregated output by summing up the power
consumption of all the units in the “on” states.

For example, if there is a 1-kW unit in each of the 20 states,
the aggregated output at any time is 5 kW because at any one
time, there are five “on” states in the system.

B. State Distribution in Response to Price Increase

Let us assume that the TCAs respond to a price increase by
lowering their setpoints (see Fig. 5), which will result in a lower
on/off temperature limit.

A close examination of the moment when the change hap-
pens reveals a degeneracy of states: States 4 and 5 combine with
States 12 and 9. Because the units in States 4 and 5 immediately

Fig. 5. The state degeneracy.

TABLE II
STATE DISTRIBUTION OF THE TCAS AFTER A PRICE INCREASE

turn off as a result of the shift-down of the “off” temperature
threshold, they are now at the same temperature and are indis-
tinguishable from States 12 and 9.

Furthermore, under the new setpoint, if we redefine the states
in the same pattern used for the original control band, then
an “out-of-regime” state transition occurs when the setpoint
changes. For example, the previous States 1 and 2 now become
States 4 and 5 . However, as shown in Fig. 5, previous States
6–14 have to decay into the new state regime because the
temperatures of the units are higher than the temperature
range set by the new setpoint, therefore placing them outside
the new regime of states. The temperatures of the units in
these “out-of-regime” states will eventually decay into the
new temperature setting range shown in Table II. Because the
transition of these out-of-regime states into allowed states is
deferred, the overall load profile will experience a transient
reduction, the length of which is determined by the temperature
decay rate. After all the states degeneracy and phase alignments
are complete, the system will reach a steady state, which is also
shown in Table II. If there is one unit in each state prior to the
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Fig. 6. The number of units in “on” state after a price increase.

setpoint change, then the number of units that are “on” at each
time step is shown in Fig. 6.

We make three observations based on these results.

1) There is a significant reduction of the load immediately
after the lowering of the setpoints because the HVAC
units at a temperature higher than will turn off under
the new setting. The remaining “on” units will turn off
shortly, when they reach their new (Table II, times 1
and 2)

2) Because the cooling period is much longer than the
heating period, the load output remains zero for a con-
siderable length of time depending principally on how
far the setpoint drops (Table II, times 3–8)

3) When the “off” units reach the lower temperature limit,
they turn on, and the load begins to increase. Because of
state degeneracy, there are more units in some states than
in others’, the number of units that remain in “on” states is
no longer a constant average value along the timeline. As-
suming there is one unit in each state prior to the setpoint
change, then after the setpoint change, the total number of
“on” units will have a maximum at eight and a minimum
at one, as shown in Table II and Fig. 6 after time eight. Re-
call in Section III-A, the total number of “on” units is five
all the time. Because in the aggregated load
profile, we will expect a dynamic similar to that shown in
Fig. 6.

C. State Distribution in Response to Price Decrease

We can perform a similar analysis for the TCA response to a
price decrease. We assume that the thermostat setpoint will be
raised when the energy price drops. Raising the setpoint results
in higher “off” temperature and “on” temperature limits of the
TCAs. The degeneracy and the shift of the states are shown in
Fig. 7 and Table III.

There are three observations based on the results.

1) Initially, there is a sharp increase of the load because all
the TCAs at a temperature lower than will turn on
under the new setting, while the units that were on remain

Fig. 7. The state degeneracy after a price reduction.

TABLE III
STATE DISTRIBUTION OF THE TCAS AFTER A PRICE REDUCTION

on. The peak load can reach much higher than the peak
load that initiated the price increase.

2) The transient period is shorter than the previous case be-
cause the heating period is significantly shorter than the
cooling period for HVAC units.

3) Fig. 8 shows that the synchronization behaviors are
stronger than the previous case, which creates a much
higher and longer peak and valley period in the overall
load profile.

This reveals an interesting phenomenon. If we decrease the
price prior to the expected peak price period, we may reduce
the load during the peak price period without the need for a
price increase. This “pre-loading” can be effective; however,
the risk is that subsequently many HVAC units will turn on and
off at the same time. This can put a significant stress on the
distribution network. In the next section, we will discuss this
problem further.
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Fig. 8. The number of units in “on” state after a price reduction.

IV. THE PRICE-RESPONSE IMPACTS ON LOAD DIVERSITIES

On a distribution feeder, the demand is not simply an aggrega-
tion of randomly distributed individual load demand. The corre-
lation between loads must be accounted for. Diversity factors as
a function of number of customers are used in distribution circuit
loading calculations [6]. Diversity factor is defined as [7]–[9]

where is the maximum demand of load and is the co-
incident maximum demand of a group of loads. will have
a value between . There are two extreme cases. If is
1, all the individual loads are at “on” states. If is infinity, all
the individual loads are at “off” states. The lower value has,
the more individual loads are at “on” states.

Assumethatafeeder’sloadconsistsof HVACunits.Eachunit
hasacyclingtimeof withan“on”periodof andan“off”period
of .Alsoassumethat thereare statesalongtheperiodof and
eachstateevolvestothenextstateafterthesamedeterministictime
interval.Initially,iftheunitsareuniformlydistributedamongeach
state, then the probability for a unit to reside in any of the states
is simply . The diversity factor is calculated by

For the HVAC example given in Section III, there are 20 states
consisting of 5 “on” states and 15 “off” states; therefore, the
probability for a unit to be in any of the 20 states is and
the diversity factor is 4.

To illustrate the impact of the price response on load diver-
sity, we examine the case where TCA setpoints are lowered in
response to a price increase. After lowering the TCA setpoints,
two things will happen (see Fig. 5). First, the states will im-
mediately divide into in-regime states and out-of-regime states.
Second, some states will be depopulated and some will have
population increases. The setpoint changes will force the units
whose temperatures are above the new off-temperature limit to
turn-off; therefore, they will “move” to the “off” states from the
out-of-regime state. If the ratio of the setpoint change is

Fig. 9. The pdf of the in-regime states and the out-of-regime states of the
example in Section III.

then the probability of finding a unit in out-of-regime states
(States 6–14) is

where is the number of “off” states (Fig. 9). Note that
is greater than , showing an increased state occupancy for
out-of-regime states. The remaining states with a temperature
within the new settings are in-regime (States 4 –11 ). Because
the number of units in an in-regime state is unchanged, the prob-
ability for a unit to reside in an in-regime state is also unchanged
and remains at , as shown in Fig. 9. However, those states
below the old on-temperature limits are not occupied yet. So, in
a sense, they are depopulated.

The decay process will merge the out-of-regime states with
the in-regime states and will repopulate some of the depopu-
lated states among the in-regime states. The overall effect after
the price-response signal is that the pdf is no longer a uniform
distribution but a superposition of the two pdfs.

The probability for a unit to be in state after lowering TCA
setpoints at the end of the transient is
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Fig. 10. A queue representation of the state transitions: price-increase
response case.

where

The probability of a unit staying in a specific state can then
be calculated, and one can estimate the number of units in each
state. By summing up the number of units in all the “on” states,
the total power consumption can be estimated accordingly.
However, because the units are no longer uniformly distributed
in each state, the total number of “on” units is no longer a
constant average value along the time line. The aggregated
output will change with respect to time.

The whole process can be more clearly represented by using
a queue with a deterministic service time, as shown in Fig. 10
for the example given in Section III. As shown in Fig. 10(a),
assume that initially, there is one unit (represented by a dot)
in each of the 20 states (represented by a box). The setpoint
changing process can be represented by two queues [Fig. 10(b)]:
an out-of-regime queue and an in-regime queue. When the set-
point change happens, previous States 1 and 2 become in-regime
States 4 and 5, States 3 and 4 degenerate to out-of-regime States
9 and 12, and State 5 degenerates to in-regime State 6.

After all the units in the out-of-regime queue evolve to the
in-regime queue, the transient process will be over [Fig. 10(c)].
The transient time is then . Based on the queue structures
shown in Fig. 10 and corresponding to different setpoint change
ratio in response to price increases, one can create an in-regime
queue and an out-of-regime queue, as shown in Table IV, and
simulate the whole system evolution along the timeline.

The total power demand will then be determined by the
number of units in “on” states at any time. Because the “on”
state will always be in States 1–5, a sum of machines in these
states will yield the total demand.

The inverse load diversity factor is calculated by di-
viding the aggregated load with maximum demand NP (Fig. 11).

Fig. 11. The diversity factors after a price increase.

TABLE IV
STATE REDISTRIBUTION IN RESPONSE TO A PRICE INCREASE

Fig. 12. The structure of the queue representation of TCAs.

Note that the diversity factor is no longer a constant as in the per-
fectly random distribution case. There are periods when the di-
versity factors are infinity, and we observe a synchronized “off”
behavior. For some periods, the diversity factors are lower than
the average at 4, where we observe stronger synchronized “on”
behaviors. The results demonstrate that the price response has a
significant impact on the load diversity. The remaining question
then is whether and how the diversities are recovered after the
response to a price change.

V. THE DAMPING PROCESS

Over time, random events such as the hot water usage or door
openings will naturally randomize any synchronous behavior
of water tanks, HVAC units, or refrigerators and consequently
damp the oscillation. Randomness brought by different types
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Fig. 13. The damping of load response.

and sizes of TCAs as well as randomness caused by environ-
mental differences may also contribute to the damping process.
Our present model simulates the behaviors of TCAs having
the same type and size with similar environmental conditions.
Therefore, the damping in our model is mainly caused by
random events. These random events cause state jumps of the
unit in the queue. For example, taking a shower draws water
from the hot water tank and so the tank temperature drops
out-of-regime. For simplification purpose, assume that each
state except State 20 has a probability of to return to State 1
and a probability of to evolve to the next stage. The queue
can be modified as shown in Fig. 12. Then, for a deterministic
transition time, the transition matrix is

Therefore, the state occupancy after transitions can be
calculated as

When there are “on” states, the number of units in “on” states
will be

Fig. 13 shows the damping effect of the given example HVAC
units on a feeder. The load dynamic is damped in about three cy-
cles with a of . The load diversity is then fully restored. In
distribution systems, equipment are chosen based on an assump-
tion that a load at the end of a feeder has certain load diversity.
When all the loads turn on/off at the same time, the equipment
maybe overloaded. Therefore, when designing a load-response
program, the natural damping factor of the system needs to be
evaluated. If the system itself can not damp the dynamics fast
enough, mechanics can be engineered to diversify the load arti-
ficially.

VI. CONCLUSION AND FUTURE WORK

This paper developed a state-queueing model to simulate
the price response of a load consisting of thermostatically
controlled appliances in a competitive electricity market. An
aggregated load consists of thousands of TCAs, while the
number of states a TCA can reside in may be no more than
100. We expect that applying a queue representation brings a
computational advantage over simulating the behavior of each
individual unit.

By analyzing the load shifts caused by the setpoint changes in
response to price, the impacts on load diversity are studied. The
results indicate that by responding to price changes, a diversified
TCA type of load becomes synchronized, and their behaviors
present a dynamic response. Therefore, to design a successful
load-response program for aggregated TCAs, one needs to ex-
amine the load shifting characters to ensure that the shifted load
peaks will occur after the peak-price time. The synchronized
load peak can be much higher than that of the diversified load.
The stress on the distribution system should also be considered.
The methodology developed in this research is expected to be
used to create DSM simulation tools that are able to take the
load-shifting behavior into consideration.

Future work is needed to develop a feeder equivalent model
consisting of different types of TCAs with a consideration of dif-
ferent setpoint changes in response to a price change. Because
there is randomness from sources other than customer consump-
tions, our future models for the damping process will take into
account the randomness caused by different types and sizes of
HVAC units and different housing environments.
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