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embedded orthogonal transition matrix to the a-ertended upper Hessen- 
berg form, and (iii) factorization of this new form into Givens (planar) 
rotations. Appropriately interconnecting the rotors leads to the pipelined 
orthogonal filter structure. As a consequence of our approach, for the 
SISO case, an essentially orthogonal structure is obtained for the 
inverse filter; only one of the Givens rotors gets replaced by a hyperbolic 
rotor. 
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Fig. 1. SISO orthogonal filter structure. 

I. INTRODUCTION 
RTHOGONAL digital filters are lossless digital filters 0 possessing some very nice properties like low sensitivity 

to finite precision arithmetic, absence of limit cycle and 
overflow oscillations, stability in spite of parameter quantiza- 
tion, and VLSI implementability. The results presented in 
this paper are motivated by the pioneering work on orthogo- 
nal digital filters of Deprettere, Dewilde [l], Dewilde, 
Deprettere, and Nouta [2], Deprettere, Dewilde, and Rao 
[3], Rao and Kailath [4], [5] ,  Henrot and Mullis [61, and 
Vaidyanathan [7]. In this context we would also like to 
mention the work of Regalia, Mitra, and Vaidyanathan i l l] ,  
Vaidyanathan [12], and the book by Roberts and Mullis [13]. 
We shall use the definition of orthogonal digital filters as 
introduced in [1]-[4], and restrict our attention to the kind of 
pipelined orthogonal digital filter structure developed in Rao 
and Kailath [4]. 

In this paper we develop a new algorithm for designing 
orthogonal digital filters using a purely state-space approach; 
this is in contrast to [1]-[4], which use the transfer function 
approach. There are several reasons that motivate the state- 
space approach, some of which are: 

i) It leads to an algorithm that we believe will have better 
numerical properties than the ones reported thus far. Our 
algorithm involves applying orthogonal transformations that 
are known to be numerically very reliable. 

ii) Using the state variable notation the generalization to 
multi-input multi-output (MIMO) filters and time-varying 
filters is relatively simple. 

iii) There is of course the pedagogical reason; the state- 
space approach will provide insight that is not provided by 
the transfer function approach. 

The algorithm involves three major steps: 
i) orthogonal embedding; this step is similar to [1]-[41; 
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Fig. 2. SISO inverse filter structure. 

ii) transformation of the embedded orthogonal transition 
matrix to a special form referred to as the a-extended upper 
Hessenberg form; 

iii) factorization of this new form into product of Givens 
rotations. Appropriately interconnecting the rotors with 
proper delay elements leads to the pipelined orthogonal 
filter structure depicted in Fig. 1 for the single-input single- 
output (SISO) case, and Fig. 3 for the MIMO case. 

As a byproduct of the state-space approach, in the SISO 
case we obtain an essentially orthogonal structure for the 
inverse filter in a very simple fashion; only one of the Givens 
rotors is inverted to a hyperbolic rotor; the rest of the 
structure remains the same (Fig. 2). 

We would like to remark that the transformation approach 
developed here is motivated by the similar work of Mullis 
and Roberts [13]. Also, some other aspects of the state-space 
approach to orthogonal digital filters are discussed in Rao [8] 
and Rao and Dewilde [9]. The state-space approach was also 
used by Donganata, Vaidyanathan, and Nguyen [14] for the 
synthesis of FIR lossless transfer matrices. The discrete-time 
bounded real lemma used by us is intimately related to 
Anderson's bounded real lemma [ 181. 

11. ORTHOGONAL EMBEDDING 
Consider a MIMO digital filter represented in the state- 

space form as 

[ x:;:)l)] = v [:: 21 [:::;I ( l )  

A 
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where U(*) and y(.) 

- terminating section - 
&(k) zz(k) 53(k) 

Fig. 3. MIMO orthogonal filter structure (three states, three inputs, two inputs). 

re, respectively, m x 1 input and p X 1 order for (2) to be an orthogonal embedding 
output vectors; x(.) is an n x 1 state vector; and A ,  B,C,  D 
are, respectively, n x n, n x m, p x n ,  p x m real matrices. 
We refer to A as the transition matrix. The transfer function 
of (1) is 

~ ( z )  = D + C ( Z I -  A ) - ' B .  

Realization (1) is said to be orthogonal if a) H ( z )  is sta- 
ble (Ih(A)l < l), b) H ( z )  is real for real 2, and c) 
H'(e-'")H(e'") = Ip for w E [0,2rI3 (primes will denote ma- 
trix transpose, and Zp denotes a p x p matrix). Note that this 
definition of orthogonality holds true for p Q m. Transfer 
functions satisfying the above property are also referred to as 
all-pass or lossless bounded real transfer functions. 

An equivalent characterization for (1) to be orthogonal is 
that (i) IX(A)I < 1, and (ii) 3 an invertible transformation T 
such that 

A T = [  c T - ' ]  
TB TAT-' 

is orthogonal, i.e., A k A ,  = I .  
In general, (1) will not be orthogonal and as such we need 

to embed it into an orthogonal filter. This idea was first 
proposed by Deprettere and Dewilde [l]; our formulation is 
somewhat different since it is based on the state-space ap- 
proach. In order to achieve this we assume that H ( z )  is 
bounded real, i.e., a) H ( z )  is stable (Ih(A)I < 11, b) H ( z )  is 
real for real z ,  and c) H'(e-'")H(e'") Q Ip for w E [0,2rI] if 
p < m (H(e-'")H'(e'") < Zp if p 2 m). 

We formulate the orthogonal embedding problem as fol- 
lows. Consider the digital filter (1) embedded into a square 
(m + p)-input (m + p)-output digital filter as 

] = [  6, D C Y S,][ 8, :e\:;] (2) 

where u,(k)  is p X 1, y , ( k )  is m X 1, and xJk) is the state 
vector for the embedded filter. By fixing the size of U, and 
y e  we are a priori fixing the size of the embedding parame- 
ters. The intuitive basis for this i s  what one would have for 
the SISO case. Nevertheless, the justification follows from 
Lemma 1 below. Note that when u,(k) = 0, j ( k )  = y ( k ) .  In 

[ x e ( k + 1 )  B A P u e ( k )  

.e need to find 
the parameters P ,  y ,  6,, 6,, S , ,  and a transformation matrix T 
such that the embedded transition matrix 

F e = [ :  CT-  yT-'  ' : l ] .r[Sl  D Ce ye (3) 
TB TAT-' T p  Be A ,  P,  

is orthogonal, i.e., 

','Fe = In + m + p 

FeFb= I n + m + p .  (4) 

Lemma I: If the transfer function H ( z )  is bounded real 
and the corresponding realization ( A ,  B, C ,  D }  is minimal, 
then there exists an invertible transfwmation T such that Fe 
is orthogonal; T is given by any factor of N satisfying 

T'T = N ( 5 )  

(6) 

where N satisfies 

A'NA + C'C + y'y = N .  

The embedding parameters are given by (superscript 1/2 
denotes the full rank factor, and superscript T / 2  denotes its 
transpose, i.e., a symmetric nonnegative definite matrix has 
the full rank factorization R = R:/2RT/2)  

y = ( N  - A'NA - C'C)  

6, = ( I ,  - B'NB - D'D)T/2 .  (7) 

P, S , ,  and 6, satisfy 

def 
= @  and 

P'T'TP + 616, + SjS, = Ip (8) 

i.e., Tp,  S , ,  and 6, are p orthogonal basis vectors for the 
null space of a. 

Moreover, assuming I ,  - B'NB - D'D is invertible, N is 
given by the symmetric positive definite solution of the 
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algebraic Riccati equation 111. TRANSFORMATION AND FACTORIZATION 

N = A ~ N A  + ( A ~ N B  + c ~ D ) ( z ,  - B ~ N B  - D ' D ) - ]  

.( A'NB + C'D)'+ C'C. (9) 
Proof: Since H( z )  is bounded real and { A ,  B ,  C ,  D}  min- 

imal, from Vaidyanathan [lo], we know that there exists a 
symmetric positive definite matrix N, an m X n matrix y, 
and an m x m matrix 6 ,  satisfying 

A'NA + C'C + y'y = N 
A'NB + C'D + y'6, = 0 

B'NB + D'D + 6i6, = I, .  (10) 

Lemma 1 shows how to construct an (embedded) orthogo- 
nal Fe. Now, in order to obtain an orthogonal implementa- 
tion of the digital filter (l), one could factor Fe as a product 
of various Givens (planar) rotations, as described, for exam- 
ple, in Murnaghan [l l] .  In the present situation such an 
approach is not desirable for it may lead to more number of 
rotations than actually required; moreover, it may or may not 
yield a pipelined architecture. In order to achieve the de- 
sired objective we first transform Fe to a special form, which 
can be factored into a minimal number of Givens rotations. 
The following lemma will be useful in achieving the desired 
transformation. 

Then, for the moment assuming N is available, we compute 
y and 6 ,  using the first and the third equations in (10) as full 
rank factors of ( N  - A'NA - C'C)  and ( I ,  - B'NB - D'D), 

consider the ( n  + m ) x ( n  + m + p )  matrix @ defined in (8). 
Using (lo), we see that 

Lemma 2: Given an n x n matrix A and an n X 1 vector 
b,  there exists an orthogonal matrix Q such that 

respectively. This then leads to (7). Now factor N = T'T and Q ' A Q = H ,  Q ' b = [  * 0 . . .  0 1' 
where H is an upper Hessenberg matrix. 

Proof is given in Appendix A by giving an algorithm for N O  
0 I ,  ( n + m x n + m )  constructing such a Q. (11) @ @ I = [  ] 

In order to clearly explicate the various transformation 
and factorization steps we first consider the SISO case and 
then the MIMO case. 

is a positive definite matrix. Consequently @ has a p-dimen- 
sional null space. We next define the remaining embedding 
parameters [P'T' 6 ;  651' as the p orthogonal basis vec- 
tors of the null space of @,-i.e., 

3. I .  SISO Orthogonal Structure 

For the SISO case, the input and output matrices B and C 
are replaced by lower case letters b and c. First we apply 
Lemma 2 to the pair (Ae ,be ) ,  and obtain the transformed 
embedded matrix F having the structure depicted below. 

= 0 ,  [P'T'  65 653 

Then with the above choice of the embedding parameters it 
is easily verified that Fe is orthogonal. 

stitute (7) in the second equation in (lo), this gives 
In order to obtain the algebraic Riccati equation we sub- d ceQ 

FEf[ 6 ,  yeQ :: ] 
A'NB + C'D + ( - A'NA - C'C + N)'12  Q'be Q'AeQ Q ' P e  

. ( I ,  - B ~ N B  - D ~ D ) ~ ' ~  = 0. 

Now, since we have assumed ( I ,  - B'NB - D'D)  to be in- 
vertible, upon multiplying from the right by ( I ,  - B'NB - 
D'D)-T/2 ,  we obtain 

(A 'NB+C'D)(Z , -  B 'NB- D ' D ) - ~ / ~  

+ ( -  A'NA - C'C + N ) l / '  = 0. 

Finally, multiplying the above from the right by its transpose 
gives the desired equation (9). The size of the various em- 
bedding parameters is evident from their computation for- 
mulas. 0 

Remark 1: In the above we assumed that p G m .  Now if 
p 2 m ,  the proof can be modified mutatis mutandis by as- 
suming H ' ( z j  to be bounded real, i.e., 

[;: 3 
to be the transition matrix and the corresponding transfer 
function to be bounded real. 

It is easily established that if the transition matrix Fe is 
orthogonal, then the corresponding transfer function satisfies 
the conditions of orthogonality. In particular, all that is 
needed is to  verify H'(e-'")H(e'") = Zp for w E [O, 2nl. 

* * * . ' .  * * *  
* * * . . '  * * *  
* * * . . .  * * *  
0 * * . . .  * * *  
0 0 * . . .  * * *  

- 0  0 0 . ' .  * * *  

. . .  . . .  . . . .  
. . . .  . . .  . . .  

The above F is very much like an upper Hessenberg matrix 
except, in general, it has one more nonzero line parallel to 
the diagonal. Thus if f,,' is the ( i ,  j)th entry of F, then 
f -  . = 0 whenever i 2 j + 2. We refer to such a matrix as an 
a-extended upper Hessenberg matrix, a=1. a represents a 
number such that fi,' = 0 whenever i > j + a + 1. The trans- 
formed embedded filter is 

1.1 

[ ] = F [  1. (13) 

u e ( k )  x ( k + l )  

Note that the original state x(.) = T-'QZ(.) and y ( k )  = y ( k ) ,  
when u, (k )  = 0. 

Our objective now is to obtain a pipelined architecture for 
the two-input two-output orthogonal filter (13). This is 

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on November 3, 2008 at 23:27 from IEEE Xplore.  Restrictions apply.



DESAI: STATE-SPACE APPROACH 163 

achieved by appropriately factoring F as a product of Givens 
rotations. This factorization is obtained in two steps: (i) A 
sequence of 3 X 3 orthogonal Hessenberg matrices H, and a 
2x2 orthogonal matrix F,,,, are constructed which when 
applied to F will transform it to an identity matrix; (ii) next 
the Hi's are factored into products of two Givens rotations; 
note F,,+ , determines the terminating section. Orderly col- 
lection of all these rotations leads to the desired factoriza- 
tion and the pipelined orthogonal structure. The details are 
presented below as Algorithm 3.1. Though steps (i) and (ii) 
can be combined, we have presented them separately to 
indicate the modular factor H,, which repeats itself in a 
regular fashion. 

Algorithm 3.1: 
1) Solve the algebraic Riccati equation (9) for N ,  compute 

the transformation matrix T from (5), and the embed- 
ding parameters (7) and (S), and then form the embed- 
ded orthogonal transition matrix Fe ( 3 ) .  

Remark 2: In case H ( z )  is all-pass, then all the 
embedding parameters will be zero. Moreover, from 
(10) it should be clear that N can be computed by 
solving a Lyapunov equation ( N  = A'NA + c'c). Com- 
putation of T remains the same. 

2)  Using Algorithm A.l in Appendix A, compute an or- 
thogonal Q that will transform Fe to an extended 
upper Hessenberg matrix F (12). 

For i = 1: n Do (a)-(c): 
a) 

del 
3) Let I ,  = 0, I ,  be an i x i identity matrix, and F ,  = F.  

where f:,,k is the ( j - i + l , k  - i + l ) t h  element of 
Fi, an orthogonal 1-extended upper Hessenberg ma- 
trix of size (n - i + 3 ) x ( n  - i +3): 

F, = 

b) 

- 
J,' 

This gives the following factorization for F :  

where J,,, = [ '6' G [ =  Fntl is a 2 x 2  orthogo- 

nal matrix representing the terminating section. 
c) Factor HIt as a product of two rotations: 

where G,, and G,, are constructed from the elements 
of H, as 

Using the above in the definition of J , ,  the following 
factorization is obtained: for i = 1; . ., n, 

J .  I = J .  r l  J .  r2 = 

4) Substituting the factorization 
the final factorization of F :  

of J ,  in (141, we obtain 

F = J l , J , , J , , J 2 2  . . . Jn-l , lJ11-1.2J, , lJ, ,2J, ,+I~ (15)  

Use of (15) in (13) leads to the embedded factorized 
state variable equation 

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY BOMBAY. Downloaded on November 3, 2008 at 23:27 from IEEE Xplore.  Restrictions apply.



- 

1 

164 

0 
0 I 0 

lEEE TRANSACTIONS ON CIRCUlTS AND SYSTEMS, VOL. 38, NO. 2, FEBRUARY 1991 

* * . * .  * * 
0 . . . . . .  

0 0 . . .  
. .  . .  . . . .  . . .  . . .  . . .  
* *  

Connecting the various rotations in accordance with 
(16), we obtain the orthogonal pipelined filter structure 
depicted in Fig. 1. Note, in Fig. 1, Gij and Gij have the 
form shown below. 

G j j =  [ 0 1  ]Gij 
1 0  

Gij is indeed an orthogonal planar rotation, often re- 
ferred to as a Givens refection or a Householder matrix 
(see [16], p. 44). We have expressed the filter structufe 
of Fig. 1 using two kinds of rotations Gij and Gij 
simply to indicate that it is possible to have the orthog- 
onal structure without any crossing of the lines. 

Remark 3: 
a) The transition matrix for eaqh orthogonal section 

constituted by the pair (Gi l ,Gjz ) )  is a lower 
Hessenberg matrix Hi' with two inputs, two out- 
puts, and 1 state variable (see Fig. 1). 

b) In Algorithm 3.1 we are successively peeling off 
different layers of the orthogonal filter from the 
transition matrix F :  first Jll(Gll), then J,,(G12), 
and so on. In this sense we could view Algorithm 
3.1 as a state-space layer peeling algorithm. 

c) The above algorithm simplifies considerably when 
applied to an AR filter. If l /A(z )  is the AR 
transfer function, then we consider the transition 
matrix corresponding to z n A ( z - ' ) / A ( z ) ,  and ap- 
ply Algorithm 3.1 starting with Remark 2, Step 1. 
We need to solve a Lyapunov equation as opposed 
to a Riccati equation, and as expected, this leads 
to the well known AR lattice of Gray and Markel 

d) Realization (13), viewed as a two-input two-output 
filter is a balanced realization with both the Gram- 
mians equal to the identity matrix. 

[IO]. 

3.2. MIMO Orthogonal Structure 

The approach to the MIMO case is similar to the SISO 
case, nevertheless there are some significant differences. For 
one, a rearrangement of the Fe matrix is needed. Moreover, 
the factorization involves some additional steps and the 
structure of the terminating section is very different. We 
define 

where d , ,  ti,,, and bel, respectkely, represe_nt the first col- 
umn of D, a,, and B; while D ,  a,, and Be, respectively, 
represent the remaining columns of D, a,, and B. In this 

format the MIMO embedded filter has the form 

Now we apply Algorithm A.l to the pair ( A e ,  bel)  to obtain 
an F that is analogous to the one depicted in (12), namely 

- ] 
Q'bel Q'AeQ Q'Be Q ' P e  -:,: * ::: * * 
. . . . . .  * *  
. . . . . .  * *  
. .  . . .  . . .  . .  . . .  . . . . . .  * *  
* * * . ' .  * *  

. . .  

. . .  

. . .  

. . .  

. . .  

. . .  

. . .  

. . .  

As defined in the SISO case, F is an a-extended Hessenberg 
matrix with a = m + p - 1. Note that the size of F is (n + 
m + p ) X ( n  + m + p ) .  

The problem now is to factor F into product of Givens 
rotations, in a specific order, so that it will lead to a pipelined 
orthogonal structure. Though a direct algorithm for this can 
be developed, we prefer to present it in two stages. In the 
first stage a sequence of ( m  + p + 1) x ( m  + p + 1) Hessen- 
berg matrices Hi and an ( m  + p )  X ( m  + p )  orthogonal ma- 
trix F,,,, are computed, such that when these are applied to 
F ,  as shown below, the result is an identity matrix. F,,,, 
represents the terminating section. In the second stage each 
Hi is factored into a product of (m + p )  Givens rotations, 
and F,,, into a product of ( m  +pXm + p  -1)/2 Givens 
rotations. We first present Algorithm 3.2 which explicitly 
specifies the above stages and then present an illustrative 
example. Perhaps, we are preempting a concluding remark, 
but nevertheless it is worthwhile to mention that in the 
MIMO case the terminating section may in fact determine 
the complexity of the filter structure. 

Algorithm 3.2: 
1) Solve the algebraic Riccati equation (9) for N ,  compute 

the transformation T and the embedding parameters, 
and form the embedded orthogonal transition matrix 
Fe (18). 

2) Compute Q by applying Algorithm A.l of Appendix A 
to the pair ( A e ,  bel), and form the matrix F (20). 

3) Formation of the Hessenberg matrices and the termi- 
nating matrix: 

-7 - -  
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def 
Let I ,  = 0, Ii be an i X i identity matrix, and F ,  = F.  
For i = 1: n do a)-c): 
a) 

f/, i 

- P i , l  

0 

P i ,  I 

Pi,2 

P i ,  1 

-- 

. . .  f/+ 2, i 

f / + 2 , i f ( i  . . .  

fi'+ 2, i f / +  1, i 

P i ,  I 

. . .  
P i ,  I Pi,2 

. . .  0 0 

. . .  0 0 

where f i , k  is the ( j - i + l , k  - i + l ) t h  
( n  + m + p - i + I ) x ( n  + m + p - i + I ) .  
b) 

Pi ,m+p- l  

P i ,  m +p - 2 

-~ 

0 

f / + m  +p - 1 , i  

f i+m +p - 1, I f / ,  I 

PI,  1 

fi'+m +r, - I . i f :+  1, i 

f i + m  +p, i 

f / + m + p , i f / + l , i  

P i ,  1 

f i+m + D .  i f /+  1. i 

f /+m +p - 1, if/+m +p - 2, i 

Pi,m +p -2P i ,  m +p - I 

f i+m +p, i f i '+m +p - 2 ,  i 

Pi ,  m +p-2 Pi ,m +p - I 

f/+m +p - 1, i - f / + m  +p - 1, I 

P i , m  +p- I P i ,  m +p - I 

entry of Fi, an (m +p-1)-extended upper Hessenberg matrix of size 

J,' 

Steps a) and b) give the following factorization for F :  

where J n + l = [ ' n  1, Fn+l o f s i z e ( m + p ) x ( m + p ) .  
0 F"+l 

C) Using Algorithm A.2 factor each H/  into a product of (m + p )  Givens rotations: 

where Gi,j is a 2 x 2 Givens rotation matrix. 
4) Factorization of the terminating section: 

def 
Define R ,  =Fn+l.  Let r j , k  be t h e ( j - i + l , k + i + l ) t h e n t r y o f  Ri .  

1 -  
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For i = 1: m + p - 1 do a h ) :  
a) 

Hi' = 

b) 

rh +p  - I ,  i  

rh +p - 1 ,  i r l , i  

. . .  rf z , i  . ril+l,i ril+2,i 
. .  . .  

rf+ I ,  i rl, i 
Y i , i  Y i , i  Y i , i  

Y i , i  + 1 

rf + 2,  i rf, i  

rf+ 2, ir[+ 1 ,  i  

. . .  - Y i , i  ~ ~ 

r f  +p - l ,ir;+ 1 , ;  ... 0 -- 
Y i , i  Y i , i+ lY i , i  Y i , i+ lY i , i  

~ i ,  m +p - 2 

Yi ,  m +p -3 

rh +p - 1, i r h  +p - 2, i 

Y i , m  +p - 3Yi, m +p - 2 

. . .  -~ 0 0 

C + P , i  _~ 0 . . .  0 0 

H I R i = [ l  0 R i + l  ] 
Using a) and b) we obtain the following factorization 
for R,: 

0 1. Im+p-2  . . .  [ 
0 ( H ; + p - l ) '  

c) Using Algorithm A.2 factor each 
( m  + p - i) Givens rotations: 

as a product of 

1, +p - i - 2 

G; m +p -i . . .  [ 
0 

5 )  Substituting the factorization of HI and H,' in Step 3b) 
above, we obtain the final factorization of F as 

F =  J1,1J1,2 1 * .  J l , m + p . .  . Jn , l Jn ,2  * * . Jn,m+p 

J l . 1 . .  . J l , m + p - ~ J ; . l .  . . J i . m f p - 2 . .  . 
1; +p - 2.1 J A  +p -2.2 J; +p - 1.1 

where each JL,, and Jl',. agree with an ( n  + m + p ) x  
( n  + m + p )  identity matrlx, except for a rotation GI,! or 
G:, in an appropriate 2 x 2  principal submatrix location. 
Rotations with a subscript r constitute the terminating 
section. 

rr'n + p , i r h  +p-2,i 

Yi ,  m +p - 3 7 1 ,  m +p - 2 

rh + p  - 1 ,  i 

Y i ,  m +p - 2 Yi, m +p - 2 

Remark 4: 
a) Thus from the above factorization, we see that the 

terminating section requires ( m  + p - l ) (m + p)/2 ro- 
tors, while the remaining portion requires n ( m  + p )  
rotors, giving in all a total of ( n  + ( m  + p - 1)/(2>Xm + 
p )  rotors. The following argument given by Reviewer 1 
shows that the proposed embedding has minimum 
number of input-output lines. A realization with n 
states, m inputs, and p outputs has n ( m  + p > +  mp 
independent parameters. From the above factorization 
of F we see that an orthogonal realization with n 
states, and r inputs and outputs has nr + ( r  - l)r/2 
independent parameters. Thus the requirement that 
the inequality 

( r  -1)r  
2 nr + ~ a n ( m  + p )  + mp 

hold true for all n leads to r = m + p as the minimal 
size of the embedding. Thus, with r = m + p ,  the em- 
bedded system has an excess of ( (m + p - 1Xm + p)/2 
- mp) parameters. Intuitively, one expects to have 
more number of parameters in the orthogonally em- 
bedded filter. In the SISO case, surprisingly, this does 
not happen; both the original and the orthogonally 
embedded realizations have the same number of pa- 
rameters, 2n + l .  The intuition is borne out by the 
MIMO case where one does require extra parameters. 
Of course the extra parameters provide the required 
termination to orthogonalize the filter. At present, it is 
difficult to ascertain the precise significance of these 
extra parameters. 
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b) The state variable filter with F as the transition matrix 
is an ( m  + p)-input ( m  + p)-output balanced realiza- 
tion with both the Grammians equal to identity. 

Remark 5: Algorithms 3.1 and 3.2 involve applying orthog- 
onal transformations, which are numerically very reliable. 
The embedding part involves three key computational steps. 

a) Solution of the algebraic Riccati equation. 
b) Factorization of N ,  and full rank factorization of sym- 

metric nonnegative definite matrices to compute y and 
6 1- 

c) Finding an orthogonal basis for the null space of @. 

The Riccati equation has been extensively researched, and 
consequently there are numerous algorithms available for 
solving it (for a survey see [191). We believe that well-tested 
numerical algorithms are available for solving the Riccati 
equation, and hence it may have advantages over the spec- 

15 

( 3 2 , l  

1 

tral factorization approach. There are software packages like 
Matlab or Matrix, that can be exploited for this task. 

N is a symmetric positive definite matrix; now for factor- 
ization of such matrices, several numerically reliable algo- 
rithms are available (Golub and Van Loan [16]). As an 
example, one could use the orthogonal eigenvector factoriza- 
tion; [16] also contains good numerical algorithms for com- 
puting full rank factors of symmetric nonnegative definite 
matrices. 

A numerically reliable way to compute the orthogonal 
basis for the null space of @ is to use the QR decomposition 
of w. 

For the purpose of illustration consider the case of a three 
state (n = 3) digital filter with three inputs ( m  = 3)  and two 
outputs ( p  = 2). In this case F will be a 4-extended upper 
Hessenberg matrix. Moreover, from Remark 4 we see that in 
all 25 rotors will be required, 10 of which will be for the 
terminating section. After implementing Algorithm 3.2 the 
transformed and factorized state variable structure will be as 
follows: 

IS 
G , 2  

1 

( 3 3 , 4  I[" (33.5  J 
I3  
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with U,,( .) = 0 and u e 2 ( . )  = 0. Implementing the above equa- 
tion using rotors and delay units leads to the MIMO orthog- 
onal structure of Fig. 3. In the MIMO case it does not seem 
possible to avoid crossing of the lines, an9 as such, unlike the 
SISO case we have not made use of Gi,j. Note that when 
u e i ( . )  = 0, the original state vector x(.)  = T-'Q'Z(.). 

IV. INVERSE FILTER STRUCTURE FOR THE 

SISO CASE 
A rather interesting feature of the filter structure depicted 

in Fig. 1 is that the inverse filter structure is very easily 
obtained. All one has to do is replace the Givens rotor G,, 
by a hyperbolic rotor H I ,  and change the direction of the 
input and output; this is depicted in Fig. 2. 

To explicate this, consider the orthogonally factored state 
variable filter (16) with u J k )  = 0. Then, for the first section 
consisting of GI, and G , ,  we have the following input-out- 
put relationship: 

0 SI2 0 4 k )  [ TI( :e::; k + 1) ]=[A :;,, ;;I[ 4, c; p][ % ] 
(21) 

where a,, and alz  are the inputs Lo GI,  (6,,) and G,,, and 
are obtained as outputs of G,, (G2,) and G,,, respectively. 
Now, using some simple algebra the roles of U ( . )  and y ( . )  
are easily interchanged, leading to the inverse filter equation 

where 

Consequently, H,,  is a hyperbolic rotation matrix. The fac- 
torized state variable equation for the inverse filter will be 
just like (16) except u(.)and y ( . )  will interchange and GI, 
will get replaced by H,,. Finally, the pipelined inverse filter 
structure will be as shown in Fig. 2. Note that except for HI,, 
the filter structure of Fig. 2 consists of orthogonal sections; 
thus we could refer to it as an essentially orthogonal inuerse 
filter structure. 

An alternate way to see why only one hyperbolic rotation 
appears in the inverse filter structure of Fig. 2 is to consider 
its transition matrix. Using (13), the transition matrix for the 
inverse filter is obtained as 

- d-'Cf - d-'S2 

rf - 6,d-Icf 6, - 6,d-'6, 

b fd- '  A f  - bfd- 'c f  p f  - bfd- '6 ,  

where the parameters with the subscript f denote the pa- 
rameters obtained after applying the transformation Q (see 
(12)). Now, in contrast to the orthogonality of F ,  for the 

inverse filter we have 

-1 0 0 -1 0 0 
F I [  0 0 0 1 z, 0 1  F,'=[ 0 0 0 1 z, O ]  (23) 

which shows that except for one -1 in (23) Fl would be an 
orthogonal matrix. This - 1  is reflected as the only hyper- 
bolic rotation H I ,  in Fig. 2. 

We would like to mention that one could obtain a com- 
pletely orthogonal inverse filter structure by first inverting 
(1) and then using its parameters in Algorithm 3.1. This will 
lead to a completely different state-space coordinate and 
correspondingly a different set of parameters for the various 
rotors. Our objective was to obtain a pipelined inverse filter 
structure using the parameters of the filter of Fig. 1 and 
maintaining the same state-space coordinates. 

V. CONCLUSION 
We believe that Algorithms 3.1 and 3.2 will be numerically 

very reliable because they involve applying orthogonal trans- 
formations. Nevertheless, in spite of extensive literature on 
algorithms for solving algebraic Riccati equations and full 
rank factorization of symmetric nonnegative definite matri- 
ces, numerical robustness of the steps involved in the embed- 
ding need a detailed investigation. Also, another topic for 
future investigation could be the significance of the excess 
parameters required in the MIMO case to achieve orthogo- 
nal embedding. With a new approach there is always the 
possibility of obtaining a new filter structure. At present we 
have obtained the structure reported in [4], but we are 
hopeful that some new structures will emerge. This aspect is 
currently being investigated. Also, as a byproduct of the 
state-space approach, in the SISO case, an essentially or- 
thogonal pipelined structure for the inverse filter is obtained. 

APPENDIX A 
We present the proof of Lemma 3.1 by giving an algorithm 

for constructing the desired Q. For computation of the 
Householder matrices required below, see [ 161. 

Algorithm A. I 

1) Compute a Householder matrix Po such that 

P ; b = [  * 0 . . .  01, and let A ,  = PdAP,. 

2) For k = 1: n - 2  Do (a) and (b): 
a) Compute the Householder matrix p k  such that 

where a(tj is the ( i ,  j)th entry of A,. 
b) Construct A k + l  = PiAkPk.  

def def 
3) Let Q = P O P , . .  . Pn-,, then A n - ,  = Q ' A Q  = H will 

be an upper Hessenberg matrix. Moreover, 

Q ' b = [  * 0 . . .  01. 
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Algorithm A.2 - Algorithm f o r  Factoring a n  Orthogonal 
Lower Hessenberg Matrix as a Product of Givens Rotations 

Let M be a q X q orthogonal lower Hessenberg matrix: 

m1.1 m1.2 0 

4 - 2 . 1  m4-2.2 mq-2.3 

mq.1 mq.2 mq.3 

m q - l , l  m 2 , q - 1  m 3 . q - 1  

For i = 1: q - 2  Do 

where 

and mf,k  is the ( j  - i + 1, k - i + 1)th entry of Mi. 
Define 

def 
Mq-l = Gq-l .  

Then 

. .  
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